专利名称:显示二值图象的设备和方法
技术领域:
本发明总的说是关于用于改善图象质量的设备和方法,特别是关于将二值图象变换为灰度或彩色图象和将一系列红、绿和兰色模拟图象变换为彩色图象并显示这些图象或驱动空间光调制器的设备和方法。
更具体地,本发明是关于二值和模拟帧缓存器象素装置和关于为实现显示图象的或驱动空间光调制器的改进方法的帧缓存器型装置和方法。
已经公知,当人们观看迅速地循环通过的二值图象序列时,如果图象的速率和持续时间适当,人们可能瞬时地合成该顺序出现的二值图象序列为灰度图象。这种合成现象对高速二值显示具有特别意义。这样的装置被用于例如投影显示系统、平视显示器和顶装显示器中。存在有实质上基本为二值制的小型快速高分辨率显示器,例如德克萨斯仪器公司制造的Digital Mirror Device(DMD),有源矩阵电致发光(AMEL)场致发射显示器(FED)以及有源寻址的铁电液晶装置,这些技术取决于每帧的象素数等等有可能产生每秒数千个二值图象。
图1A表明人们能以上述状态观看的一系列二值制图象105。各帧F1-Fm由一系列为1(ON)或0(OFF)的比特位组成。这就是,帧序列F1-Fm以及每一单个帧实际上是一系列最终必须被显示的比特位,以便能为人们观看二值图象以实现上述的合成。图1A还总的地显示了象素Pj,和具体地显示了P1-P4,作为代表性象素。因为每一帧F1-Fm均在时间t被显示,所以某些象素Pj将为逻辑1而某些将为逻辑0。为了让人们观看由帧F1-Fm产生的图象,需要有显示装置。
采用上述途径的问题在于显示二值图象组105的显示装置必须能在时间t上响应(相对于帧速率1/t)。这就给可能采用的显示器加以了限制。亦即,仅仅那些具有至少1/t Hz或每秒帧数这样大的响应速率的显示装置才能应用。但是,合成过程需要该t很小,否则显示将出现闪烁而不会显现具有灰度。
目前,存在有多种可用来输出上面讨论的子帧的显示装置。被设计作为显示器(或空间光调制器)的硅基液晶(LCOS)装置采用可被分类为“动态”的或“静态”的象素设计。静态象素设计每一象素具有一存储元件,它可长期存储象素数据而无需周期刷新操作。这类似于计算机存储器中的SRAM(静态随机存取存储器)。动态象素电容性地存储数据,需要周期的刷新以补偿所存储电荷的泄漏,类似于DRAM(动态随机存取存储器)。
这二种型式的显示器的共同特性是,在象素陈列被按顺序一次一行地寻址时,液晶在每次行被寻址立即开始更新到新的数据。碰巧,恰当地高的分辨率显示器,例如1024×1024象素,电子刷新时间接近于或长于液晶变换时间。例如,如果数据通过32根数据线以50兆比特/秒提供给显示器,这样一象素陈列更新即需约690微秒。液晶变换约为100微秒。因此在对其区间作扫描动作中被更新时能真实地观看显示。
在某些应用中,使得整个显示器上的数据在其能被有用地观看之前同时有效是有利的。这种应用的例子包括大多数相干应用,如光学相关器,光束转向器等等,而且要求与系统的其他部分,如受照源精确同步的显示操作。
当前采用液晶显示器即微型显示器的象素设计存在二主要类别,即单晶体管象素系统和静态象素系统。对这些设计型式有许多变型,但总的说全都属于此二方案之一。
图1B表示一作为通常的单晶体管象素陈列系统的部分的单晶体管象素电路701的简图。这种系统被用于所谓的有源矩阵式计算机屏幕中以及在某些采用液晶显示的硅底板微型显示器中。整个象素陈列被作成为显示器一行中的所有象素电路701共用选通线705和一列中的所有象素电路共用数据线710(或相反)。每一象素电路701包含有一晶体管714和一象素镜或窗电极718。
采用电路701的显示器一次一行地更新。具体说,选通线705被激活,由此来启动显示器上一单行象素上的所有晶体管714。在选通线705激活后,电荷流经晶体管714从而使象素镜718达到与数据线710同样电压。装置718可以是象素镜、电极窗、或象素电极,因此这些在整个此说明中将能可替换地加以应用。然后选通线705被激活,由此俘获电荷并因而达到象素镜718上的电压。然后象素镜718上的电压接通液晶(图中未表示)。有一电容与象素镜718相关连,而这样一象素的设计细节总是使此电容最大以改善电荷存储。
象素电路701可在当数据线710上的电压被驱动到中间值时被用作为一模拟象素,或在当这些线被驱动到仅为二个值,通常为0V和5V时用作为二值象素。但应指出,这一象素显示方法不是如本申请的母申请中所要求帧缓存器象素。即就是说,象素镜718一次一行地加以更新。
被采用的另一种象素设计型式是所谓静态象素显示器。静态象素显示器采用包含一数据锁存器和可能的其他电路的象素。这种方法已为例如苏格兰的爱丁堡大学一研究小组采用。图1C表示被叫做SRAM象素的静态象素电路721的略图。象素电路721包含连接到陈列选通线705和数据线710的数据锁存器732。象素电路721还具有象素镜或电极窗718。(应指出,选通线705和数据线710在图1C中被加以与图1B中同样的标号)。但在这里,数据锁存器732在选通线705的控制下读取数据线710上的逻辑电平。数据位以通常的状态存放在数据锁存器732中,即静态锁存器存储数据因而数据长期存放无需刷新。数据锁存器732的输出740可直接连接到象素镜718或连接到“异或”(X-OR)门750(如所示)或“异或非”门(X-NOR)(未图示)。“异或”门750(或X-NOR)驱动一与来自全局时钟(未图示)的全局时钟线755同相位或异相的象素时钟(未图示)。
X-OR750按照由数据锁存器732输出的信号740运行。从而按照存放在锁存器732中的数据位运行。例如,静态显示装置中的具有存储在锁存器732中的“1”的所有象素取全局时钟信号755的相反逻辑值,而静态显示装置中具有存储在锁存器732中的“0”的所有象素取与全球时钟信号相同的逻辑值。这本来是为促进早先硅基液晶中所用的向列液晶的直流平衡而做的。爱丁堡小组在他们的一些快速铁电装置中保持有助于采用基于FLC的装置的另一种形式的直流平衡的帧方案。因而,一旦这些显示器装载一帧数据,它们就只要改变全局时钟就得到可用于象素镜的该帧的逆量。
这种象素显示途径也不是本申请的母申请中所要求的帧缓存器象素。即,虽然图象数据被存放在象素阵列上,象素锁存器732(和因之象素镜718)被作一次一行地更新,正如同以上讨论的单晶体管情况。应指出,此象素显示方法为二值的,因为锁存器732利用恢复逻辑将电路中的所有节点拉到逻辑“1”或逻辑“0”,和“异或”门750所完成的一样。
因此,本发明的一个目的是完善二值显示装置的图象质量。
本发明的另一目的是提供实现由利用二值显示装置所产生的灰度图象的方法。
本发明的又一目的是提供用于降低在显示装置上产生时序灰度图象所需的数据速率的方法和设备。
本发明的再一目的是提供用于显示子帧以使人们能进行图象流的时间合成的方法和设备。
本发明的另一目的是提供能以一次更新一帧图象来改善来自二值或模拟显示装置的图象质量的显示装置。
本发明的又一目的是提供能在显示信息之前将整个帧的该信息累积一齐的显示设备。
本发明的再一目的是提供用于实现利用二值显示装置产生的灰度图象的设备。
本发明的另一目的是给设备在每一象素位置提供一或多个数据存储单元。
本发明的又一目的是它包括能配置在象素周围一小区域内的象素电路。
本发明的再一目的是提供能在每一象素提供一模拟信号或二值信号的设备。
本发明的另一目的是提供为动态显示图象的设备或为静态显示图象的设备。
本发明的一个优点是它使得能利用二值显示装置观看灰度图象。
本发明的另一优点是能被用来产生彩色的灰度图象。
本发明的再一优点是它能利用液晶显示装置。
本发明的又一优点是通过免除逐行更新象素而大大地降低显示数据改变时的时间间隔。
本发明的另一优点是它仅受象素的变换时间的限制。
本发明的再一优点是它可被应用于静态以及动态型式的显示系统。
本发明的一个特点是它以快速循环通过二值图象序列或子帧来提供灰度图象。
本发明的另一特点是在一实施例中最低效帧中的ON(点亮)象素以接近它们的一半整周期内显示而其输出或ON强度无变化。
本发明的又一特点是未衰减子帧被组合一起来降低显示装置输出子帧的速率。
本发明的再一特点是在另一实施例中最低效帧中的ON象素以近似它们的半全或ON强度显示。
本发明的另一特点是能利用象素缓存器或帧/图象缓存器。
本发明一实施例的又一特点是它利用反相器来驱动一实施例中的象素电极。
本发明一实施例的再一特点是利用电容器存储信息。
本发明的另一特点是能以模拟或二值电压驱动象素电极。
本发明的再一特点是在一实施例中仅利用n-FET晶体管。
本发明的又一特点是在一实施例中最低效帧中的ON象素以近似于它们的半个整周期显示而不改变它们的输出或ON强度。
另一特点是在未衰减子帧被组合一齐来降低显示装置输出子帧的速率。
本发明一实施例的另一特点是最低效帧中的ON象素以近似它们的半全或ON强度显示。
本发明的再一特点是它能利用象素缓存器或一帧/图象缓存器。
这些和其他目的、优点和特点由提供在一具有多个象素的显示单元上显示灰度图象的方法来实现,此方法包括步骤以第一速率接收一组欲加显示的子帧;衰减该组子帧中的最低效子帧以生成衰减的子帧;组合未衰减子帧以生成较少的未衰减的子帧;增加被衰减子帧的周期;和以对应地降低的速率显示未衰减子帧和被衰减子帧以实现视觉合成。
这些和其他目的、优点和特点还由提供在具有多个象素的显示器上显示灰度图象的方法来实现,此方法包括步骤以第一速率接收一组俗加显示的子帧;衰减该组子帧中的最低效子帧的象素的强度以生成一系列衰减的子帧,该系列包含地或多个子帧;组合数对未衰减子帧以生成一较短的未衰减子帧系列;增加衰减的子帧系列的周期;和以足够高的速率显示未衰减子帧系列和衰减的子帧系列以实现视觉合成。
这些和其他目的、优点和特点还以提供在具有多个象素的显示单元上显示灰度图象的方法来实现,此方法包括步骤以第一速度接收一组欲加显示的子帧;组合最低位子帧外的子帧以生成减少数量的子帧;和以相应降低的速率显示减少数量的子帧和最低效子帧以实现视觉合成。
上述和其他目的、优点和特点由一显示装置实现,此显示装置包括具有第一表面的基片;设置在该基片的所述第一表面上的多个液晶驱动电极;集成进所述基片的用于接收包括一系列子帧的图象数据的集成电路,该电路包含有分别耦合到所述多个液晶驱动电极的、用于存放所述图象数据的多个存储元件;设置在所述第一表面上的液晶层;和设置在所述液晶层上的窗口,其中,所述多个存储元件几乎同时地输出所述图象数据到驱动所述液晶层生成图象的所述液晶驱动电极。
上述和其他目的、优点和特点还由提供一显示装置来实现,此装置包括具有第一表面的基片;设置在基片的第一表面上的液晶驱动电极;集成进基片的用于接收由一系列子帧构成的图象数据的集成电路,该电路包含有分别耦合到液晶驱动电极阵列的用于存储图象数据的存储元件陈列;设置在第一表面上的液晶层;和一设置在液晶层上的窗口,其中,存储元件陈列几乎同时地输出图象数据到驱动液晶层生成图象的液晶驱动电极陈列。
上述和其他目的、优点和特点由提供一构成显示装置的方法来完成,此方法包括步骤集成一集成电路进一基片以接收和存储由一系列子帧构成的图象数据,其中,集成步骤包含在基片上集成多个存储元件以存储图象数据;在基片的第一表面上设置多个液晶驱动电极,其中,此多个液晶驱动电极被分别耦合到该多个存储元件;在基片的第一表面上施加一液晶层;和在液晶层上设置一窗口,其中,图象数据可包含被集中作为图象数据存放的多个子帧和图象数据仅在足够数量的这些子帧被接收到之后才加以显示。
这些和其他目的、优点和特点还由提供在具有多个象素的显示单元上显示灰度图象的方法来实现,此方法包括步骤以近似1/t的速率接收一系列欲加显示的N帧二值图象;将该系列N帧二值图象配置成一组m二值子帧,这里m小于或等于N;衰减每一N组子帧中的最低效帧的输出;组合n组的m子帧的每一个中的多对子帧以生成一系列未衰减子帧;将最低效子帧的显示周期加倍;和以接近1/(2t)的降低速率显示未衰减子帧和最低效子帧系列。
这些和其他目的、优点和特点也由提供在具有多个象素的显示单元上显示灰度图象的方法来实现,此方法包括步骤以近似1/t的速率接收一系列欲予显示的N帧二值图象;将此系列N帧二值图象配置成n组的m二值子帧,这里m小于或等于N;组合每一n组的m子帧中的非最低效子帧的数对子帧以生成一系列组合的子帧;和以近似1/(2t)的降低速率显示组合的子帧和所述最低效子帧系列。
这些和其他目的、优点和特点由提供一装置来实现,此装置包括具有第一表面的基片;设置在基片第一表面上的多个驱动电极;和配置在基片上并分别耦合到多个驱动电极的多个装置,用于接收包括一系列子帧的图象数据和按照一转换信号驱动多个驱动电极。
上述和其他目的、优点和特点还在每一上述多个装置包括下列装置时实现耦合到一选通信号和数据线用于按照选通信号接收图象数据的象素数据和输出象素数据的第一开关;耦合到第一开关以接收象素数据的第一反相器;耦合到一时钟信号和第一反相器的第二开关;和耦合到此开关和多个驱动电极的每个的第二反相器,其中象素数据按照时钟信号被由第一反相器传送到第二反相器,并将象素数据输出给各所述多个驱动电极。
上述和其他目的、优点和特点还在当上述多个装置的每一个包括下列装置时实现耦合到选通信号和数据线的用于按照选通信号接收数据的象素数据和输出此象素数据的第一开关;耦合到第一开关的用于接收和存储此象素数据的电容装置;耦合到时钟信号和此电容装置的第二开关;和耦合到此开关和多个驱动电极的每一个的反相器,其中,象素数据按照时钟信号被由电容装置传送到反相器,且输出象素数据到多个驱动电极的每一个。
对附图的简要说明图1A表明能由人们以上述方式观看的二值图象系列;图1B表明作为通常的单个晶体管象素阵列系统的部分的单个晶体管象素电路701的略图;图1C表明被称作为SRAM象素的静态象素电路721的略图;图1D示意地表示图1A中所示与被输入到一二值显示装置的同样的二值图象序列;图1E表明m帧组的系列;图1F提供合成过程的大致图示;图1G表明二值图象系列将如何被配置成“位平面”二值子帧从而能对观察者显示成具4位灰度的象素图象的示例;图2A表明子帧(如位平面二值子帧)如何能以一组子帧中的不同次序显示,在各种不同条件中某些优于其他的;图2B表示最高有效位帧如何能分布或扩展在整个帧组;图3A、3B和3C表示重新安排帧的方法,以使得显示系统为显示最低位(LSB)帧而无需以速率1/t运行;图3D表示按照本发明一实施例实现图3A-3C中所示过程所需步骤;图4A、4B和4C表示对m′=2(对应于图3C)具有帧速率近似1/(4t)的情况实现灰度效果的方法;
图4D表示按照本发明另一实施例在具有多个象素的显示单元上显示灰度图象的方法;图5A表示如何能利用如图1F的装置那样的二值显示装置显示8位灰度图象(或3×8位彩色图象);图5B表示模拟图象信号以及数字数据(如图5A的图象)如何能得出随后能通过图3A-3D及4A-4D的方法显示的二值子帧;图6A表明按照本发明另一实施例的能用作为显示器115的显示器;图6B表明任一象素Hj的闭合图形;图7A表示用于进行信号存储和再现采用CMOS方案的双反相器电路(对应于图6B中的缓存器电路)的帧缓存器式象素显示器的第一实施例;图7B表示用于进行信号存储和再现采用带辅助晶体管的CMOS方案的双反相器电路的帧缓存器式象素显示器的第二实施例;图8表示采用单反相器的帧缓存器式象素显示器的另一实施例;图9A表明按照本发明另一实施例的模拟帧缓存器象素电路;图9B表示仅采用n-FET并且每一象素需要一较小的晶体管和二较少的寻址线的模拟帧缓存器象素电路951的一个示意图;图10表示按照本发明另一实施例的图9A中所示二存储单元方案的模拟缓存器象素的示意图;和图11表示按照本发明的又另一实施例的这种较复杂的象素电路。
下面讨论帧缓存器式装置的几个实施例。但首先将参照图1-5讨论采用这样的帧缓存器式装置的显示灰度或彩色图象的方法和设备。然后在图6A和6B中表明利用对照图1-5所讨论的合成方法的通用缓存器式显示装置。而在图7至图9中表现用于二值制或模拟缓存显示器的特定实施例,其中一些为动态(有源)式显示器,一些为静态式显示器。
图1D示意地表示图1A中所示的与被输入到具有对应于帧F1-Fm中的各个值Pj而接通或断开(亮或暗)的硬件象素Hj的二值显示装置115的相同序列的二值图象105。应指出,虽然说明的是4×4象素显示器和图象,但下面的讨论可应用于任何显示和帧的大小。
假定对由F1到Fm的每一帧的P1为1(ON),对由F1到Fm-1的帧的P2为1(ON)而对帧Fm为0(OFF),仅对帧F1和F2的P3为1(ON)而对帧F3-Fm为0(OFF),和仅对帧F1的P4为1(ON)而对帧F2-Fm为0(OFF)。
由显示装置115显示帧的速率为1/tHz,这里t为任何二连续帧Fj与Fj+1之间的时间。由于P1对所有帧均为ON,所以象素H1维持为ON的时间mt。由于P2对帧F1至Fm-1为ON,所以H2为ON的时间(m-1)t。由于P3仅对帧F1和F2为ON,所以H3为ON的时间2t。由于P4仅对帧F1为ON,所以H4为ON的时间t。合成实现如下。如果显示装置115具有足够快的响应速率,观看它的人们注意到象素H4稍亮于那些根本非ON的象素,即除P1至P4外的全部象素Pj。类似地象素H3显现为稍亮于象素H4,因为它为ON长2t而不是t。类似地,H1表现为亮于H2,因为它为ON长时间mt而H2为ON则长较短的时间(m-1)t。
在所有以上说明中,认为时间t足够短使得人们实际上看不见即注意到H4为ON时间t而后在其余时间(m-1)t这OFF,而H1为ON在整个时间mt。反之,观看者则将图象合成到一起,这就意味着对观看者来说H1和H4似乎均为ON,但H1要较H4亮得多。图1E表示一系列m子帧组105。这里被观看的子帧的总数为N,而各帧被更新的速率仍为1/t,这里t为帧之间的时间。各组105被正观看装置115的观看者的人眼积累而成为在积累后表现为分别对应于该组图象105的灰度图象105′的系列155。这里,为形成一单个灰度(或彩色)图象或帧需要m子帧,而N子帧构成一灰度(成彩色)图象序列。
图1F给出合成现象的大致说明。具体说,图1F表明一假定情况下针对四点P1-P4的H1-H4相对于时间的强度输出I(P1)、I(P2)、I(P3)和I(P4)。子帧数为m。后面的讨论是关于第一组子帧105。象素H1对整个m子帧均为ON,H2在第三子帧期间为ON而在其余子帧时为OFF,H3对第一和第二子帧为ON而对其余子帧为OFF,而H4对第五子帧为ON而对其余子帧为OFF。如果速率1/t足以使合成发生于观看者的记忆中,则强度I(Pj)将显现如下(强度均为相对强度)。I(P1)=(1,1,…,1)→m,I(P2)=(0,0,1,0,…,1)→1,I(P3)=(1,1,…0,0)→2,而I(P4)=(0,0,0,0,1,…0,0)→1。应指出,峰值强度为时间序列(1,1,…,1)所表征(最低强度为(0,…,0))。还要指出,点P2的强度将显现(如果被恰当地合成的话)为与点P4相同的强度,而它们发生的次序不明显。从而子帧在组105内可加以交换和在当被观看者适当地合成时给观看者提供相同的灰度图象,而实际上子帧的正确分布可有且助于合成过程。
图1G表明一系列4×4二值图将怎样被配置成“位平面”二值子帧,后者随后再能对观看者显现为一具有4位灰度的4×4象素图象的显示的示例。应注意,虽然图1G表示4×4象素图象,但图象的横向尺寸可以是任意二整数。这些横向尺寸恰好与也可以是任何整数的灰度的位数相同。这里4位灰度的提出只是用作讨论和说明的目的。
图1G中所示的子帧组105为ON象素由1代表和OFF象素由0代表的二值子帧。对于4位灰度图象组105中含有总共24=15个这样的二值子帧105。由于这是4位灰度,所以也仅需要4位平面子帧(如果希望的话可增大此数)。最高位(MSB)子帧表明一在组105中的至少8个子帧的所有象素为ON即1的图象。如可看到的,仅象素(2,4)(在组105中所有子帧中(2,4)和y=1行上的所有象素,即(1,1),(2,1)(3,1)和(4,1)(重复8次)为ON。次高位(22=4)或第三位被重新配置为4组位平面子帧。仅象素(2,4)对所有这些位平面子帧在这一示例中为ON。在最低效子帧之后具有二象素ON,即如以上讨论的对所有子帧为ON的(2,4)和对组105内的8相同子帧和2附加子帧为ON的(3,1)。
由组105配置子帧成为所谓的位平面子帧的过程可由各种不同方法完成,此过程在这里为“位切分”。一种途径如下。代表二值图象流的二值制数据可按例如一8位的字节代表欲由一特定象素(一特定彩色中)在合成后显示的灰度的格式被存储在一计算机存储器中。由这样一种表述产生子帧的一种方法是仅仅由此8位字节的每一位形成一1位的二值位平面子帧。这将以软件由在表示象素灰度级的字节与一含有在字节中正确位置上除单个“1”外全为“0”的字节之间进行“与”操作提取所希望的子帧来完成。一种硬件实现可以是依靠将存储器硬件构成为使得能选择做位读取操作代替字节读取操作来直接由所存储的字节直接读取用于位平面子帧的所希望的位。
采用上述方法的一个困难或潜在问题是显示装置115必须能响应时间t(它涉及到帧速率1/t)。这给显示器能被应用的条件增加了限制。亦即,仅能应用那些至少具有1/t Hz或每秒帧数的响应速率的显示装置。
参照图1A、1C-1F所讨论的情况可被如下述用来产生带有红、绿和兰色中的灰度的彩色图象。假定m=100,N=10000和t=0.1微秒。这些数字使得可用于在一第二100帧或图象(各由100个二值子帧组成(对应于图1A、1D和1E中的帧105))来产生一个彩色的灰度图象。如希望完全的彩色图象,就需要三个灰度图象(分别用于红、绿和兰)。在该情况下,如果希望显示100个彩色图象将会有接近32个子帧可用于各红、绿和兰图象。此32个子帧可被用来对每一红、绿和兰色产生33个相等距离的(相等于(接近)5位灰度的)灰度级。这将在下面更详细讨论。
上述现象使得能以一组105中任何顺序显示子帧。而且,某些子帧的显示顺序可能较之其它顺序更有用,如下面将讨论的。参看图1D-1F,最低位(LSB)子帧和最高位(MSB)子帧按如下定义。一最低位(LSB)子帧被定义为子帧组105中象素仅在一时间t内可能为ON从而构成灰度图象的二值表示的最低位的子帧,而一最高位(MSB)子帧被定义为该组2P-1子帧,其中在子帧组105内某些或全部象素为ON,而P被定义为整数以保持2P-1+2P-2+…+2°=(2P-1)=m,见图1F。因而,LSB子帧是这样的单个子帧,其中强度可能为ON来得到对应于灰度图象的LSB强度,而MSB子帧是这样的2P-1组,对其象素的强度可为ON以得到对应于灰度图象的MSB的强度。
亦即,因为各组中的所有子帧被合成到一起,所以每组能显示5个位平面的每一个,即位0(最低位LSB),位1,位2,位3和位4(最高位MSB),如图2A中所示。在此方案中,最低位(位0)帧显示一帧、即时间期间t,下一位(位帧)显示二帧、即时间2t,而最高位(在此情况下为2P-1t,这里P=5)显示16帧、即16t。
实践中,当帧速率接近时间合成的下限时,为去除现有技中公知的那样的轮廓假象,在对应于组105的帧内扩展MSB将是有利的。图2B表明可如此做的一种方法。将图2A与2B相比较,可看到那些对16子帧为ON,即长总时间16t-因而对应于MSB即位4的象素,它们能被变成为ON一半该时间、即8t,随后具有位3的象素为ON8t,然后MSB象素再次回到ON剩余时间8t,从而使它们显示所需的16t时间。
由图2A和2B很显见,这样地产生一24位的时序灰度(或彩色)图象需要一速度非常高的显示器,和/或图象速率的降低(24位是指对所用的三彩色的每一个的8位灰度,这对各彩色将需要255子帧)。亦即,显示系统115必须足够快地运行以能显示此最低效帧,即显示LSB的帧。
图3A对应于图2A和图3B,而3C表示重新配置帧的方法,以使得显示系统无需为显示LSB以速率1/t运行。应指出,图3A表示所有显示同一强度Io的象素,且它仅是导致灰度效果而显示特定象素的时间量。MSB子帧为那些含有成为ON以显示最高位的象素的相同的子帧。LSB子帧为含有成为ON以显示最低位的象素的子帧。
图3B表明如何组合组105来达到5位灰度而无需显示装置115能具有1/t的速率。如能看到的,显示装置115的速率要求被由1/t降低到1/(2t)。为了补偿LSB帧成为ON的辅助时间t,该帧中象素的强度被减半,由Io成为Io/2。字母m′被用来指明被组合在一起来生成LSB时间的位数。因此,涉及到图3A,m′=0因而无附加位与LSB组合在一起并因而不会降低显示装置运行所需的速率。但当m′=1时,第一位子帧和第0位子帧被如图3B中所示组合在一起,而因此显示器115的速率要求被降低一半,接近1/(2t)。但这一降低伴随一新的要求,即显示装置115要能输出三个不同的强度电平,即Io、Io/2和0,而不是对m′=0情况的二个强度Io和0。对于二值显示装置,这可由在适当时间调制照明光或者在适当时间调制来自显示装置的光输出而达到。
图3C取再一步骤的处理。在此,LSB帧、第1位帧(显示下一至最低位位置中的位的帧)和第二位帧被组合到一起。在这一情况下,显示装置115的速率要求降低接近75%,由1/t到近似1/(4t)。在这一情况中,由于下一到最低有效位(位1)为ON的时间与位2帧为ON的同样长,所以它们的强度降低一半,到Io/2。类似地,由于LSB位帧为ON的时间与LSB帧同样长,LSB帧的强度被降低一半,由图3B中那样的Io/2到Io/4。因此,在此情况下显示器115必须能实现的速率被降低近75%,由1/t到约1/(4t)。对于图2A和2B中所示例,这意味着10kHz的帧速率降低到2.5kHz。
参照图3A-3C所讨论的方法可加概括如下。图3D表示为概括参照图3A-3C所示处理所需的步骤。具体说,图3D表示为接收一系列N帧二值图象(每个最初要以1/t的速率进行显示)的步骤310,这里N为整数。另一方面,如果接收的是灰度或彩色图象而不是二值图象,则步骤310为步骤310a和310b替代。亦即,步骤310a涉及到接收一系列灰度(或彩色)图象,而步骤310b涉及到构成表示这些灰度(或彩色)图象的二值子帧。
在步骤310或步骤310a和310b执行后,执行步骤320。步骤310涉及到将该系列N帧二值图象配置成n组m二值子帧,这里m小于或等于N。步骤330涉及衰减各组m子帧中的最低效未衰减的子帧以及先前以接近于2的因数衰减的子帧(如有的话)。步骤340涉及将未衰减的帧配对以使得成为未衰减子帧数量的约一半,并由此近似地加倍被衰减子帧的周期。但请注意,近似1/2是指衰减可以是一半的从百分之几到百分之20或更多些一之间的某一数值。准确的衰减量(或强度中的变化)可以简单地以各种不同衰减量进行衰减过程和询问观看者哪一衰减量最有效来确定。应指出,步骤340完成m′即被增1。步骤350使得能重复最后二步骤330和340直至达到所希望的帧速率。
上述处理可继续且增加m′。对于8位的情况(即由图1A、1D和1E得到的m为255),由图3A-3C得到的m′可在0至7的范围内。m=255时的子帧数为m′=0时为255,m′=1时为128,m′=2时为65,m′=3时为33,m′=4为19,m′=5时为12,m′=6地为9,和m′=7时为8。参数m′为其亮度经衰减的位数。
上述方法不引起光通量的有效损失。就是说,存在有如表1所示的数据速率/通量的折衰。应指出,关于表1的左部分(m′=1,2),光通量对于用于一给定图象速率所需的帧速率中的显著降低作稍许减少。
还应指出,对两种不同情况示出了相对数据速率。为清楚起见,第一计算对应于图3A-3C中所标出的定时。在此情形下,显示一完全的灰度图象所需时间随m′有稍许增加。这可在将图3A与图3B或3C相比较时看到,在此清楚地看到整个数据速率被降低。也就是,衰减的子帧进一步向右延伸到图3B和3C再到图3A。结果在实践中,第二计算可被作成以将帧周期由2t(图3B)或4t(图3C)缩短为稍低于该数量来调节数据速率以达到为觉察到同样的图象速率的数据速率。调节的近似量可按如下计算。如果Bm为对一给定m′的子帧数,和如果m为在m′=0时的子帧数,则当为由图3A进到3B到3C而将子帧配对时,它们将缩短约
(mt)/[(Bm·2m)t]=m/[(Bm·2m)]的百分数,这里mt为m′=0时子帧105的周期而(Bm·2n)t为在m′不等于0的子帧105的周期。
表1(灰度级=256)子帧 255 128 653419 12 9 8m′ 0 1 2 3 4 5 6 7相对通量 100% 99.6% 98% 94% 84% 66% 44%25%相对数据速率1 0.5 0.25 0.12 0.06 0.03 0.015 0.008(图3)相对数据速率1 0.5 0.255 0.13 0.07 0.05 0.035 0.03(恒定图象速率)上表利用图3D中的步骤计算,可对之概括如下。以未衰减子帧开始,去除最低效帧并衰减它到其一半的值和以因数2增加其周期(随着其他已被衰减的帧)。然后,剩余的未衰减帧可被组合成未衰减帧数的一半。例如,为由m′=2进到m′=3的处理如下。取最低效的未衰减帧,将其衰减1/2(还以另一1/2衰减二被衰减的帧)。现在得到3个衰减子帧和被变换到31个双倍周期的未衰减帧的62个未衰减子帧。
亮度的有效衰减可由多种方法实现。一种途径是在适当时间调制加到整个显示装置115的亮度的强度。另一途径是调制显示器和观察者之间元件的透射率。另一途径是在适当时间对照亮显示装置的光源作脉冲调制来较短周期照亮衰减的子帧。另一途径是采用具有能同时允许以上述速率装载子帧数据而随后能以类似于上述的脉冲调制亮度的情况的作较短时间显示的能力的显示装置。某些这种装置中的光源较之其它的更易于调节。
图4A、4B和4C表明对应于具有帧速率1/(4t)的图3C(m′=2)的上面讨论的亮度调制的二种方法。具体说,图4B表明上面讨论的强度调制。而图4C表明为实现同样的或接近同样的结果的强度输出。而强度分布仍是针对照亮显示装置115的光源的。这里,所有位的强度均保持相同而它们的周期被加以改变。例如,LSB的象素光源为ON的周期为时间t0,它小于图4A和4B中所示的时间4t。最后位的下一个即位1为ON的时间t1大于t0但小于t4(否则它将显现出和具有位2ON的象素同样明亮)。具体说,t0和t1长度被调整的方式类似于强度的调节,其中t1接近于总时间4t的一半,即t1约为2t。同样,t2为近似于t1的一半,因而接近4t的1/4,也就是t。
图4D表示按本发明另一实施例的用于在具有多个象素的显示器上显示灰度图象的方法。步骤410涉及接收各自欲以速率1/t显示的一系列N帧二值图象。另一方面,如果接收灰度或彩色图象而不是二值图象,则以步骤410a和410b替代步骤410。即,步骤410a涉及到接收一系列灰度(或彩色)图象而步骤410b涉及到构成表示这些灰度(或彩色)图象的二值子帧。而步骤420涉及到将该系列N帧二值图象配置成n组m二值子帧,这里m小于或等于N。步骤430涉及到缩短各组m子帧以及在任一先前被缩短子帧中的最低效子帧的输出周期接近1/2。但应注意,此“接近”1/2是指这种缩短可以是约为50%+或-20%或可能更大,这可仅仅依靠以各种不同的缩短量进行缩短处理和观察哪一缩短量最有效来确定。应指出,实际上每完成步骤440一次m’即被增加1。步骤450使得能重复最后二步430和440直至达到所希望的帧速率。
显示装置115可以包括任何时序(灰度)显示器,不管是任何硅基液晶、数字反射镜装置、等等。即使光调制机制原本就可能为非常高的帧速率,源自驱动电子电路的显示器以及显示器自身的数据速率也会因成本和便于敷设电缆上的原因要加以降低。
所有上面讨论的均可应用先前粗略讨论过的彩色显示器。这里,彩色光源可以是例如三个分开的光源,即红光源,绿光源和兰光源。这些彩色光源可以分别是例如一红光发射二极管,一绿光二极管和一兰光二极管,或者是一被作顺序滤波以显现红、绿或兰色的白色光源,或者是一在显示器与观看者之间的作顺序转换以传递红、绿或兰光的滤光器。每一个这些光源以类似于上述用于灰度的光源的方式加以处理。在此各情况下,输出强度均不作强度中的衰减或周期上的缩短。但彩色“灰度”可由利用图3D的步骤作衰减或图4D的步骤作周期缩短来达到。这可对每一个光源来实现。就是说,红、绿和兰光源的每一个均可如上述被观看者合成。例如,如果红光源输出m’=0的如图3A的帧,则输出的速率可被降到由将最低效帧中的象素处的红光源的强度衰减至接近1/2(即由Io至接近Io/2)的速率的近似1/2,然后按图3A~3D中特别是步骤330和340中讨论的相同方式将周期2t的成对未衰减帧组合和将最低效帧的周期由t加倍到2t。这种处理可加以重复(见图3D中步骤350)。这一过程可对红光源、绿光源和兰光源的每一个进行。
另一示例涉及到将图4A~4D的方法应用到每一个红、绿和兰光源。例如,如希望红光源输出图4A那样的帧(对应于m’=2),则以Io/4的红光源的象素输出来替代输出最低位帧,发亮的周期或这些象素的衰减被除4由4t降到t。同样,以Io/2的红光源的象素输出替代输出最低效帧的后一个,这些象素的周期被近似2除由4t到2t,如图4C中所示。此处理可如图3D中步骤450那样加以重复。这一过程可对每一个红光源、绿光源和兰光源进行。应指出,将红、绿和兰子帧散置对帮助合成处理可能是有益的。
实践中,彩色显示通常利用RGB光源来实现,其中R对应于显示红色的象素的子帧,G对应于显示绿色的象素的子帧,和B对应于显示兰色的象素的子帧。然后光源被用来输出下面的子帧。现参看图3A,假定对应的红色子帧、绿色前帧和兰色前帧系列被配置如下
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R GG G G G G G G G G G G G G G G G G G G G G G G G G G G G G B B B B BB B B B B B B B B B B B B B B B B B B B B B B B B B…,其中每一大写字母对应图3A中一帧且此例中m=31(记住,m为子帧的总数)。
如果每一个红、绿和兰光源均以完成步骤310~340来经受图3B的处理一次(故m’=1),则最低效帧(欲予衰减的)可分别对红、绿和兰以小写字母n、g和b表示。利用上述术语,照亮期间的输出,红、绿和兰光源将为RR RR RR RR RR RR RR RR RR RR RRRR RR RR RR rrGG GG GG GG GG GG GG GG GG GG GGGG GG GG GG ggBB BB BB BB BB BB BB BB BB BB BBBB BB BB BB bb这里所作出的间隔仅仅是为清楚表明二个未衰减帧被加以组合,可理解为此间隔类似于图3B中分开帧的垂直线。一般,RGB光源以序列RGBRGBRGB……输出帧。因此,上面的序列可输出为RR GG BB RR GG BB……rr gg bb。但是,如先前讨论的,帧的次序可加以改变以有助于合成处理。最后,上述帧系列也可具有最低效帧的被缩短周期(如图4A~4CD中讨论的)如可做如下表示RR RR RR RR RR RR RR RR RR RR RRRR RR RR RR RGG GG GG GG GG GG GG GG GG GG GGGG GG GG GG GBB BB BB BB BB BB BB BB BB BB BBBB BB BB BB B这里,单个字母R、G或B是指象素为ON的时间周期接近等于其他象素的一半但这些象素的强度不被衰减。这里,帧的次序可加以改变但对观看者而言仍然相同。
对于m’=2,上述能被作如下组合RRRR RRRR RRRR RRRR RRRR RRRR RRRR rrrr ssssGGGG GGGG GGGG GGGG GGGG GGGG GGGG gggg hhhhBBBB BBBB BBBB BBBB BBBB BBBB BBBB bbbb cccc这里,间隔类似于图3C中的垂直线,而s、h和c分别为r、g和b的强度的各1/2,和R、G和B的强度的1/4。
改变m帧组内的顺序可能是有用的,上述序列能以多种方式输出,包括RRRR gggg BBBB rrrr GGGG bbbb RRRR GGGG BBBB BBBB……RRRR hhhh BBBB ssss GGGG cccc。上述帧系列还可以具有以上对照图4A~4D所讨论的被缩短的时间周期,如以下所示RRRR RRRR RRRR RRRR RRRR RRRR RRRR RR RGGGG GGGG GGGG GGGG GGGG GGGG GGGG GG GBBBB BBBB BBBB BBBB BBBB BBBB BBBB BB B其中,双字母RR GG和BB是指分别接近于帧RRRR、GGGG和BBBB的长的1/2(但强度相同)。类似地,单个字母R、G和B具有帧RR、GG和BB长的1/2和帧RRRR、GGGG和BBBB长的1/4。这里,帧的顺序仍可加改变而对观看者而言依然相同。并应理解,所有的衰减和缩短均接近于以上所讨论的。
图5A表示如何利用如图1F的装置115那样的二值显示装置能显示8位灰度图象(或3×8位彩色图象)。虽然示出的是8位的子帧,但应了解,如果应用要求较高或较小精度可采用任何数量灰度。能这样做的一种方法是由从模拟信号推导得位帧产生子帧序列。为此,表示一系列扫描线上的图象的亮度的模拟信号(如果R、G和B被分开时为多个信号)可利用一模/数转换器(ADC)加以采样。然后由此ADC的输出就成为对应于各个的ADC输出的值的位帧的二值值。在模拟信号被重复采样时,位帧中的象素被指定符合模拟信号表述中所采用的光栅扫描模式的序列中的值。
图5B表明模拟图象信号以及数字数据(例如图5A的图象)怎样能通过图3A~3D和4A~4D的方法成为二值子帧随后能被进行显示。在图5B所示例子中,讨论的是8位灰度或3×8位象素彩色,应理解的是任何位数均可应用。图5B涉及1)在步骤553以模拟形式接收图象和将这些图象变换成数字图象数据;或者2)直接接收图象。一旦接收到,这些图象在步骤567重新配置成位平面子帧。并如上面对照图5A所讨论的,如果数字图象为灰度图象或彩色灰度图象,然后步骤567涉及图5A中所示的位切取。另一方面,如果数字图象为二值子帧,则步骤567涉及图1G中所示的位切取。最后,步骤577涉及按照该位平面的灰度位单元重新排序(如希望的话)所得的位平面子帧和显示这些位平面子帧适当的次数。也就是,如以上讨论的,如果希望为一8位灰度,则MSB子帧显示27=128次,紧接着MSB子帧显示26=64次,等等,直到显示一次的LSB子帧。应记住,不同时一起或连续地显示各位帧(特别是对MSB)可能是有利的。这就是,有时为了避免闪烁,MSB和其他图象可被加以分离并间歇地显示。
图6A表示一能用作为显示器115的显示器505,图6B表示任一象素Hj的特写视图。硅基液晶(LCOS)显示器或空间光调制器可用作为显示器115。具体地说,参考图6A,一LCOS显示器505包含有在一硅基片511上的薄液晶层509,其上覆盖以玻璃窗515。基片511包含有带象素Hj的集成电路520。集成电路520被用来施加一电场通过液晶层509以便重新取向液晶和由此调制如图5中所示由基片511反射的或在特定处理中通过基片511发送的光束。
在这一点应当指出,对于例如在利用便于作直流平衡的覆盖玻璃透明电极电压的电调制的驱动方案的情况,同时更新所有象素是有益的。存在于象素电极上的电数据中的变化可与彩色玻璃电压的变化相同步,以此来使此驱动方案的效率最大。最好集成电路520能利用一相当于或小于现有的静态象素设计所用的面积。标准的1.2微米CMOS设计可被利用,因为它已用于生成近似20微米×20微米的象素面积的现有的静态象素设计。
图6B表示按照本发明一实施例的一组例如三个象素521的三象素Hj以及某些相关电路的特写视图。应指出,图6B仅只是数个象素连同它们的相关电路的示意表示。具体说,一系列象素缓存器525被分别耦合到象素Hj的液晶驱动电极529和集成电路520。整个象素缓存器组525包括一图象缓存器535。数据输入端538接收最终要显示的图象数据。
显示器505如下运行。新的图象数据由集成电路520经由输入端538接收并存入帧缓存器535但还未被加到液晶层509。这使得前面的图象能被观看而无须由新的数据将其逐渐取代。一旦帧缓存器535被新数据完全填满,这些新数据即同时由象素存储元件525传送到液晶驱动电极529。
应指出,上述情况使得可能明显地降低所显示数据改变的时间期间。例如,例如考虑采用一具有1024×1024象数的标准LCOS装置,它进行寻址并一次一行地更新象素。对于这样一个包含有以50兆比特/秒运行的32数据线的标准系统,显示的数据在约655微秒内被加以更新。但是,以新图象数据代替老图象数据的显示系统505被限制于象素的变换时间,具体地在液晶装置中约为100微秒。应指出,象素Hj并不一定是静态的,实际上在这里动态象素方法可能更好。
随后的讨论针对图6A和6B中所示的举例(但电路并不限于这种显示器),这些图中所示的部件将在括号中带有图6A和6B中的标号。此讨论同样适用于显示装置和/或空间光调制器。也就是,所有象素镜或象素电极均将被看作为用于驱动如液晶显示器、电致发光显示器、可变形镜由显示器的部件,或作为空间光调制器的驱动部件,或者用于任何其他象素式显示器。
图7A表示帧缓存器式象素显示器的第一实施方案,它采用用于信号存储和再生的双反相器电路761(对应于图6B中的缓存器电路525)的CMOS方案。这一方案是二值的,因为它利用仅能合理地期望驱动到0V或Vdd(通常为5V)的反相器。它也是一动态象素系统,因为它需要作周期的刷新以维持被电容性存储的数据。应指出,图7A包括有表示双反相器电路761的替代方案的虚线,这将参照图7B加以讨论。此虚线不看作为图7A中电路761的部分,而仅用来作为参照的目的。
首先看图7A,双反相器电路761工作如下。全局时钟(未加图示)在线765上提供去往晶体管766的全局时钟信号。当线路765上的全局时钟信号无效时,它将反相器769的输入767与反相器776的输出771相隔离。数据线776的新数据帧(应指出数据线778对应于图6B中的线538,还应指出每一象素电路761仅一根线778所以图7A中也仅表示一个而因此在每一个这样的线778上将仅存在一个象素数据)经由象素的晶体管781和反相器776的输入782被装载到反相器776以类似于图1B和1C中所讨论的一次一行的方式显示。单个的选通线779被激活,将反相器776的一行设置为新数据值。当选通线779在被去激活时,数据存到反相器776的输入782的输入电容上。
象素行以上述方式顺序寻址直至显示器的所有象素在它们的反相器776上具有新数据为止。然后全局时钟被激活,使晶体管766能将数据由反相器776的输出771传送到反相器769的输入767。接着再将数据传送给连接到象素电极718(对应于图6B中的电极529)的反相器768的输出783。然后线路765上的全局时钟信号被去激活,象素数据被安全地存储到反相器768的输入767上。下一帧数据经由数据线778和晶体管781被装载到反相器776。
象素镜/电极镜718在各象素的液晶的整个变换过程中给显示器的液晶(未图示)提供电荷。这是有利的,因为它带来较快的变换和较完全的变换。尤其在高自发极化材料中如此。
应当指出,电路761采用单晶体管766和781分别驱动反相器769和726,并因而可能存在有可能的阀值下降。因此,将提出另一替代实施方案,采用两个多寻址线和两个多晶体管来使得通过传输门到反相器输入能具有满电压动作范围。此替代实施例如图7B中所示。
图7B示出帧缓存器式象素显示器的第二实施方案,其采用带有用于信号存储和再生用的辅助晶体管的双反相器电路791的CMOS方案。此方案也是二值的,因为它利用仅能合理地期望驱动到0V或Vdd(通常为5V)的反相器。它还是一动态象素系统,因为它需要周期刷新来维持电容地存储的数据。
参看图7B,双反相器电路791以类似于图7A的方式工作。亦即,全局时钟(未图示)在线路765上提供全局时钟信号到晶体管766。但一第二反相的晶体管766’接收线路765’上作逻辑反相的全局时钟信号(亦即线路765上时钟信号的逻辑反)。当线路765和765’上的全局时钟信号无效时,它们将反相器769的输入767由反相器776的输出771隔离。数据线778上的新数据帧分别按照选通线77 9和779’经由晶体管781和781’被装载进反相器776。象素电路的反相器776的输入782显示一次一行的格式。选通线779和779’被激活,将反相器776的一行设置为新数据值。当选通线779和779’被去激活时,数据被存储到反相器776的输入782的输入电容上。
象素以上述方式按行顺序被寻址直至显示器的全部象素在它们的反相器776上得到新的数据。然后激活全局时钟,使晶体管766和766’能将数据由反相器776的输出771传送到反相器769的输入767。这接着又将数据传送到连接到象素电极718的反相器769的输出783。然后将线路765上的全局时钟信号和线路765’上的反相时钟信号去激活而象素数据即被安全地存储到反相器769的输入767。下一帧数据经由数据线778和晶体管781及781’装载到反相器776。
以上图7B中所示的实施例具有免除可能的阀值下降的优点,但各象素需要较之图7A多的面积。图8中所示的下一实施例比图7A的实施例更为紧凑。
图8表示一单个反相器象素电路801。象素镜/电极718、反相器769、选通线779、和其他部件在可能时被加以与图7A和7B中所用相同的标号。应指出,这些图中的反相器776已被在阵列被寻址时存储数据的电容器805所代替。这与上面对照图7A和7B所说明的方法相同。但电路801没有驱动反相器769的输入767的缓存器。因而电容顺805应尽可能地大。使电容器805尽可能大的唯一缺点是它所占用的芯片上的面积。电容器805不减慢电路801的运行,因为通常数据线778的电容是如此之大以致于相对说从驱动负载的观点看使得电容器805的电容(象素电容)不再重要。电容器805的电容取决于电路801的各种不同参数,例如写帧(或刷新)操作的所希望的频率,由象素电容器805的电荷泄漏速率(例如可能的光感生泄漏),电路801中的晶体管的阀值电压,和可能用于电容器805的各象素的面积大小。
参看图8,电路801以类似于双反相器电路761和791的方式运行,下面将解释。如上述,全局时钟(未图示)在线路765对晶体管766提供全局时钟信号。当线路765上的全局时钟信号无效时,它将反相器769的输入767与反相器776的输出771隔离。数据线778上的新数据帧经由象素的晶体管781以类似于上面讨论的一次一行的格式存储在电容器805上。单个选通线779被激活,将电容器805的一行充电到新数据值。
象素的行被以上述方式顺次寻址直至显示器的所有象素将新的数据存储在它们的电容器805上为止。然后全局时钟被激活,使晶体管766能传输电压且因此整个数据帧被由电容器805传送到反相器769的输入767。这随后又一次一帧地传送数据给连接到象素电极718的反相器769的输出783。然后线路765上的全局时钟信号被去激活而在下一帧数据经由数据线778和晶体管781对电容器805充电的同时象素数据被安全地存储到反相器769的输入767上。出现在象素镜718上的数据与数据线778上的数据的极性相反。
以上讨论的电路是驱动象素电极718到二值的象素电路设计。随后的讨论是关于驱动象素电极718到模拟电压的电路。
图9A表示按照本发明另一实施例的模拟帧缓存器象素电路901。应指出,对于模拟象素电路无需合成子帧的处理,因为按定义一模拟电路可输出灰度式图象,但是,如前面讨论的,如果一观看者顺序地(而不是同时地)看到红、绿和兰三个分开的灰度图象,他们将合成这些图象到一起(只要它们以是以使合成发生的速率显现)。这通常发生在以近似180Hz(3乘60Hz)开始的帧速率取RGBRGB……的模式,它表示将一液晶滤色器由红(R)变到绿(G)变到兰(B)或旋转一彩色盘或顺序激活红、绿和兰光源如光发射二极管。在任何情况下,图9A和9B中所示出的象素电路提供依靠显示一帧之前一次俘获一整个帧来一次一整帧地转换模拟数据帧的能力。这使得可能精确地同步由R帧到G帧到B帧的转换而不是试着同步逐行地更新先有技术的显示器或空间光调制器。
而且,这些象素电路将促进在一单个图象的周期内快速显示多重红、绿和兰色,这会带来各种另外的益处。例如在上述例中,利用一红、一绿和一兰子帧形成一单个彩色图象,在此例中它延续1/60秒。将较多个子帧分布进为单个彩色图象分配的时间是有利的。例如,在1/60秒的时间周期内可采用6个模拟幅帧(代替3个),而它们可出现的顺序为RGBRGB,或采用9个模拟子帧RGBRGBRGB,或者12个模拟子帧RGBRGBRGBRGB,等等。在一单个彩色图象将被显示的时间期间内重复显示RGB组来扩展这种处理来实现视觉上平滑感觉(亦即1/60秒)。在这种方法中,所有的红色、绿色和兰色子帧均可分别为相同的。上述讨论适用于任何显示红、绿和兰子帧的顺序,而不一定需以红后绿再后兰这样的次序显示。
在此方法中,这些子帧的显示速率高于原先的显示速率。在分配给一单个彩色图象的时间上散布多个子帧的优点是降低图象闪烁和降低运动图象中的色乱效应。术语“色乱”是指一种人类视觉系统感受到运动对象边缘周围的彩色干扰条纹的现象。也已经观察到,将红、绿和兰散布在降低图象闪烁和色乱方面相对于将红、绿和兰子帧组顺序显示效果大得多。而以上及后面讨论的象素电路仍然提供能实现这样高显示速率的硬件。
象素镜718通过上拉和下拉晶体管被驱动到数据电压电平,下面将说明对这些晶体管的时钟控制。现在以已将前面的图象电容存储在象素镜718上作为前提说明电路901。显示器的行由激活选通线779和779’(即线779成为高和线779’成为低)顺序寻址。然后数据线778将作为限压MOSFET909的栅极的电容输入端905充电到这些数据线778上的模拟电压。这将对显示器的每一行进行。
象素镜718被下拉晶体管917由全局下拉线915上的HIGH(高)同时复位(设定为0伏)。此全局下拉线915可维持HIGH足够时间来转换某些液晶材料,如果(例如说)它们具有高的自发极化的话。这样的液晶材料的例子是做完全转换需要约30微秒的BDH764E。在其转换时,分子电偶极子的重取向部分地中和象素电极上的电荷。如果象素电极电荷能通过液晶被转换的时间重新被充满是有益的,这样电荷的中和就不会引起电极上的电压波动,和相应的所希望的“截止”状态的波动。带有恒定偶极子的另一例是Hoffman LaRoche生产的手性层列扭变螺旋结构的铁电材料。其特性转换时间约为200微秒。全部象素镜718然后同时被上拉晶体管927、亦即通过将全局上拉线925设定为LOW(低)设置到它们的新模拟电压。
上述的过程发生如下。电流由Vdd线931经过被完全转换为“ON”的上拉晶体管927并通过限压晶体管909到象素镜718。这里必须指出,MOSFET经受一被称之为“箝断”的现象,它限制由“ON”晶体管所能通过的电压信号。因此,能通过的电压被限制为栅极905(Vgate)的电压减去晶体管909的阀值电压(Vth)。因此象素镜718充电到Vgate-Vth,由此而使得预先设定的栅压能控制象素镜718能充电到的电压。
在标准的CMOS处理中,n型晶体管阀值为正值,所以象素镜718不能被完全充电达到电源电压Vdd。
图9B表示一模拟帧缓存器象素电路951的略图,该电路仅利用n-FET而各象素需要一较小的晶体管和二较少寻址线。因此,这一设计较之图9A中所示的更为紧凑。仅采用n沟道晶体管免除了各象素的n源以及为固定此源电压的供电导引机构的需要。但是这种设计的确具有另一阀值电压降。这里仍然对电路951中共用的电路901的那些部件(图9A)采用同样的标号。
参看图9B,通过门781和781’被以单个门781替代。P型上拉晶体管927也由n型晶体管967所替代。这里,数据电压仅通过n型晶体管781直接传送到限压MOSFET909。因此,能被传送到门905的最大电压为Vgate-Vth,其中Vgate和Vth与以上定义的相同。从而这就意味着,能通过限压晶体管909传送的最大电压为Vdd-2Vth。有可能对电路951中的晶体管依靠加以额外的屏蔽使所选择的晶体管被处理得取有不同的(这里为较低的)阀值来具有低的(也许为十分之几伏)阀值电压Vth。
从上述讨论看可将象素电路作成另外更复杂的设计。一种这样复杂的设计涉及到扩展任一前述电路来在每一象素具有多于一个的存储单元。这可以如此来达到,即以多于一根数据线进到每一象素,及在一单个选通线的控制下同时将数据钟控制多于一个存储单元。另一方面,每一象素也可以具有一单个的数据线和多于一根选通线来控制此数据线上出现的数据被钟控到哪一存储单元。输入数据的格式将确定哪一途径较可取。
多存储单元象素还需要确定在一给定时间要利用哪一存储单元控制象素电极的机构。这可能需要各象素有附加的晶体管和控制线,由此而增加其复杂性和物理尺寸。这种型式的复杂象素对于如上述的在图象、如红、绿和兰图象之间作快速转换,或对于进行数据重新格式化例如如数据在几个线上到达象素但被串行输出时做并-串行变换是有益的。
图9A中所示模拟帧缓存器象素的二存储单元方案的略图如图10中所示。此略图是一具有二存储单元的多存储单元帧缓存器象素且是以图9A中的象素单元为基础的。
图10中电路除数据同时出现在二数据线778和778’上并被同时钟控到晶体管909和909’的栅极上外,其余操作均与对图9A所述相同。在驱动序列期间或者上拉晶体管927或者上拉晶体管927’被激活,由此选择某一存储单元控制象素电压。
图11表示按照本发明的又一实施例的一个这种较复杂的象素电路1001。这里,在每一象素可存储数个数字数据位并被变换成用来驱动镜/电极718的模拟信号。电路1001包含有一在选通线779的控制下耦合到一或多个数据线778的n位数据锁存器的数据锁存器1005。一旦数据被装载到数据锁存器1005,开关1009即为全局时钟信号765激活而数据位被同时传送到将象素镜电极718驱动到所希望电压的数/模变换器(DAC)1014。这一方法可很容易地扩充到结合自动直流平衡电路,例如对照SRAM象素所讨论的XOR电路。
图11的方法要求比上面讨论的较大数量的用于电路1001的晶体管。由于这一原因,电路1001对大多数显示器将未必是可取的,因为总希望在给定的硅面积上量有尽可能多的象素。但是电路1001和其他复杂电路对于诸如有大数量象素并不重要而更重要的是正确控制它们的光学状态的光波前校正之类的特殊应用可能是有利的。
权利要求
1.在具有多个象素的显示单元上显示灰度图象的方法,其特征是包括步骤接收一组包含象素位置和象素强度的图象数据,所述图象数据欲以第一速率显示;将所述图象数据组配置成位平面子帧;衰减最低效未衰减子帧以及任一先前被衰减的子帧的强度以生成衰减的副衰;组合未衰减子帧以生成较少的未衰减子帧;和在显示单元上以对应降低的速率显示所述较少的未衰减子帧和所述较低位子帧以得到视觉合成。
2.权利要求1中所述的方法,其特征是所述接收步骤包括接收一组二值图象。
3.权利要求1中所述的方法,其特征是所述衰减步骤包括衰减最低效未衰减子帧以及任何先前衰减的子帧的强度约1/2倍以生成被衰减的子帧。
4.权利要求1中所述的方法,其特征是还包括重复执行所述衰减步骤和所述组合步骤的步骤。
5.权利要求4中所述的方法,其特征是所述显示步骤包括以接近所述第一速率的1/2m’的速率显示所述未衰减子帧和所述被衰减子帧,其中m’表示所述衰减步骤和所述组合步骤重复的次数。
6.在具有多个象素的显示单元上显示图象的方法,其特征是包括步骤接收包含象素位置和象素强度的图象数据,所述图象数据欲以第一速率显示;将所述图象数据配置成位平面子帧;组合所述位平面子帧以生成具有较长周期的较少的子帧;缩短欲未被缩短的最低效子帧以及任何先前被缩短的子帧的周期;和以对应地降低的速率显示所述较少的子帧以实现视觉合成。
7.权利要求6中所述的方法,其特征是所述接收步骤包括接收一组二值图象。
8.权利要求6中所述的方法,其特征是所述缩短步骤包括缩短尚未被缩短的最低效子帧和任何先前被缩短子帧的周期约1/2。
9.权利要求8中所述的方法,其特征是还包括重复执行所述组合步骤和所述缩短步骤的步骤。
10.权利要求9中所述的方法,其特征是所述显示步骤包括以所述第一速率的约1/2m’的速率显示所述较少的子帧,其中m’表示所述组合步骤和所述缩短步骤被执行的次数。
11.在具有多个象素的显示单元上显示灰度图象的方法,其中所述灰度图象包含彩色的或非彩色的图象,其特征是包括步骤接收一组欲以第一速率显示的位平面子帧;衰减最低效未衰减子帧以及任何先前衰减的子帧的强度以生成衰减的子帧;组合未衰减的子帧以生成较少的未衰减子帧;和以相应降低的速率在显示单元上显示所述较少的未衰减子帧和所述被衰减的子帧以实现视觉合成。
12.权利要求11中所述的方法,其特征是所述组合步骤包括组合非最低位副幅的未衰减子帧对以生成较少的子帧。
13.在具有多个象素的二值显示单元上显示灰度图象的方法,其中所述灰度图象包含彩色的或非彩色的图象,其特征是包括接收至少一灰度图象;将所述至少一灰度图象位分割成位平面子帧;衰减最低效未衰减子帧以及任何先前被衰减子帧以生成衰减的子帧;组合未衰减子帧以生成较少的未衰减子帧;和以相应降低的速率在二值显示单元上显示所述较少的未衰减子帧和所述被衰减子帧以实现视觉合成。
14.在具有多个象素的二值或模拟显示单元上显示灰度图象的方法,其中所述灰度图象可包含彩色的或非彩色图象,其特征是包括步骤接收至少一灰度图象;将所述至少一灰度图象位分割成位平面子帧;组合子帧以生成具有较长周期的较少的子帧;缩短尚未缩短的最低位子帧以及任何先前被缩短子帧的周期;和以相应降低的速率显示所述较少的子帧以实现视觉合成。
15.显示装置,其特征是包括具有第一表面的基片;设置在基片的所述第一表面上的多个液晶驱动电极;被集成进所述基片用于接收由一系列子帧所构成的图象数据的集成电路,包含有多个分别耦合到所述多个液晶驱动电极的用于存放所述图象数据的存储元件;设置在所述第一表面上的液晶层;和设置在所述液晶层上的窗口,其中所述多个存储元件接近同时地输出所述图象数据到驱动所述液晶层生成图象的所述液晶驱动电极。
16.显示装置,其特征是包括具有第一表面的基片;设置在基片的所述第一表面上的液晶驱动电极阵列;集成进所述基片用于接收包括一系列子帧的图象数据的集成电路,包含分别耦合到所述液晶驱动电极阵列的用于存放所述图象数据的存储元件阵列;设置在所述第一表面上的液晶层;和设置在所述液晶层上的窗口,其中所述存储元件阵列接近同时地输出所述图象数据到驱动所述液晶层以生成图象的所述液晶驱动电极阵列。
17.制作一显示装置的方法,其特征是包括步骤将一集成电路集成进一基片用于接收和存储包括一系列子帧的图象数据,其中所述集成步骤包含在基片上集成多个存储元件用于存放图象数据;在基片的第一表面上设置多个液晶驱动电极,其中此多个液晶驱动电极被分别耦合到该多个存储元件;在基片的第一表面上设置液晶层;和在液晶层上设置一窗口,其中,图象数据可包含被作为图象数据集合存储的多个子帧,而此图象数据只有在接收到足够数量的这些子帧之后才加以显示。
18.在具有多个象素的显示单元上显示灰度图象的方法,其特征是包括步骤以近似1/t的速率接收欲以显示的一系列N帧二值图象;将此系列N帧二值图象配置成n组m二值子帧,其中m小于或等于N;衰减每一所述N组子帧中的最低效子帧的输出;对所述n组m子帧的每一个中的子帧成对组合以生成一系列未被衰减的子帧;加倍最低效子帧的显示周期;和以降低的接近1/(2t)的速率显示所述未衰减子帧系列和所述最低效子帧。
19.在具有多个象素的显示单元上显示灰度图象的方法,其特征是包括步骤以接近1/t的速率接收欲显示的一系列N帧二值图象;将此系列N帧二值图象配置成n组m二值子帧,其中m小于或等于N;将每一所述n组m子帧中非最低效子帧的子帧成对组合以生成一系列组合的子帧;和以接近1/(2t)的降低的速率显示所述的组合的子帧系列和所述最低效子帧。
20.权利要求1中所述的方法,其特征是所述接收步骤包括接收彩色图象数据。
21.权利要求20中所述的方法,其特征是所述配置步骤包括将所述彩色图象数据配置成红色位平面子帧、绿色位平面子帧和兰色位平面子帧。
22.权利要求21中所述的方法,其特征是所述衰减步骤包括分别衰减最低效未衰减的红、绿和兰位平面子帧以及任何先前衰减的红、绿和兰位子帧的强度以生成衰减的红、绿和兰位子帧。
23.权利要求22中所述的方法,其特征是所述组合步骤包括分别组合未衰减的红位子帧、绿位子帧和兰位子帧以生成较少的未衰减红、绿和兰位子帧。
24.权利要求23中所述的方法,其特征是所述显示步骤包括以相应降低的速率显示所述较少的未衰减红、绿和兰位子帧以及所述经衰减的红、绿和兰位子帧以实现视觉合成。
25.权利要求1中所述的方法,其特征是所述显示步骤包括可交换地显示所述较少的未衰减子帧和所述经衰减的子帧而维持其视觉合成。
26.权利要求25中所述的方法,其特征是所述接收步骤包括接收彩色图象数据。
27.权利要求24中所述的方法,其特征是所述显示步骤包括可交换地显示所述较少的红、绿、兰未衰减子帧和所述红、绿和兰经衰减的子帧。
28.权利要求20中所述的方法,其特征是所述显示步骤包括可交换地显示所述较少的未衰减子帧和所述经衰减的子帧而维持其视觉而不管为何色彩。
29.权利要求6中所述的方法,其特征是所述接收步骤包括接收彩色图象数据。
30.权利要求20中所述的方法,其特征是所述配置步骤包括将所述彩色图象数据配置在红、绿和兰位平面子帧。
31.权利要求30中所述的方法,其特征是所述显示步骤包括可交换地显示所述较少的子帧而不管为何色彩并维持其视觉合成。
32.权利要求11中所述的方法,其特征是所述接收步骤包括接收红、绿和兰位平面子帧。
33.权利要求32中所述的方法,其特征是所述显示步骤包括可交换地显示所述较少的未衰减和被衰减的子帧而不管为何色彩并维持其视觉合成。
34.权利要求13中所述的方法,其特征是所述接收步骤包括接收至少一包括有至少一灰度红图象、一灰度绿图象和一灰度兰图象的灰度图象。
35.权利要求34中所述的方法,其特征是所述衰减步骤包括衰减包括有至少所述灰度红、绿和兰图象的最低效子帧的最低效未衰减子帧的强度。
36.权利要求14中所述的方法,其特征是所述接收步骤包括接收至少一包括有至少一灰度红图象、一灰度绿图象和一灰度兰图象的灰度图象。
37.权利要求36中所述的的方法,其特征是所述位切割步骤包括分别将所述至少一灰度红、绿和兰图象位切割成为包括红、绿和兰位平面子帧的位平面子帧。
38.权利要求37中所述的方法,其特征是所述组合步骤包括成对组合红位子帧、成对组合绿位子帧和成对组合兰位子帧以生成具有较长周期的较少的子帧,其中所述较少的子帧包括较少的红、绿和兰位子帧。
39.权利要求38中所述的方法,其特征是所述组合步骤包括成对组合红位子帧、成对组合绿位子帧和成对组合兰位子帧以生成具有较长周期的较少的子帧,其中所述较少的子帧包括较少的红、绿和兰位子帧。
40.权利要求39中所述的方法,其特征是所述缩短步骤包括缩短包括有最低效红、绿和兰位子帧的最低位子帧的周期。
41.权利要求40中所述的方法,其特征是所述显示步骤包括显示所述较少的红、绿和兰位子帧。
42.权利要求41中所述的方法,其特征是所述显示步骤包括可交换地显示所述较少的红、绿和兰位子帧而不管色彩如何并维持其视觉合成。
43.在带有多个象素的二值显示单元上显示灰度图象的方法,其特征是包括步骤接收位平面子帧;衰减所述位平面子帧的最低效未衰减子帧以及所述位平面子帧的先前被衰减的子帧的强度以生成被衰减子帧;组合未衰减子帧以生成较少的未衰减子帧,和以相应降低的速率显示所述较少的未衰减子帧和所述被衰减子帧以实现视觉合成。
44.在具有多个象素的二值显示单元上显示图象的方法,其特征是包括步骤接收对应于一图象的位平面子帧,所述位平面子帧包含较高位子帧和一最低位子帧;确定为实现合成所需的每一所述位平面子帧的显示期间;和显示所述较高位子帧较最低位子帧为长的周期。
45.权利要求14中所述的方法,其特征是所述接收步骤包括接收对应于一彩色图象的位平面子帧,所述位平面子帧包括至少一灰度红图象、至少一灰度绿图象和至少一灰度兰图象。
46.权利要求45中所述的方法,其特征是所述位分割步骤包括分别对所述至少一灰度红、绿和兰图象位分割成为包括有红、绿和兰位平面子帧的位平面子帧。
47.一种装置,其特征是包括具有第一表面的基片;设置在基片的所述第一表面上的多个驱动电极;和设置在所述基片上并分别耦合到所述多个驱动电极的用于接收和存储图象数据和用于与一转换信号同步地一次一帧地驱动所述多个驱动电极的多个装置。
48.权利要求47中所述的装置,其特征是每一所述多个装置包括耦合到一选通信号和一数据线、用于按照所述选通信号接收所述图象数据的象素数据和输出所述象素数据的第一开关;耦合到所述第一开关、用于接收所述象素数据的第一反相器;耦合到一时钟信号和所述第一反相器的第二开关;和耦合到所述开关和各所述多个驱动电极的第二反相器,其中所述象素数据与所述时钟信号同步地被由所述第一反相器传送到所述第二反相器,并输出所述象素数据到所述多个驱动电极各自的一个。
49.权利要求48中所述的装置,其特征是还包括设置在所述第一表面上的液晶层。
50.权利要求49中所述的装置,其特征是还包括设置在所述液晶层上的窗口,其中所述多个装置包括多个能几乎同时地输出所述图象数据到驱动所述液晶层生成图象的所述驱动电极的存储元件。
51.权利要求48中所述的装置,其特征是所述第一开关包括第一晶体管而所述第二开关包括第二晶体管。
52.权利要求51中所述的装置,其特征是所述第一和第二晶体管为FET。
53.权利要求48中所述的显示装置,其特征是所述第一开关包括第一对FET而所述第二开关包括第二对FET。
54.权利要求48中所述的装置,其特征是还包括设置在所述第一表面上的液晶层。
55.权利要求47中所述的装置,其特征是该多个装置的每一个包括耦合到一选通信号和一数据线的第一开关,用于按照所述选通信号接收所述数据的象素数据和输出所述象素数据;耦合到所述第一开关的电容装置,用于接收和存储所述象素数据;耦合到一时钟信号和所述电容装置的第二开关;和耦合到所述开关和所述多个驱动电极的各自一个的反相器,其中所述象素数据与所述时钟信号同步地被由所述电容器装置传送到所述反相器,后者输出所述象素数据到多个驱动电极的各自的一个。
56.权利要求55中所述的装置,其特征是所述电容装置包括一电容器。
57.权利要求55中所述的装置,其特征是还包括设置在所述第一表面上的液晶层。
58.权利要求47中所述的装置,其特征是还包括耦合到一选通信号和一数据线的第一开关,用于按照所述选通信号接收所述数据的象素数据和输出所述象素数据。
59.权利要求58中所述的装置,其特征是还包括耦合到所述第一开关的电容装置,用于接收和存储所述象素数据。
60.权利要求59中所述的装置,其特征是还包括耦合到一时钟信号和所述电容装置的第二开关。
61.权利要求60中所述的装置,其特征是还包括耦合到一时钟信号和所述电容装置的第二开关。
62.权利要求61中所述的装置,其特征是还包括接收和输出象素数据到多个驱动电极的各自的一个的反相器。
63.权利要求47中所述的装置,其特征是所述多个装置接收包括一系列子帧的图象数据。
64.权利要求63中所述的装置,其特征是所述多个装置以足够高的帧速率接收包括一系列欲依次显示的彩色子帧的图象数据以对观看者产生图象的彩色合成。
65.权利要求63中所述的装置,其特征是所述多个装置以足够高的帧速率接收包括一系列欲依次显示的二值子帧的图象数据以对观看者产生图象的灰度合成。
66.权利要求47中所述的装置,其特征是所述基片包括由所述多个驱动电极驱动的空间光调制器。
67.权利要求47中所述的装置,其特征是还包括设置在所述第一表面上的由所述多个驱动电极所驱动的液晶层。
68.一装置,其特征是包括具有第一表面的基片;设置在基片的所述第一表面上的多个驱动电极;和设置在所述基片上并分别耦合到所述多个驱动电极的多个电路,用于接收和存储图象数据并与一转换信号同步地一次一帧地驱动所述多个驱动电极。
69.权利要求68中所述的装置,其特征是每一所述多个电路包括耦合到一选通信号和一数据线的第一开关,用于按照所述选用信号接收所述图象数据的象素数据和输出所述象素数据;耦合到所述第一开关的第一反相器,用于接收所述象素数据;耦合到一时钟信号和所述第一反相器的第二开关;和耦合到所述开关和所述多个驱动电极的各自一个的第二反相器,其中所述象素数据与所述时钟信号同步地被由所述第一反相器传送到所述第二反相器,并将所述象素数据输出到所述多个驱动电极的各自的一个。
70.在具有多个象素的显示单元上显示彩色图象的方法,其特征是包括步骤接收包括欲在对应于第一帧显示速率的第一时间期间内显示的彩色图象的红帧、绿帧和兰帧;和重复和分开地在第一时间期间内以高于所述第一帧显示速率的速率显示所述红帧、绿帧和兰帧。
71.权利要求70中所述的显示彩色图象的方法,其特征所述重复和分开地显示的步骤包括在所述第一时间期间内各两次地分开显示所述红帧、绿帧和兰帧。
72.权利要求70中所述的显示彩色图象的方法,其特征是所述重复和分开地显示的步骤包括在所述第一时间期间内各三次分开显示所述红、绿和兰帧。
73.权利要求70中所述的显示彩色图象的方法,其特征是所述重复和散布地显示的步骤包括在所述第一时间期间内各N次地分开显示所述红、绿和兰帧,其中N为一大于或等于2的整数。
74.权利要求70中所述的显示彩色图象的方法,其特征是所述接收步骤包括接收包括有欲在小于或等于约1/30秒的第一时间期间内显示的彩色图象的红、绿和兰帧。
75.权利要求70中所述的显示彩色图象的方法,其特征是还包括对一后序彩色图象重复后随有所述重复地显示的步骤的所述接收步骤。
76.权利要求70中所述的显示彩色图象的方法,其特征是还包括对一系列顺序彩色图象中的各彩色图象重复后随有所述重复地显示的步骤的所述接收步骤。
77.权利要求70中所述的显示彩色图象的方法,其特征是所述重复和分开地显示的步骤包括以任意顺序重复和分开地显示所述红、绿和兰帧。
78.权利要求63中所述的的装置,其特征是所述多个装置接收包括一系列模拟彩色子帧的图象数据。
79.权利要求64中所述的装置,其特征是所述多个装置接收包括一系列二值彩色子帧的图象数据。
80.一种装置,其特征是包括具有第一表面的基片;多个设置在基片的所述第一表面上的驱动电极;和多个设置在所述基片上并分别耦合到所述多个驱动电极的、用于接收和存储数据的电路,其中每一所述多个电路包括用于所述多个驱动电极的各自的一个的至少两个用于接收和存储数据的存储装置,所述多个电路与一转换信号同步地驱动所述多个驱动电极。
81.权利要求80中所述的装置,其特征是每一所述多个电路包括用于所述多个驱动电极的各自的一个的用于接收和存储数据的至少三个存储装置。
82.权利要求80中所述的装置,其特征是所述数据包括模拟图象数据。
83.权利要求82中所述的装置,其特征是所述数据包括二值图象数据。
84.权利要求82中所述的装置,其特征是所述模拟图象数据包括模拟彩色图象数据。
85.权利要求83中所述的装置,其特征是所述二值图象数据包括模拟彩色图象数据。
86.权利要求81中所述的装置,其特征是所述图象数据包括彩色图象数据且每一所述三个存储装置分别存储红色、绿色和兰色数据。
全文摘要
诸如显示装置(115、505)或空间光调制器之类的装置可存储多个耦合到象素反射镜(718、512)的小型电路(761、791、801、901、905、525)中的象素数据,同时一次一帧地驱动这些象素反射镜(718、521)。此装置特别有利于实现能将二值图象变换为灰度图象和/或独立的红、绿和蓝图象变换成为彩色图象的完善的图象质量技术和利用在人们以足够高的速率观看图象时发生的逼真的合成过程显示这些图象。
文档编号G09G3/20GK1194051SQ96196399
公开日1998年9月23日 申请日期1996年7月18日 优先权日1995年7月20日
发明者道格拉斯·麦克奈特 申请人:科罗拉多大学董事会的大学技术公司