专利名称:用于自由空间成像显示和接口的方法和系统的制作方法
技术领域:
本发明涉及增加真实感的输入/输出接口,涉及自由空间(free-space)成像显示、环境、仿真和交互。
背景技术:
当前的技术试图利用已有的技术,通过由二维数据产生的深层暗示(depth cue)的操纵来创建自由浮动(free-floating)图像的视觉。这其中的几个示例包括通过快门和偏振玻璃的立体成像,以及由从传统显示器引导光线的透镜屏幕或使用凹透镜阵列的实成像设备所构成的自动立体技术。所有这些技术都受到会聚和调节的限制。这是由产生数据的原始二维图像和所感知的空间位置之间的不同所造成的。结果是由于难以聚焦在感知要出现而并不真实存在图像上,导致用户眼睛疲劳和疲乏。
为了解决该视觉限制,图像及其感知的位置必须在空间上一致。已有的解决了该限制的方法是通过投影到本质上占据了真实空间感知的图像位置的不可视平面上;然而,现有技术的方法导致了较差的图像逼真度。1899年,Just在专利号620,592中首先提出了投影到非固态屏幕上,其中将图像投影到简单的水幕上,本领域中公知为水雾屏幕投影。其后,只取决于改进与图像质量直接相关的屏幕的片状(laminar)质量,提出了对于图像质量的普通进步。同样,在现有技术中,这些方法限制了轮廓鲜明、清晰和只基于屏幕的动态属性的空间图像稳定性,这在本质上产生了空间上相对不稳定的图像。镜面屏幕波动还混合了图像失真。从自由空间成像的希望目标中简单地去掉可辨别的屏幕还牺牲了图像逼真度并放大了图像像差。该发明的进步使设备成为自持久的,克服了现有技术图像稳定性和逼真度的限制,改进了视角,并且具有附加的交互能力。
现有技术中发现的主要缺点之一是对屏幕产生材料的提供的依赖。这些设备取决于用于屏幕产生材料的可重复填充存储池(tank),或必须位于如湖等较大水体中或周围的设备,以便于操作。这限制了在封闭环境中的设备的操作时间,例如需要重新填充的室内,或用于恒定操作的管道连接。该结果严重地限制了由于这种依赖引起的设备的操作、携带和移位的便利性。此外,某些水雾投影系统通过如湿汽或其它喷射的气体的微粒使周围环境的空气过饱和,改变了操作环境。喷射的恒定材料流产生了危险的环境,能够引起电子短路,以及在例如室内的封闭空间内发霉产生对健康的潜在威胁。没有使用在Kataoka的美国专利5,270,752和Ismo Rakkolainen的WAVE白皮书中公开的除湿处理来收集水蒸汽以产生投影表面屏幕,而是作为独立的分离吸气器提高了片状性能。特别地,本发明使用了冷凝提取方法,充当自持久的粒子云制造和传输系统。
此外,在现有技术中,尽管通过改进片状性能能够针对均匀性、厚度和平面性来优化投影平面,动态系统自然趋向于湍流的固有性质会最大可能地影响整个图像的清晰性或轮廓鲜明度,以及例如图像振动的图像空间稳定性。由普通的波动空气流或在大多数室内和室外环境中出现的其它环境条件所引起的这些微细变化均导致了不稳定的屏幕,由此影响了图像。现有技术试图通过依赖屏幕精细化来防止片状到湍流的过渡,从而解决这些图像退化和稳定问题。Kataoka的美国专利5,270,752包括以下改进通过实现防护空气帘来使屏幕和周围空气之间的边界层摩擦最小,由此增大了屏幕范围的喷射距离,同时针对稳定的图像,保持了相对同类的片状较薄屏幕深度和均匀的微粒密度。尽管利用现有方法能够实现相对片状的屏幕,但由于只依赖于屏幕的改进,限制了空间上稳定且清晰的图像的产生。
与投影到具有单一第一反射平面的传统物理屏幕不同,虚拟投影屏幕介质呈现出不变的厚度,结果,在介质的整个深度上,任意成像的投影都是可视的。同样,当直接从前方同轴观看时,所看到的图像最清楚。这是由于通过屏幕的深度堆叠的相同图像对准直接位于彼此的后方,并且相对于观察者是同轴的。为了在不可视到近似不可视的屏幕上产生高度可视的图像,需要高强度的照明,以补偿屏幕云较低的透射率和反射率。当直接观看投影光源以补偿密度较低、不可视到近似不可视屏幕的较低的透射率和反射率时,所看到的图像最亮且最清楚。这在不得不凝视光源时,总是引起观看困难。当在高粒子计数(高密度)的粒子云情况下,较低强度的照明能够补偿屏幕的高反射率。这总是引起屏幕可视地转移以及需要规模更大且功率更大的冷凝系统来收集更大量的空气传播的微粒。
本发明所述的附加进步自动地监视例如湿度和周围环境温度的变化等环境条件,以调整云的密度、微环境和投影参数,以便使粒子云屏幕的可视性最小。本发明通过投影在希望的成像位置交叉的多个光束,改进了多光源环境中屏幕的不可视性和图像的对比度,以使照明强度最大,并使单个的照明源强度最小。
现有技术还创建了同轴或近似同轴的有限清楚观看区。投影源扇角产生了朝向图像边缘越来越大的离轴投影,其中由于相对于视野的观察者线路,在整个介质的深度上,略有偏差的图像成像在介质的前表面,因此破坏了图像逼真度。由于通过屏幕的深度对画面成像,观看者不但能够与传统屏幕一样看到希望的前表面图像,而且还能看到在整个屏幕深度上的不希望的被照射的微粒,这导致不精细和模糊的图像。在本发明中,多源投影系统提供了连续的同轴照明,在整个屏幕深度上同轴对准相同的图像,由此可视地稳定了图像并使图像振动最小。
通过采用自持久性粒子云制造工艺,本发明没有受到这些前述的限制,有利于成像投影,有利于改进图像逼真度的微环境,并且包括附加的交互能力。
发明内容
本发明提供了一种方法和设备,用于产生具有交互能力的真实高逼真度多色、高分辨率自由空间视频或静态图像。该合成的视频或静态图像清楚,具有较宽的视角,具有附加的用户输入交互能力,并且能够再现从成像位置周围的分离位置观看每一个的分立图像。本增强真实感设备的所有这些功能是现有的水雾屏幕投影、现有的显示器或现有技术所公开的设备不可能具备的。
该系统包括自产生装置,用于按照受控雾化方式,通过收集出现在周围空气中的冷凝物并随后喷射到片状、半片状或湍流的粒子云中,来产生动态、不可视或近似不可视的非固态粒子云。由图像产生装置和投影光学系统构成的投影系统将一个或多个图像投影到所述粒子云上。本发明将静态图像或动态图像、文本或信息数据投影到不可视或近似不可视的粒子云屏幕表面上。当直接能量源照射该粒子云时,粒子云显示出反射、折射和透射特性,用于成像的目的。包括单个或多个投影源的投影系统按照受控的方式照射粒子云,其中粒子云中的微粒或基本粒子用作该处合成了图像的介质,其中光的受控聚焦和交叉产生了空间上可寻址的可视三维自由空间照明。
此外,由检测系统来捕获空间上出现在粒子云图像区域中的任意物理扰动,例如手指移动的扰动能够实时地实现信息或图像的更新或交互。该输入/输出(I/O)接口提供了新颖的显示和计算机接口,允许用户选择、翻译和操纵自由空间浮动的可视信息,而不受创建图像的设备的物理限制。
本发明提供了一个新颖的增强了真实感的平台,用于显示在空间上共存的信息,作为真实物理世界中的叠加。图像的交互非固态自由浮动特性使得在多任务情况下,显示空间对于物理和“虚拟”活动之间的有效并发使用是物理可插入的,所述多任务情况包括用于军事计划、会议和视频游戏的协作环境,以及用于广告和销售点展示的展示显示。
通过利用非片状、半片状和湍流粒子云,本发明独立于现有技术中的全片状屏幕,相对于现有的显示屏幕有了明显的改进,以显示清楚的图像。利用多级均衡室和挡板的微环境利用方法的新颖优点产生了减小压力梯度和粒子云与周围环境之间的边界层摩擦的平坦片状空气流。此外,电子环境管理控制(EMC)通过控制所产生并结合粒子云离开速度来喷射的微粒的量,减小了粒子云的密度,由此保证不可视到近似不可视的屏幕。现有技术中不可能出现粒子云密度和照明强度的精密平衡,因此云或者是高度可视或者是密度过低,从而产生了过亮的图像。改进的投影系统的其它进步改善了现有技术中固有的视角限制,例如由屏幕中的湍流引起的振动。此外,本发明的自包含(self-contained)和自持久系统能够通过冷凝来自周围空气的水蒸汽来产生恒定的粒子云流,由此使系统能够独立操作,而不会影响通常的操作环境。此外,本发明采用了现有技术中没有的交互能力。
本发明的多投影源具有产生多图像的能力;可以从不同位置观看从不同信号源投影的每一个分立图像。这允许产生分离的图像并从显示器的前方和后方独立观看,例如,用于视频游戏情况,其中对立的玩家能够观测其各自的“视点”,同时还能够通过图像来观测其对手。此外,多源投影冗余缓解了出现妨碍图像显示的遮挡(occlusion),例如在现有技术中,站立在投影源和屏幕之间的人。
通过只从一侧投影,显示器还可以充当单向私密显示器,其中图像从一侧是可视的,而从另一侧是几乎透明的,这对于例如电视、等离子体或计算机CRT和LCD监视器等传统显示器来说是不可能的。改变所投影的照明强度和云密度能够进一步减小图像的透明度和不透明度,这是现有技术所不具备的功能。此外,由于包括例如传统显示器的前视平板物理屏幕的“物理盒”中不包含图像,因此图像能够在不限于平面的多种几何形状上显示。此外,图像的尺寸实质上大于产生图像的设备的尺寸,这是由于没有将图像局限在例如传统LCD或CRT的物理机箱内。显示器还可以采用变化的几何形状,产生除平面以外的粒子云表面,例如圆柱形或曲面。对于这些类型的粒子云,调整或校正其光学系统,以补偿投影的可变聚焦距离。
由于所显示的图像是非物理并因此不显眼的,本技术的应用非常广泛。可以在室内的中心显示成像的信息,其中人或目标可以通过图像进行移动,用于远程会议,或者可以用作医疗手术室的“虚拟”平视显示,不会干扰手术。本发明的系统不仅释放了可能放置传统显示器的空间,而且由于其可变的不透明度和多视能力,使设备能够位于多方的中心,以便彼此一起自由地观看、讨论和交互图像。该设备可以悬挂在天花板上,放置在墙上,地板上,隐藏在例如桌子等家具中,并且可以从所有方向进行投影,当不使用时,还可以收回图像。减小比例的形式可以使例如PDA和蜂窝电话的便携式设备在物理上较小的机箱中具有“虚拟”的大型显示器和交互接口。
图1是本发明的主要组件和处理的示意图;图2示出了现有技术的球透镜的光学特性,与单球形云微粒相似;图3示出了每一个投影源的极角照明强度;图3a示出了一侧成像投影实施例;图3b示出了双侧并发或反向成像投影实施例;图3c示出了双侧分离成像投影实施例;图4示出了在多源投影设置中,单个云微粒的位置光学性质;图5示出了比图4中出现的比例更大的光多源原理;图6表示了单个投影源的成像清晰水平;图7表示了来自多源投影的成像清晰水平;图8示出了图7的多投影源;图9是本发明的组件的剖面图;图9a是用于产生本发明的微环境的隔板通风口的特写视图;图9b是环境管理控制处理的示意图;图10示出了多源投影的平面图;图11是单侧远程多源投影的可选平面图;图12是双侧单个多源投影的可选平面图;图13示出了图9的检测系统的侧视图;图14是图13的检测系统的轴侧投影图;以及图15示出了从检测系统捕获的图像的示例;单击(翻译)和双击(选择)。
具体实施例方式
图1中的示意图示出了本发明的基本构件。实现本发明的最优模式通过热泵提取设备(1),使用例如热电(TEC)模块的固态元件、基于压缩机的除湿系统或创建热差以引起用于随后收集的冷凝建立的其它装置,从周围空气(22)中提取水蒸汽。可以将提取设备(1)从主单元分离到独立位置,例如粒子云(5)之上。将所提取的冷凝物存储在存储池(2)中,存储池可以包括外部连接(34),用于附加的重新填充或用于无提取设备(1)的操作。将冷凝物发送到将在本文件中进一步说明的粒子云制造系统(3),该系统通过机械、声学、电子或化学手段,或一个或多个手段的结合,将冷凝物转化为微细的粒子云物质(5)。粒子云传输系统(4)通过局部重新湿化周围空气(21)来喷射微细的粒子云,创建了包含在受控微环境(37)中的不可视到近似不可视的粒子云屏幕(5)。包括控制器(35)和传感器(36)的EMC系统(18)调整屏幕(5)密度(每规定体积内的微粒数目)、速度和粒子云(5)的其它参数。传感器(36)读取例如温度、湿度和周围环境亮度的外部环境条件,并将其发送到控制器(35),控制器对数据进行解译,并指示粒子云制造系统(3)调整参数,以保证用于成像的有效不可视到近似不可视的屏幕。
源自外部信号源(12)、VCR、DVD、视频游戏、计算机或其它视频源的信号通过可选的扫描转换器(38)到达处理单元(6),解码输入的视频信号。例如,包含在硬盘、闪速存储器、光学或其它存储装置中的存储视频数据(13)可以用作内容源。处理单元(6)接收这些信号,对其进行解释并将指令发送到图形板(7),图形板产生被发送到图像产生装置(9)的视频信号(8),从而产生静态或视频图像。图像产生器(9)包括显示用于投影的静态或视频数据的装置,该装置可以是液晶显示器(LCD)、数字光处理单元(DLP)、有机发光二极管(OLED)或基于激光器的装置,用于引导或调制来自所使用的任意光源的光线,以产生静态或视频图像。包括远心投影光学系统的单图像传输光学系统(10)可以包括用于聚焦到例如曲面屏幕的非线性屏幕上的自适应变形光学系统。在简化的实施例中,还可以由视频投影仪来取代组件(38,6,7,8,9,10)。还可以使用变形光学系统和数字梯形畸变校正(keystone correction),以补偿到非平行平面上的离轴投影。
在优选的多源实施例中,单投影源(9)包括多传输光路(20),包括一系列的透镜、棱镜、分光器、反射镜以及将所产生的图像分为“幻影”源位置所需的其它光学构件,所述“幻影”源位于设备的周界周围并且重新将投影束定位到粒子云(5)上。在多图像产生的可选实施例中,在例如一个投影单元的单个图像产生器或多个投影单元(19)上产生多个图像,并利用单光传输路径(10)或利用多传输光学系统(20)的多传输路径对其定位,分割和重新组合投影。使用在现有技术中公知的光学或基于软件的装置,或这两种手段的组合来补偿和校正由于离轴投影而引起的图像聚焦,包括针对一个或多个轴的图像四边形畸变校正(即,4点梯形畸变)在所有的示例中,定向投影照射了粒子云(5),其中自由空间图像(11)看起来漂浮在周围空气(21)中的防护微环境(37)中。微环境(37)用作通过创建喷射速度与粒子云(5)相似的防护空气流来提高粒子云和周围环境空气之间的边界层性能。可以持续地优化该微环境(37)和粒子云(5)的性质,以补偿变化的环境条件,以便使云的可视性最小,下面将进一步详细讨论。
在交互实施例中,空间上与图像(11)共存的是输入可检测空间(39),使图像充当输入/输出(I/O)设备。将例如用户的手指、尖状物或其它外部物体的粒子云(5)的输入可检测空间(39)中的物理扰动识别为输入指令(14)。当由例如红外(IR)源的具有特定波长的照明源(16)指向可检测空间以强调扰动时,登记该输入。照明包括通过使用激光行条纹、IR LED、传统的灯来反射规定可检测区域中的物体的光线,或包括来自照射可检测空间的图像投影的相同照明源。在其优选实施例中,由光学传感器(15)来捕获从用户的手指或其它输入装置(14)发散反射的光线。光学传感器或检测器(15)可以包括电荷耦合器件(CCD)、互补金属氧化物硅(CMOS)传感器或能够捕获图像数据的类似类型的检测器或传感器。
传感器(15)能够通过使用特定带宽的传感器、使用带通滤波器或二者的结合,在近似或等于照明源(16)波长的有限或优化敏感度响应处进行操作,以滤除不希望的“噪声”。忽略传感器的频率响应带宽以外的光线或使其最小,以便减小背景干扰并只识别希望的输入(14)。存在于由照明源照射的扰动的空间中的坐标与计算机环境中的类似二维或三维位置相对应,例如在图形用户界面(GUI)中,扰动输入(14)用作鼠标光标,类似于虚拟触摸屏。将传感器捕获的突出显示坐标发送到控制器(17),读取突出显示的输入数据,并利用处理单元(6)或控制器(17)中的点识别(blob recognition)或姿势识别软件来进行解译。因此,在GUI中,例如与鼠标仿真软件配套的跟踪软件命令操作系统或在处理单元(6)上运行的应用程序更新图像。检测系统的其它变体包括使用超声检测,基于临近的检测或基于雷达的检测,所有都能够感知位置和翻译信息。
在优选的实施例中,本发明通过产生其自身的粒子云材料来只运行在独立于水源的功率源上。通过使周围空气经过热泵,冷却空气并使其降落到露点以下,其中能够去除并收集冷凝物,用于云材料。一种现有技术中公知的方法包括除湿处理,通过该处理,当冷凝物排出热量时,压缩机通过用于降低线圈温度的蒸发线圈或散热片来促使冷却并使空气中的水蒸汽凝结。另一种变体包括使用一系列的固态Peltier TEC模块,例如之间“耦合”了小型碲化铋(Bi2Te3)阵列的两个陶瓷片的夹层结构,能够产生在较冷一侧能够收集的冷凝物。其它变体包括从例如氮气或氧气以及其它气体的周围空气中提取元素,通过扩散来制造超冷却气体或液体,结果,产生了热隙(thermalgap),以产生冷却云材料。另一种方法包括例如在燃料电池技术中使用的电热能量转换,包括由其中产生水和电流的电解液周围夹住的两个电极。通过一个电极的氧气和通过另一个电极的氢气产生运行设备的电流以及用于云材料的水和热量,作为副产品。
粒子云合成包括由表面张力保持的、平均直径在一到十微米范围的大量独立的冷凝球,直径过小则使观看者不可见,而应足够大以提供用于成像的照明云。到整个云上的聚焦和受控的照明亮度使单个球体用作透镜,以最高密度同轴透射并聚焦光纤,由此直接位于屏幕和投影源前方的观看者能够最亮和最清楚地观看图像。在多源实施例中,从多源将光线定向到粒子云上保证了从所有方向都可以看到清楚的图像,提供了连续的同轴观看。与多源投影耦合的云屏幕的同轴成像透射率确保了清楚的图像,而与观看者的位置无关,并且补偿了由云的湍流破裂(breakdown)引起的任何像差。来自多源的相交光线还通过定位到达相同粒子云成像位置的来自每一个投影源的照度的总和,使希望的图像位置的照度最大。按照这种方式,使粒子云以外的照度在不希望的表面上最小,这与现有技术中发现的相同,其中光的主要部分通过屏幕并且在除了希望的粒子云以外的表面上创建了更亮的画面。类似地,多源投影还使单个的投影源的发光度最小,允许观看者直接同轴观看,无需与现有技术一样,具有过多的单高强度投影源。
在可选的实施例中,粒子云材料可以包括荧光发射添加剂或掺杂溶液,利用特定激励源创建上或下荧光转换,使用非可视照明源来产生可视图像。例如,在处理的任意点处注入到云流中的可溶无毒添加剂包括若丹明,或例如黄酸盐的跟踪染料,每一个均具有由阴极、激光、可见光、(紫外)UV或IR激励源激发的特定吸收谱。每一个均由特定波长激发的红、绿和蓝可见发射染料的三色混合物产生了可见的全光谱图像。这些添加剂具有较低的吸收延迟时间和范围在纳秒到微秒的荧光寿命,防止动态移动的屏幕出现模糊图像,并产生了满足成像发光度的高荧光产率。集成或分离的抽气机(aspriator)模块从空气中收集添加剂,并防止这些添加剂染料散落到周围空气中。
在现有技术中,已经使用了透镜屏幕,利用透镜屏幕选择性地定向预定图像,以便特定观看者的特定眼睛或位置能够再现分立的图像。类似地,当利用低于产生散射传播光线的每一个球体内出现的内部折射和反射的强度水平来照射本发明的粒子云屏幕时,单个的粒子球体用作执行与透镜成像类似光学性质的小透镜单元,并使云用作透镜成像系统。将在图2-7中进一步解释该概念。
图2示出了单个云微粒的光学系统,与球形透镜的光折射特性相似,其中D是由表面张力自然形成的微粒的近似完全球体的直径。当其进入球体(30)时,衍射沿着光路(E)且分辨率是(d)的输入光,然后聚焦在同轴(E)的点(31),点(31)位于同轴的最大强度处(31),距离微粒的中心(P)的距离是EFL(有效聚焦长度)。在整个云深度上的临近微粒上重复该过程,并继续同轴,直到最后到达观看者的位置(110)。
由源强度、云的密度和在图3中用极坐标表示的云的深度来确定同轴照明强度,其中最大强度和清晰度位于前方的同轴零度(128),最小处位于后方的180度(129)。当照明强度低于粒子云的饱和照明水平时,出现了这些成像特性,这在不必接收不希望照明的云中产生了散射到不希望的临近微粒的全向镜面散射。因此,能够从屏幕的前方利用后投影设置清楚地看到充当私密单向屏幕的浮动图像,而从后方(129)是不可视到近似不可视的。因此,当从后方观看时,云提供了用于投影可选或反向图像的空置表面,用于从后方或前方来观看的独立双面图像,这使得每一个分离图像从相对端都是最可见的。
图3a示出了一侧投影实施例,其中观看者(181)观看从一个或多个源(182)投影到粒子云(183)的投影图像“A”。位于位置(184)的观看者不能观看到图像“A”,或最多能够看到近似不可视的反向图像。图3b示出了从两侧(185,186)投影到粒子云(187)上的图像“A”,其中位于位置(188,189)的观看者都能够看到图像“A”。位于每一侧的一个或多个投影源能够反向图像,因此,例如,能够从两侧从左向右阅读文字,或图像能够对应,以便在一侧图像能够反向。图3c示出了双向观看的实施例,其中一个或多个投影源(190)投影图像“A”,而一个或多个投影源(191)同时将分立图像“B”投影到粒子云(192)上。位于(193)的观看者能够观看到图像“B”,同时观看者(194)观看到图像“A”。
图4示出了在投影源(122,123)和微粒(195)之间的角度theta(9)处的多源投影,提供了与观看者位置无关的同轴到近似同轴图像,由此保证了清楚的图像。对于位于位置(121)的观看者,沿路径(145)来自投影源(123)的投影图像清楚可见,同时源自投影源(122)以角度theta投影的的投影图像射线(144,145)产生了每一个源的强度的总和。当距离L1等于或近似于用户的左眼和右眼之间的双目距离时,且每一个投影源的衰退足够大以便对于希望的左眼或右眼只有希望的投影源是可观看的,则能够以角度theta投影分立的立体图像,用于仿真的三维成像。
图5示出了向观看者呈现从分离的源位置投影的相同或分立的两幅图像的整体视图。来自投影源(124)的光线(149)照射了粒子云(146),粒子云透射了指向观看者眼睛(148)的大多数同轴光(147)。类似地,沿着光线(27)的来自投影源(125)的分离或相同图像照射到粒子云(146),当观看者的眼睛(29)同轴观看(28)时,所述图像指向投影轴(28)。
图6表示了在笛卡尔坐标中单投影源的角清晰度下降,其中在轴上的零度(196)处具有最大图像强度和清晰度。单个微细微粒的组合用作完整的透镜阵列,聚焦投影源前方的大多数光线并同轴产生该照明模式。微粒球以及作为整体的粒子云的这些固有光学性质保证了离轴照明强度的减小,作为投影能够从特定位置(同轴或近似同轴到位于投影源前方)观看的相似或分立图像的定向多光路的可控装置。
图7示出了具有三个信号源的多源投影的示例,尽管可以是n个信号源。这三个信号源是(Pa),位于轴上的(0),和具有清晰度阈值(OT)的源(Pb)。角阈值角度是Pa和轴上(0)之间的中间点(126),以及轴上(0)和Pb之间的中间点(127)。
图8是图7中图形所述的本发明的平面图。信号源Pa如(24)所示,同轴源(0)如(25)所示,信号源Pb如(26)所示,投影到深度是(150)的表面(23)上。当观看者(152)观看粒子云(23)时,由于象素深度(151)平行于观看轴(153),因此投影源(26)照射了最大并最清楚的照射图像,观看者坐在该位置。当观看者移动到位置(154)时,由同轴投影源(25)照射他或她看到的图像,其中在粒子云(150)的整个深度(197)上成像图像投影。类似地,当观看者围绕粒子云(150)移动,且位于位置(155)时,所观看的图像源自信号源(24)。位于任意这些位置或其之间的观看者会同时观看到由多个投影源合成的整个图像,从所述投影源将每一个相继或同时投影的光线定向到粒子云(150)。
图9说明了本发明优选实施例的操作细节。通过风扇或吹风机(40)将周围空气(156)吸入设备(32)中。将该空气经过热交换机(33,41),热交换机包括例如热电冷却板的冷却表面和可以与抽气机合并或分立的蒸发器散热片或线圈(33),位于粒子云之上,充当收集器。空气随后通过TEC模块吸热设备或冷凝线圈(41)的较热侧,将所产生的热排到周围空气(49)中,或通过风扇(59,60),并到风扇(56)以下,以使排除的空气具有类似的温度。在冷却板、线圈或散热片(33)上形成的冷凝物通过重力或气压滴落并被收集到盘状物(42)中,通过单向检测阀门(50),到达存储池(43)。可选地,池(43)允许设备独立地操作而无需使用热交换器,利用开口(44)或其它附件,填充水或与外部水管相连。水平传感器、光学或机械开关控制热交换器,以防止池(43)溢出。在现有技术中公知的传统除湿处理中,可以使用压缩机(157),通过管道(46)和(47)来泵取氟利昴或其它冷却剂。
作为需要较高功率的处理,最大程度的冷凝是关键。增强气流并蒸发器的表面面积最大是保证恒定的操作并使热交换机、TEC或压缩机的过载最小所必需的。在固态TEC的实施例中,可以没有压缩机(45),利用适当的吸热设备收集较冷侧的水蒸汽并提取另一侧的热量,可以由TEC模块的较热和较冷侧来代替蒸发器(33)和冷凝器(41)。由于冷凝物形成之前的时间延迟,池(43)允许设备在形成并收集冷凝物期间运行。所存储的冷凝物经过通过传感器或开关(55)来控制适当流量的检测阀门(51),进入成喷雾膨胀室(52),用在粒子云制造处理中。
在优选的实施例中,膨胀室(52)使用电动机械雾化来振动压电盘或换能器(53),压电盘或换能器用于超声振荡并使冷凝物雾化,产生精细的微细微粒的云雾,用于后续的使用。可以使用其它的云雾产生技术,包括热喷雾器,使用低温、喷射或雾化喷嘴的热冷却,或产生精细水雾的附加手段。室的设计防止了较大的微粒离开膨胀室(52),同时允许在膨胀室(52)中形成水雾。例如机械浮动开关或光学传感器的水平检测器(55)使膨胀室(52)保持特定的液体水平,以保持规定的微粒产生。当液体水平面(54)下降时,阀门(51)开启,由此保持用于最优雾化的预定深度。
风扇或吹风机(56)将空气注入到室(52)中,与雾化器(53)产生的水雾混合,并按照由创建粒子云(58)所需的高度来确定的速度,通过中心喷嘴(58)来喷射空气/水雾混合物。此外,喷嘴(57)可以包括锥形的几何形状,以防止产生的液体处于喷嘴(57)的边缘(lip)。喷射喷嘴(57)可以具有多种不同形状,例如曲面或圆柱形表面,以创建多种压出粒子云的可能性。粒子云(58)包括片状、半片状或湍流,用于成像的粒子云屏幕的使用。
包括挡板或通风口的风扇(59和60)通过通风口(61和88),将周围环境的空气引入热交换器,或将空气从热交换器排出,以产生包围云屏幕(58)的片状防护空气微环境(62,63)。对于片状粒子云屏幕(58),该微环境通过减小边界层摩擦和提高成像屏幕(58)的片状质量,提高了边界层性能。
在现有技术中,有必要注意到,“雷诺数”是过去用于确定图像质量和最大尺寸的因子,当时由于本发明集成了多源投影,减小了对片状质量的依赖。“雷诺数”(R)确定气流是否是片状的。气流的粘度(u)、速度(V)、密度(ρ)和厚度(D)确定了片状和湍流之间的过渡点,这是现有技术中的限制因素。此外,EMC不断地修改微环境和粒子云喷射速度,以补偿粒子云密度的变化,以便使云的可视性最小。粒子云密度的变化直接影响了云的粘度,因此必须改变喷射速度,以使片状流动最大化。
R=ρVDμ]]>(现有技术)喷射的粒子云沿着产生用于成像的粒子云表面或体积的直线路径轨道(64)前行,并最终在(85)被散射并且不用于成像目的。(58)处的微粒返回设备(84)以创建连续的回路系统。装载了空气的粒子云水蒸汽返回设备(84),不会影响设备正在操作的室内的湿度水平。通过板上的环境诊断管理控制EMC(66)来持续监视云的密度,以使其不可视,所述EMC监视的周围环境参数包括但不限于湿度、温度和周围亮度,由多个传感器(65)来收集这些因子。例如,传感器(65)可以包括发光二极管或发光传感器,温度计,气压计以及其它气候传感器,以收集数据。由诊断管理控制(66)解译传感器信息,其通过相对于周围环境湿度和周围环境亮度,在(53)处优化粒子云制造的强度和来自源(69)的投影亮度来调整屏幕(58)的密度,以控制云屏幕(58)的不可视性。能够使用设置在粒子云的一侧的发光器和设置在相对侧的光电检测器,通过监视从发光器到达检测器的光量来计算云的可视性,由此使云的可视性最小。
存储在例如CD、可编程存储器、CD、DVD、计算机(67)或外部计算机的内部图像或数据存储设备上的图像产生了在图像产生装置(70)上形成的原始数据,所述外部计算机包括辅助外部视频源,例如TV、DVD或视频游戏(68)。图像产生装置(70)可以包括LCD显示器、声光扫描器、旋转式反射镜组件、激光扫描器或DLP微反射镜,以产生图像并通过光学聚焦组件对图像进行定向。
处于电磁谱中的照明源(69),例如卤素灯泡、氙弧灯、UV或IR灯或LED,将发射能量束定向到云屏幕(58),所述光束包括单色或多色、相干或不相干、可视或不可视的照明。从照明源(69)指向图像产生装置(70)的光线通过聚焦光学系统(71),产生指向作为“幻影”传输源位置(77)的外部位置的光线(76)。幻影源(77)可以使用一个或多个光学组件,包括反射镜或棱镜(83),以便将投影(79,80)重新定向或导引到粒子云(58)。
在失真校正光学系统(77或78)处,可以使用例如抛物线反射镜、透镜、棱镜或其它光学组件的校准光学系统,来补偿一个或多个轴的离轴梯形失真投影。此外,可以使用电子梯形失真校正来控制产生器(71)。失真校正光学系统(78)还可以包括分束装置,用于将通过图像产生器的光源定向到不同源,例如位于云(58)边界周围的源(77),并校准光束,直到到达源(77)。分束可以使用板状、管状分束器或具有电子快门或光学斩波器的旋转式扫描反射镜,将原始源投影分为多个投影。将投影束(76)引向单个或多个幻影源,或将光线(79,80)重新定向到用于成像的所述云(58)上的云(58)周围的位置。粒子云(58)以外的成像光线(81,82)继续减小,由于光学系统(71,78,83)的视野范围的深度限制,出现了散焦。
检测系统包括照明源(72),定向产生光(131,132)的单(131)或双条纹平面的照明束(130),其中由包括在云屏幕(58)的传感器图像边界(133,134)的能见锥中的光学传感器(86)来捕获扰动。类似地,可以使用两个分离的源来产生两个分离的平面,或设备可以专门使用一个光平面来进行操作。当外部目标扰动穿过平行于图像的平面光源(131,132)时,该照明反射扰动,并由光学传感器(86)捕获扰动。经过信号(135)将检测到的信息发送到运行当前软件或操作系统(OS)的计算机(67),以根据输入信息更新图像产生器(70)。该设备还包括用户音频反馈,用于识别利用非固态图像的选择或交互,由此提供了必要的用户触觉反馈。
在本发明的优选实施例中,检测系统使用了光学、机械视觉手段来捕获图像的可检测周边中的物理扰动,但可以使用其它检测方法。例如,包括基于声学的检测方法,例如超声检测器,基于亮度的方法,例如IR检测器,来定位例如手或手指等物理目标,用于实时跟踪处理。针对例如手指、手、笔的外部物理扰动或例如手术刀的其它物理目标,监视其中合成图像的区域。可检测的空间直接与图像的重叠区域相对应,使与检测系统相耦合的图像能够充当通过计算机的使用进行操纵的I/O接口。为了减小该优选实施例中的外部检测干扰,检测系统依赖于在不可见光谱内的较窄波段操作的光学检测器(86),使照射不与用户输入相关的不希望背景目标的已捕获周围环境背景光最小。此外,操作检测系统波长不会干扰成像,并保证不会被用户注意到。优选实施例使用了可见光谱以外的窄带宽照明源(72),例如红外(IR)或近红外(NIR)照明,并随后通过校准照明来合成为光束。将由照明源(72)产生的光束发送到一个或多个例如使用行产生柱面透镜或旋转反射镜装置的行产生装置,以产生光线(73,74)的单或双照射平面,空间上平行于或位于云上的图像之上共存。下面将更清楚的描述该交互处理。
图9a描述了微环境产生处理,以便将高度均匀性传递给保护云的片状空气流,由此理想地提高了现有防护空气帘上的图像质量。尺寸和形状变化的一个或多个室或挡板、通风口或网眼的多级通风或挡板设置减小了微环境和云之间的温度与速度的宏观变化,由此使摩擦和云破裂最小,在现有技术基础上理想地提高了图像质量。周围环境的空气或来自热交换器的废气(198)通过移动空气的装置,例如具有侧壁的机箱(200)包围的轴向、切向风扇或吹风机(199)。将空气混合到第一级均衡室(201)中,以平衡机箱(200)中气室(202)中的空气速度和方向。随后,空气通过长度和单元直径尺寸由雷诺方程确定的线性平行挡板或通风口(203),以产生其中喷射孔端(233)和注入端与片状气流微环境(235)共线的片状气流。同时,粒子云片状发射(薄壁喷嘴(204))向外部(205)的片状气流微环境(235)中喷射粒子云材料。由于在云和微环境之间总是存在温度和速度的微细差异,在喷射到空气(205)之前,两股气流通过最终的均衡室(206),以进一步稳定。通过偏置挡板能够实现进一步的均衡,因此临近的单元共享气流,使气流速度梯度最小。外部喷射挡板或通风口(207)的厚度和深度较浅,以便防止产生冷凝物,允许更广泛的使用。
图9b示出了通过使云的可视性最小并减小由粒子云湍流造成的振动来保持自由空间中悬挂的图像的高逼真度的主要处理。环境检测器(209)监视周围空气(208)。传感器包括单并不局限于例如固态热敏电阻器的周围环境温度检测器(210),以测量温度。类似地,相对湿度传感器(211)和例如光电检测器的周围亮度传感器(212)收集附加的数据(211),例如二元的阻性电压或电流值。将数据(211)发送到包括电子硬件电路的控制器(214),以采集分离传感器数值信息,以创建与绝对或相对变化的量相对应合成总和值,作为将来修改粒子云的参数的信号(228)。
信号(228)通过控制由调节施加到超声雾化器的电压或电源所产生的微粒量,减小粒子云制造密度(216)。类似地,信号(228)能够改变溢出膨胀室的微粒的出口孔,由此控制了喷射到云(221)的微粒量(217)。由于所喷射的微粒的量直接与按照雷诺方程所定义的粘度成比例,修改微粒的密度(喷射到空气中的材料量)需要同时根据粒子云喷射速度(218)和微环境喷射速度(219)按照比例进行改变。信号(228)通过改变风扇速度来控制该喷射速度,例如使用脉冲宽度调制来改变粒子云(221)的离开速度和微环境(220)。
增强了这些作为独立单元操作的检测器,云可见性检测器(224)包括例如光发射器或激光器的照明源(222),以及例如硫化镉发光单元的对应光电检测器(223)。设置每一个均位于粒子云的相反端的检测器(223)和照明源(222),以便从通过粒子云(221)的照明源(222)中收集已知量的光,由相对侧的检测器进行接收。从粒子云(221)反射并且没有被检测器(223)接收的光中损失的信号强度与粒子云的密度以及由此的粘度相对应。可以将该信号(225)发送到控制器(214),以调节改变了云(221)的可见性的密度和速度。类似地,其它方法包括由空气传播微粒计数器(226)获取粒子云(221)中的微粒空气样本数据,以确定与粒子云(221)的密度或粘度相对应的微粒计数。将微粒数据(227)发送到控制器(214),按照与前述方法相同的方式,命令(228)调整粒子云制造(216)和离开速度(215)。
图10示出了本发明的多源实施例的顶视图,其中主投影(90)和光学系统(91,92,104,195,106,107)是主单元(93)的一部分。图像投影源自图像产生器(90),所述产生器包括高帧速投影仪、液晶显示器(LCD)、数字光处理(DLP)单元和其它将定向到校准光学系统(91)的光定向到分束机构(92)的前述方法。在固态实施例中,这些光学组件包括一系列棱镜和/或分光器,以逐级地将原始光束分割为多个光束,这在现有技术中是公知的。在不限制分光功率的数目的情况下,定向原始光束,使其指向单个或多面旋转式扫描器(104),将光束重新定向到例如(101,102,103)的多个源。有必要使用例如光斩波器或电子快门的光断续器(interrupter)来创建连续的图像段,按照与传统的移动帧的盘式磁带(reel-to-reel)电影投影仪相类似的方式。此外,失真光学配件(106,107)校正离轴投影,作为主成像单元(93)的一部分或位于独立的光源(101,102,103)处。所有实施例中的失真光学系统和梯形畸变校正保证了投影光束(229,230,231)指向并照射用在相同投影情况中的粒子云(232),在粒子云(232)上的相同位置聚焦来自每一个源的投影并聚焦的每一个相同图像。
图11示出了另一种多源实施例的顶视图,其中投影和光学系统(158)与主单元(94)相分离。图像源(95)将光束定向到光束重新定向装置(96)。光束重新定向装置(96)包括导引或反射来自图像单元(95)的输入投影的方法,并且可以包括立方分光器、板状分光器、反射镜、楔形棱镜或扫描反射镜。将投影发送到幻影源(97,98,99),其中将图像合成到云(100)上。图12描述了第三实施例,其中每一个投影源(136,137,138,139,140,141)是投影到云(142)上的分离单元。在另一个变体中,可以使用光纤光学系统来将图像投影传输到每一个源。
为了使图13到15的解释更清楚,独立地示出了检测系统。在本发明的优选实施例中,图13示出了图9所示的独立检测系统以及捕获用户输入装置,利用使用透镜或带宽滤波器(160)的例如CCD或CMOS检测器(159)的光学检测器、传感器或摄像机。捕获装置(159)单独捕获粒子云(163)的限定图像范围(162,164)中图像边界内的反射照明。
照明源(167)将离开分光器(176)到反射镜(165)和反射镜(108)的光束反射到两个独立的IR光平面(109和177),所述照明源具有类似于例如将光束通过行产生器和校准器(166)投影光束的IR激光器的检测器的频率响应的谱输出。可以在(108,165)处使用本领域公知的行产生技术,例如Ohmori的专利#5,012,485,来创建例如使用旋转式反射镜或柱形透镜的光平面。手指(111)与将光线返回到检测器(159)的光束(109)相交,用于实时捕获。类似地,与光束(109和177)相交的手指(112)反射由检测器(159)捕获的两个独立的突出显示部分。在另一个实施例中,每一个可检测光平面在不同的波长处进行操作。类似地,本发明可以利用单个的可检测光平面进行操作并使用现有技术中公知的停留软件(dwell software),或与计算机OS中相同,通过快速连续“双击”穿过平面两次来创建选择。
图14示出了图13的轴侧投影。例如激光二极管(171)的照明源将光定向到校准器(170),通过例如分束器(178)的装置分割光束。类似地,照明源包括投影源照明(172)或平行于粒子云的已校准IRLED。指向例如旋转式反射镜(179,180)的平面产生装置的分割光束创建了双检测光束平面(168,169)。手指(119)与以三维空间中的位置x,y,z为中心的平行检测光束平面(79和80)相交。检测器(173)捕获突出显示的交叉作为两轴坐标,或通过将两个分离的检测器或传感器相结合来提供用于跟踪位置信息的三个轴。将该信息发送到控制器(174),并由处理器或计算机CPU(175)利用操作系统或软件进行解译。本领域公知的、与鼠标仿真驱动软件相连的点识别软件将捕获的象素翻译为在桌面环境或应用程序中可寻址的坐标,以使用户能够利用手指或尖状物来自由地导航。可以使用例如由NaturalPoint、Xvision、Smoothware Design所设计的那些软件来解译所捕获的数据,从而在鼠标风格环境中操作软件驱动接口。类似地,可以使用姿态识别或语音识别来增强输入接口。
图15是当手指(113)在第一检测光束(118)处与之相交时,由检测系统捕获的用户输入光反射的示例。照明从手指(113)反射,并由光学传感器(143)捕获,仿真(115)所表示的光学传感器(143)的对应象素。半月形象素(115)的中心与点(116)处的用户输入相对应,其表示了x和y坐标。按照类似的方式,当手指(117)与检测光束(118和120)都相交时,由检测器捕获突出显示的双半月形。在图像表面上移动用户的手指,由此轻轻擦过图像表面,使用户利用手指作为虚拟的触摸屏接口进行导航。当用户需要选择时,等同于通常OS上的双击,扰动或手指必须进一步前行到图像中,如同选中,与推动按钮相类似。
工业应用性本发明提供了设备和方法,以利用来自周围空气中的冷凝物来产生投影在非固态粒子云上的一个或多个图像,此外,提供通过直接与图像相交来修改图像的能力。本发明可以用于娱乐以及工业使用,例如建筑、产品设计师和模型设计师,以产生图像,当希望时,通过直接与图像进行交互,来对图像进行修改。
权利要求
1.一种用于创建自由空间显示的系统,包括热泵;通过热泵导引周围环境空气的装置;在热泵内创建热差的装置;利用热差从周围空气中提取冷凝物的装置;将冷凝物通向膨胀室的装置;在膨胀室内雾化冷凝物以创建粒子云材料的装置;喷射喷嘴装置,用于将粒子云材料喷射到空气中以创建粒子云屏幕;喷射包围粒子云的平行片状气流的装置;产生一个或多个图像的装置;以及投影装置,将一个或多个图像投影到粒子云屏幕上。
2.根据权利要求1所述的系统,其特征在于还包括位于粒子云屏幕附近的检测装置,用于捕获所投影的图像中或附近的扰动;读取每一个扰动的位置的装置;发送扰动位置信息到控制器的装置;以及响应扰动位置信息来修改图像产生器装置的装置。
3.根据权利要求1或2所述的系统,其特征在于热泵包括基于压缩机的反循环冷却除湿系统。
4.根据权利要求1或2所述的系统,其特征在于热泵包括基于热电Peltier结的系统。
5.根据权利要求1或2所述的系统,其特征在于热泵包括燃料电池或使用冷却气体或液体的装置。
6.根据权利要求1或2所述的系统,其特征在于还包括存储池,用于冷凝物的收集。
7.根据权利要求1或2所述的系统,其特征在于还包括将冷凝物雾化为微细粒子云的装置,其中单个微粒具有1到10微米的平均直径。
8.根据权利要求1或2所述的系统,其特征在于还包括将冷凝物雾化为微细粒子云的装置,其中单个微粒具有大于10微米的平均直径。
9.根据权利要求1或2所述的系统,其特征在于雾化装置包括电子机械或超声装置。
10.根据权利要求1或2所述的系统,其特征在于还包括粒子云中的荧光跟踪剂或染料。
11.根据权利要求1或2所述的系统,其特征在于还包括将微粒喷射到空气中的共线喷射喷嘴,以创建共线喷射粒子云。
12.根据权利要求11所述的系统,其特征在于包括几何形状与粒子云屏幕的深度和宽度相对应的喷射喷嘴,其中第三维是所压出的粒子云喷射距离。
13.根据权利要求1或2所述的系统,其特征在于喷射出的粒子产生片状、半片状或湍流粒子云。
14.根据权利要求1或2所述的系统,其特征在于粒子云包括不可见、近似不可见或可见的粒子云。
15.根据权利要求1或2所述的系统,其特征在于粒子云包括用于反射、折射和透射来自投影源并指向所述粒子云的光或图像的介质。
16.根据权利要求1或2所述的系统,其特征在于粒子云包括透射照明系数比反射和折射照明系数更高的介质。
17.根据权利要求1或2所述的系统,其特征在于创建片状空气流的装置包括平行线形挡板、通风口、网眼或其结合,其中风扇或吹风机位于片状气流的相对出口端。
18.根据权利要求17所述的系统,其特征在于创建片状空气流的装置包括一系列堆叠的平行线形挡板、通风口、网眼或其结合,其中风扇或吹风机位于片状气流的一个出口端,片状气流位于另一个出口端。
19.根据权利要求18所述的系统,其特征在于还包括挡板、通风口或网眼之间的单个或多个气室,以创建速度均衡室。
20.根据权利要求1或2所述的系统,其特征在于还包括监视粒子云屏幕的可见性的装置。
21.根据权利要求20所述的系统,其特征在于还包括指向彼此的发光装置和光检测装置,所述发光装置和光检测装置之间为粒子云,以测量粒子云屏幕的光透射率和反射率。
22.根据权利要求21所述的系统,其特征在于发光装置包括发光二极管或激光器,光检测装置包括光电检测器。
23.根据权利要求20所述的系统,其特征在于还包括周围环境微粒计数器,用于监视粒子云屏幕的微粒计数。
24.根据权利要求20所述的系统,其特征在于还包括监视周围环境湿度、周围环境温度以及周围环境亮度的装置。
25.根据权利要求20所述的系统,其特征在于响应所监视的数据,环境管理控制装置调节粒子云材料的喷射速度、粒子云制造强度或其结合,以使粒子云的不可视性最大。
26.根据权利要求25所述的系统,其特征在于环境管理控制装置通过使用风扇速度控制装置来调节喷射速度。
27.根据权利要求1或2所述的系统,其特征在于图像产生装置创建静态或视频图像。
28.根据权利要求27所述的系统,其特征在于还包括使用与图像产生装置相结合的偏振、随机、相干以及可见或不可见的波长的光,创建图像投影仪。
29.根据权利要求27所述的系统,其特征在于所述图像产生装置包括液晶显示器、数字光处理板、有机发光二极管、光调制或激光扫描器。
30.根据权利要求1或2所述的系统,其特征在于包括指向用于成像的粒子云屏幕并与之对准的单个投影仪装置。
31.根据权利要求1或2所述的系统,其特征在于包括指向用于成像的粒子云屏幕的多个投影仪。
32.根据权利要求30或31所述的系统,其特征在于所述一个或多个投影仪包括针对一个或多个轴的光学或电子梯形失真成像失真校正。
33.根据权利要求30或31所述的系统,其特征在于包括将投影光束与幻影源相校准的装置,所述光学装置包括粒子云周围的光束导引或反射装置,重新将投影光束定向到所述粒子云上。
34.根据权利要求30或31所述的系统,其特征在于所述一个或多个投影仪包括针对一个或多个轴的光学或电子梯形失真聚焦距离校止。
35.根据权利要求1或2所述的系统,其特征在于包括单个投影装置;以及将投影束定向到单个或多个幻影源的装置,用于定向投影束的所述装置包括粒子云周围的光束导引或反射装置,重新将投影光束定向到所述粒子云上。
36.根据权利要求35所述的系统,其特征在于多投影光束分割、光束导引、光束-光束斩波或其结合将投影图像划分为多个投影光束。
37.根据权利要求36所述的系统,其特征在于还包括分束器、圆点分割器(polka dot splitter)、带通滤波器、楔形棱镜、棱镜、静态反射镜、旋转式反射镜、数字光处理、电子或物理快门、光学斩波器或其结合,以便将投影光束分割为指向粒子云周围的多个幻影重新定向源的多个光束。
38.根据权利要求30或31所述的系统,其特征在于包括将相同图像或分立图像从分立或相同源投影到粒子云以便在粒子云上合成相似或分立图像的装置。
39.根据权利要求2所述的系统,其特征在于还包括指向用于用户输入跟踪的粒子云区域的可视或不可视照明源。
40.根据权利要求39所述的系统,其特征在于照明源包括卤素灯、白炽灯、发光二极管或激光器。
41.根据权利要求40所述的系统,其特征在于照明源产生红外或近红外光谱的光。
42.根据权利要求2所述的系统,其特征在于检测粒子云中物理扰动的装置包括机器视觉和光学捕获装置,所述光学捕获装置包括光学检测器和传感器、视频摄像机、互补金属氧化物硅传感器或电荷耦合器件。
43.根据权利要求42所述的系统,其特征在于还包括带通滤波器。
44.根据权利要求39所述的系统,其特征在于包括单个照明检测面。
45.根据权利要求39所述的系统,其特征在于还包括多个照明检测面。
46.根据权利要求44或45所述的系统,其特征在于还包括柱形透镜、准直透镜、旋转式分段镜或其结合,以合成单个或多个检测面。
47.根据权利要求2所述的系统,其特征在于包括多个检测器,用于在二维或三维空间中跟踪粒子云中的用户输入扰动。
48.根据权利要求42所述的系统,其特征在于还包括将检测到的照明位置数据与控制器、处理器或计算机进行通信的装置。
49.根据权利要求52所述的系统,其特征在于还包括运动跟踪软件,以解译检测到的照明位置数据,从而在软件应用环境或图形用户环境中进行导航。
50.根据权利要求49所述的系统,其特征在于跟踪软件包括点识别、半月形识别或姿态识别软件。
51.根据权利要求49所述的系统,其特征在于还包括噪声滤波软件。
52.根据权利要求49所述的系统,其特征在于还包括使用鼠标仿真软件的导航。
53.根据权利要求49所述的系统,其特征在于包括响应由检测器登记的照明检测位置数据,修改投影产生装置的装置,所述装置与运行鼠标仿真软件或导航软件的跟踪软件相连,以指导控制投影软件的操作系统或软件应用。
54.根据权利要求2所述的系统,其特征在于包括运行跟踪软件投影仪内容的计算机,用于控制图像投影仪。
55.根据权利要求1或2所述的系统,其特征在于还包括位于粒子云轨道的末端的吸气器,用于收集冷凝物;以及将冷凝物传输到膨胀室用于粒子云制造的装置。
56.根据权利要求55所述的系统,其特征在于还包括具有吸气器的热泵。
57.一种用于创建自由空间显示的方法,包括对周围环境空气进行除湿;捕获湿气;雾化湿气以创建直径为1到10微米的粒子云材料;喷射粒子云材料以创建粒子云;利用与粒子云相等或相似速度和轨道的平行片状空气流微环境来包围粒子云;产生一个或多个图像;以及将一个或多个图像投影到粒子云上。
58.一种用于创建交互式自由空间显示的方法,包括对周围环境空气进行除湿;捕获湿气;雾化湿气以创建直径为1到10微米的粒子云材料;喷射粒子云材料以创建粒子云;利用与粒子云相等或相似速度和轨道的平行片状空气流微环境来包围粒子云;产生一个或多个图像;将一个或多个图像投影到粒子云上;通过照射自由空间显示中或附近的扰动来检测所述扰动;检测所述照射扰动以创建可跟踪数据;以及利用可跟踪数据可计算地更新图像的投影。
59.根据权利要求57或58所述的方法,其特征在于还包括将所投影的一个或多个图像分割为多个投影光束,重新定向多个投影光束,并将所述投影光束聚焦到粒子云上,以创建自由空间图像。
60.一种用于创建交互式自由空间显示的方法,包括对周围环境空气进行除湿、捕获湿气并对其进行喷射以重新加湿空气的方法,包括在创建包括单个直径为1到10微米的微粒的面或体粒子云的方法中;利用相等或相似速度的微环境来包围粒子云的方法;投影装置,利用照明源照射所述云,使照明照射到图像产生装置、将图像分割为多个投影束的装置、重新定向投影束的装置上,由上述装置反射或通过上述装置,并将所述投影图像从投影装置聚焦到粒子云上,所述粒子云充当反射、折射和透射光以产生自由空间图像的装置,包括通过视频捕获装置来检测自由空间图像中或附近的物理目标的扰动的装置,所述视频捕获装置包括照射所述扰动的装置以及检测所述扰动以便创建可跟踪数据的装置,以及使用可跟踪数据作为输入以可计算地更新投影装置的装置。
61.根据权利要求57或58所述的方法,其特征在于包括产生热泵和周围环境空气之间10摄氏度或更高的温度差,以从周围环境空气中提取冷凝物。
62.根据权利要求57或58所述的方法,其特征在于还包括喷射围绕所述粒子云屏幕的一个或多个平行侧的片状气流微环境,以提高粒子云屏幕和周围环境空气之间的边界层性能。
63.根据权利要求62所述的方法,其特征在于所述片状气流微环境的速度和轨道与粒子云的速度和轨道相同或相似。
64.根据权利要求59或60所述的方法,其特征在于检测照射在空间上与粒子云屏幕共存并平行。
全文摘要
一种用于显示自由空间、全彩色、高分辨率视频或静态图像同时使用户能够与可视图像进行实时直接交互的方法和系统。该系统包括自产生装置,用于通过按照受控方式将出现在周围空气中的已雾化冷凝物喷射到不可视的粒子云中来创建动态、非固态的粒子云。由图像产生装置和投影光学系统构成的投影系统将图像投影到粒子云上。由检测系统捕获空间上在图像区域中出现的任意物理扰动,并将扰动信息用于在更新图像中能够使用户实时交互。该输入/输出(I/O)接口提供了显示器和计算机链接,允许用户选择、翻译并操纵自由空间浮动可视信息,不必受到创建图像的设备的物理限制。
文档编号G03B21/26GK1751205SQ03815913
公开日2006年3月22日 申请日期2003年6月27日 优先权日2002年7月1日
发明者查德·D·戴纳 申请人:Io2技术责任有限公司