专利名称:导光板、照明设备和显示设备的制作方法
技术领域:
本发明涉及反射镜、照明设备、导光板和显示器。
背景技术:
PC显示器、液晶电视等使用了侧光式照明设备。在透射式液晶显示设备中,液晶板的背面一侧安装了平面照明设备(背光灯)。侧光式背光灯包括导光板、安装在导光板一侧的光源、和反射镜。
反射镜具有例如半圆截面或U形,并被设置成罩住光源,延伸到导光板的端部,并部分地覆盖导光板。射在导光板入射表面上的光在导光板内行进,同时被反射。因此,为使光能够从导光板的出射表面发出出来,导光板被制成楔形截面形状或在其上设置包括棱镜组、微透镜阵列等的光学元件。
以大角度射在导光板上的光从导光板的出射表面上靠近光源的位置处发出出来,并且有时候成为出射表面上的亮线的原因。另外,弱强度的光有时候成为出射表面上的暗线的原因。在侧光式背光灯中,存在出现包括亮线和暗线的不均匀照明的问题。
另外,在传统的侧光式背光灯中,入射表面根本没有经过加工,因此,存在光源附近的亮度最终下降的问题。图30显示了由于入射表面的处理不同而导致的离光源的垂直方向上的亮度分布的验证结果。导光板的反射表面使用了棱镜导光板,并从偏离法向60°到70°的倾斜出射表面上发出光。所发出的光被面朝下的棱镜透镜片朝法线方向弯折。根据这些结果,可以确认在没有经过加工的平面入射表面上的亮度分布在靠光源约20mm的地方通常表现出亮度的下降。
为解决这个问题,已经提出使导光板的入射表面变粗糙的建议,以消除亮度不均匀(参见下面的示例专利文献1)。光射在粗糙的入射表面上并被散射。从导光板的出射表面上靠近光源的那部分发出的光量增加了,但是,从导光板的出射表面上远离光源的那部分发出的光量最终变少。另外,在导光板的入射表面上散射的部分光没有在导光板内有效传播,从而光的利用率下降。这个粗糙化处理是在导光板的整个入射表面上均匀执行的。
图30显示了附加漫射处理带取代对入射表面进行漫射处理情况下的亮度分布。通过对入射表面进行漫射处理,靠近光源的亮度增加,但在远端的光量变得更少,因此存在亮度最终逐渐下降的问题。
另外,有建议提出在光源和导光板之间安装棱镜片(例如,参见下面的专利文献2和3)。从光源发出的散射光被棱镜片会聚成射在导光板的入射表面上的高度定向的光。然而,若高度定向的光射在导光板的入射表面上,则从导光板上靠近光源的端部发出的光量变少,并且没有消除导光板上靠近光源的端部处的不均匀亮度。
另外,有建议提出在导光板的入射表面上形成垂直于导光板的出射表面的凹槽(例如,参见下面的专利文献4)。该现有技术的目的在于提供一种在位于形成光源的灯的电极处的端部变暗的显示器。
另外,有建议提出在出射表面对侧的导光板反射表面侧安装的反射片的端部形成反射光的倾斜表面(例如,参见下面的专利文献5)。在该现有技术中,从光源发出的广角光在反射片的端部被反射并射在导光板上的现象通过使这种光在反射片的倾斜表面上被反射并使它返回光源侧而得到了防止。因此,防止了在导光板的出射表面上出现亮线。但是,该现有技术仅可用于下述大致的配置中,该配置是反射片的端部位于导光板和反射镜的一端之间,并且反射镜的另一端与导光板紧密接触。当反射片的端部位于反射镜一端的外侧或反射镜的另一端与导光板之间有缝隙时,不能使用这种现有技术。
专利文献1日本专利申请公开(A)No.9-160035专利文献2日本专利申请公开(A)No.9-166713专利文献3日本专利申请公开(A)No.2000-260216专利文献4日本专利申请公开(A)No.10-253957
专利文献5日本专利申请公开(A)No.2002-216522发明内容本发明的一个目的在于提供消除了亮线和其它亮度不均的具有优异的亮度均匀性的照明设备、导光板以及显示设备。
根据本发明的反射镜的特征在于具有弯曲部分和在弯曲部分的两侧延伸的一对端部,且各个端部的内表面具有多个大致平行的凹凸。
根据这种结构,从光源发出的光被反射镜端部内表面的凹凸反射并返回光源。因此,防止了从光源发出的光以大角度射在导光板上后从出射表面射出并产生亮线。
根据本发明的照明设备的特征在于其包括所述反射镜、导光板和光源,所述光源位于所述导光板的一侧,所述反射镜围绕光源,且所述反射镜的所述端部与所述导光板部分重叠。
另外,可以由这种照明设备构成显示设备。
在这种情况下也能防止出现亮线。
另外,根据本发明的导光板包括入射表面和大致垂直于所述入射表面的出射表面,所述入射表面具有多个大致平行于所述出射表面延伸的凹凸。
根据这种结构,导光板内表面上的凹凸可以纠正光源的角度分布或强度分布,并获得消除了非均匀亮度的具有优异亮度均匀性的光。在这种情况下,由于凹凸大致平行于导光板的出射表面延伸,所以可以消除包括亮线和暗线在内的不均匀亮度。
另外,本发明提供了一种显示设备,该设备包括上述反射镜、上述导光板、光源和显示元件,所述光源位于所述导光板的一侧,所述反射镜的弯曲部分围绕所述光源,所述反射镜的所述端部与所述导光板部分重叠。
另外,本发明的导光板的特征在于入射表面的多个凹凸的形状根据位置而改变,越靠近远离光源的顶端和底端,其形状越大;越靠近接近光源的中心,其形状越小。在靠近入射表面的地方,由顶端和底端的凹凸提供光。在远离入射表面的地方,由具有很少凹凸的中心部分提供更多的光。因此,在靠近和远离入射表面的地方都可以提供光。
另外,本发明的导光板的特征在于入射表面的多个凹凸的间距随位置而变化,越靠近远离光源的顶端和底端,其间距越小;越靠近接近光源的中心,其间距越大。因此,在靠近和远离入射表面的地方都可以提供光。
另外,本发明的导光板的特征在于具有所述入射表面和具有沿平行于所述入射表面的长度方向连续形成棱镜的棱镜阵列的反射表面。通过组合这些入射表面和反射表面,从靠近光源到远离光源都可以实现大致均匀的亮度分布。
另外,本发明的导光板的特征在于具有所述入射表面和具有沿垂直于所述入射表面的长度方向连续形成棱镜的棱镜阵列的出射表面。通过该出射表面,可以在平行于入射表面长度方向的方向上会聚光。
另外,本发明的特征在于所述导光板中的反射片包含在上面气相沉积了铝、银合金或其它金属或粘合了金属薄膜(规则反射率至少为80%)的片。与混合或涂覆了氧化钛、钛酸钡等的传统热塑性树脂片相比,在反射片上反射的光的漫射更少,可以提高总亮度。
另外,根据本发明的特征,平面照明设备具有侧光源、导光板和棱镜片,侧光源位于该导光板上相向的两个侧面中的一个侧面上,导光板和所述棱镜片相互重叠地位于一起,棱镜片包括在导光板侧的多个棱镜部分,并且该棱镜片构造为与中心区域相比,离侧光源预定距离的区域范围内,每单位面积的倾斜表面的比例减小。
另外,本发明提供了上述棱镜片。另外,本发明提供了包括上述平面照明设备的液晶显示设备。本发明还提供了包括上述液晶显示设备的电子设备。
由于上述特征,表现出了可以减少平面照明设备中光源附近的光的效果,可以实现包括靠近光源的部分在内具有全面均匀亮度分布的平面照明设备。
图1是本发明一个实施例的照明设备的示意性透视图;图2是图1中的照明设备的部分放大侧视图;图3是图2中的反射镜的端部的内表面上的凹凸的剖视图;图4是说明照明设备的基本动作的视图;图5是在没有凹凸的情况下光被反射镜的端部反射并射在导光板的出射表面和反射表面上的示例图;图6说明了在没有凹凸的情况下被反射镜的端部反射的光从导光板的入射表面边缘射在导光板上的示例;图7是在没有凹凸的情况下光穿过导光板的入射表面边缘且被反射镜的端部反射后射在导光板上的示例图;图8是本发明的照明设备示例的示意性剖视图;图9是图8中的导光板的透视图;图10是在没有凹凸的情况下光射在导光板的入射表面上的示例图;图11是在没有凹凸的情况下图8和图9的导光板的出射表面处的亮度的带状条纹的示例图;图12是图8中导光板的改进的视图;图13是图8中导光板的改进的视图;图14A和14B是图13的导光板的局部放大图;图15是图13的导光板的改进的视图;图16A和16B是图15中导光板的局部放大图;图17是图8中导光板的改进的视图;图18是图17中导光板的改进的视图;图19是图17中导光板的改进的视图;图20是图17中导光板的改进的视图;图21是本发明的照明设备示例的示意性剖视图;图22是导光板的改进的视图;图23是照明设备的改进的视图;图24是图23中棱镜阵列的局部放大图;
图25是照明设备的改进的视图;图26是图25中棱镜阵列的局部放大图;图27是照明设备的改进的视图;图28是本发明实施例的显示器的视图;图29是本发明的照明设备的改进的视图;图30是由于入射表面的不同处理而导致的亮度分布图;图31是本发明的导光板的改进的视图;图32是根据本发明一个实施例的在便携式电子设备中的具有平面光源的液晶显示器的透视图,并显示了微处理器、光源控制器和光源驱动器;图33A到33D显示了根据本发明和其改进的棱镜阵列的结构;图34A到34C显示了根据本发明的改进了的另一个结构的棱镜片;图35A显示了在远离光源的区域的棱镜部分的局部放大的结构;图35B显示了在靠近光源的区域的棱镜部分的局部放大的结构;图36A是平面光源设备在Y方向上的侧视图;图36B显示了以离光源的距离为X轴的液晶板的前表面侧的亮度;图37A是具有经漫射处理以使得靠近光源区域的亮度更加均匀的棱镜片的平面光源设备的侧视图;图37B显示了以图37A中的棱镜片离光源的距离为X轴的漫射处理程度;图38A是具有经漫射处理以使得靠近光源区域的亮度更加均匀并经漫射处理以放大视角的棱镜片的平面光源设备的侧视图;图38B显示了以图38A中的棱镜片离光源的距离为X轴的漫射处理程度的分布;图39A是具有经漫射处理以使得在靠近光源区域的亮度更加均匀并放大视角的棱镜片的平面光源设备的侧视图;图39B显示了以图39A中的棱镜片离光源的距离为X轴的漫射处理程度的分布;
图40显示了在棱镜片40中X方向和Y方向上具有不同漫射程度的漫射;图41A显示了具有被多个凹槽在Y方向上分隔成的棱镜部分的棱镜片的透视图;图41B到41D显示了图41A中的B、C和D方向所见的棱镜片的侧视图;以及图42A到42E显示了棱镜部分的基本形状。
具体实施例方式
现在将参考附图来说明本发明的实施例。
图1是本发明一个实施例的照明设备10的示意性透视图。图2是图1中的照明设备的部分放大侧视图。图3是图2中的反射镜16的端部32的内表面上的凹凸34的剖视图。
照明设备10包括导光板12、位于导光板12一侧的包含冷阴极荧光灯的棒状光源14、和罩住光源14的反射镜16。
导光板12具有沿平行于光源14的方向延长的入射表面(端面)18、大致垂直于入射表面18的出射表面(上表面)20和位于出射表面20的对侧的反射表面(下表面)22。导光板12为楔形。反射表面22相对于出射表面20倾斜。漫射板24和棱镜片26或其它光调节片位于导光板12的出射表面20一侧,而反射片28位于导光板12的反射表面22一侧。
导光板12由折射率为1.49的透明丙烯酸树脂(PMMA)制成。然而,导光板12可由除了丙烯酸树脂之外的树脂制成。例如,可以采用折射率介于1.4到1.7的光学透明材料,如聚碳酸酯(PC)。通过印刷等方式在导光板12的反射表面22上提供漫射材料点21(图4)。反射镜16包括在上面气相沉积了铝、银合金或其它金属的不导电片。反射片28由在上面气相沉积了铝或其它金属,粘结了金属薄膜,或掺入或涂覆了氧化钛、钛酸钡等的不导电片构成。
反射镜16具有罩住光源14的弯曲部分30和在弯曲部分30的两侧平行延伸的一对端部32。端部32超过导光板12的入射表面18,部分地覆盖导光板12。端部32和导光板12之间有间隙。若把端部32与导光板12紧密接触,则需要从出射表面20一侧向下夹住端部32的结构。另外,若把端部32与导光板12粘合起来,则需要使用粘结剂。若使用粘结剂,则光学特性很易于改变。
反射片28位于反射镜16的端部32的外侧(远离导光板12的一侧)。若反射片28位于反射镜16的端部32的外侧,则当装配光源设备10时,有足够的空间把含有导光板12、光源14和反射镜16的单元放置在反射片28上,因此,装配变得简单。
在反射镜16中,覆盖导光板12的各个端部32的入射表面具有多个凹凸(棱结构或槽结构)34。在图2和图3中,凹凸34在端部30的入射表面上形成了三角形凹槽(V形凹槽)。各个三角形凹槽由平行于光源14延伸的两个倾斜表面34a和34b组成。如图3所示,以大角度到达凹凸34的光L在倾斜表面34b上被反射并返回导光板12的入射表面18。两个倾斜表面34a和34b之间的角度A优选为90°。当然,考虑到反射镜16的厚度、工作条件(如受压)等可以改变三角形凹槽(V形凹槽)的深度或间距。也可以是连续的锯齿形。在本发明中,凹凸34与反射镜16一体地形成,以便不增加部件数量,照明设备10的装配也简单。
图4说明了照明设备10的基本动作。射在导光板12的入射表面18上的光并不直接从导光板12的出射表面20射出,而是被出射表面20和反射表面22反射而在导光板12内传播。反射表面22相对于出射表面20倾斜,由此,在反射表面反射的光与出射表面20的法线之间的夹角变小,当光朝着入射表面18对侧的端面前进时,光一点点地从出射表面20射出。这样,整个光从出射表面20上射出。
图5是在没有凹凸34并且在导光板12和反射镜16之间存在间隙的情况下光被反射镜16的端部32反射后射在导光板12的出射表面20和反射表面22上的示例图。若没有凹凸34,若光以相对大的角度射在导光板12的出射表面20和反射端面22上,则这些光从靠近导光板12和反射镜16重叠部分位置处的出射表面20上射出,且在出射表面20上引起亮线。因此,如图2和图3所示,在反射镜16的端部32的内表面上提供了凹凸34,以使这些光在凹凸34的倾斜表面34b上反射,并朝光源14方向返回以消除亮线。
图6显示了在没有凹凸34的情况下光被反射镜16的端部32反射后穿过导光板12的入射表面18边缘并射在导光板12上的示例。在显微镜下观察时,导光板12的入射表面18的边缘有时是圆形的。在这种情况下,光也以大角度射入,出射表面20上出现亮线。
图7是在没有凹凸34的情况下光穿过导光板12的入射表面18边缘后被反射镜16的端部32反射并射在导光板的出射表面20和反射表面22上的示例。若在显微镜下观察导光板12的入射表面18的边缘,有时含有毛刺。在这种情况下,光以大角度射入,出射表面20上也出现亮线。
如图6和图7所示,当导光板12的入射表面18的边缘有缺陷时就产生亮线。因此,在反射镜16的端部32的内表面上提供凹凸34,使得不需要的光被凹凸34的倾斜表面34b反射并朝光源14的方向返回,从而不出现亮线。
因此,穿过反射镜16的端部32与导光板12的重叠部分的间隙或导光板12的入射表面18的有缺陷边缘的光,由于三角形凹槽(V形凹槽)而更难以朝导光板12上入射表面18的对侧的端面方向前进(朝对侧的端面前进的光量减少),或返回导光板12的入射表面18侧,由此减少了在导光板12的出射表面20靠近光源14的位置上出现的亮线。
图8是本发明的照明设备10的示例的示意性剖视图。图9是图8的导光板12的透视图。照明设备10包括导光板12、位于导光板12一侧的包含冷阴极荧光灯的棒状光源14、和罩住光源14的反射镜16。
导光板12具有沿平行于光源14的方向延伸的入射表面18、大致垂直于入射表面18的出射表面20,和位于出射表面20对侧的表面(反射表面)22。导光板12为楔形,反射表面22相对于出射表面倾斜。也可以提供漫射板24或棱镜片26或其它光调节片以及图1所示的反射片28。反射镜16具有罩住光源14的弯曲部分30和在弯曲部分30的两侧平行延伸的一对端部32。端部32超过导光板12的入射表面18,部分地覆盖导光板12。
在导光板12中,入射表面18具有多个大致平行于出射表面20延伸的凹凸(棱结构或槽结构)36。凹凸36防止在出射表面20上出现带状亮度条纹(不均匀的亮度)。
在传统的侧光式背光灯中,存在如下问题在靠近入射表面处,沿平行于入射表面18的方向出现部分高亮度水平(即亮线)和部分低亮度水平(即暗线),且发出的光中出现不均匀亮度。这种亮线和暗线的出现导致用于液晶显示设备的平面光源的商业价值减少。防止这种现象已经成为一个大问题。由于从入射表面18射入的光的角度分布根据入射表面18的垂直方向上的位置不同而变化,这导致产生不均匀亮度。
图10是在没有凹凸36的情况下光射在导光板12的入射表面18上的示例图。如图10所示,从光源14发出的部分光直接射在导光板12上,而从光源14发出的另一部分光被反射镜16反射,然后(间接地)射在导光板12上。直接照射的光接近无损失地到达导光板12的入射表面18,因此,光亮度高,但间接照射的光遭受了反射镜16反射引起的一些损失,因此,光亮度低。
直接照射光和间接照射光的光量和角度分布随导光板12的入射表面18上的位置不同而变化。例如,对于直接照射光,射在入射表面18靠近光源14的中心P处的光的角度分布B大于射在入射表面18的上、下端部Q的光的角度分布C。与直接照射光相比,被反射镜16反射后射在入射表面18上的光以更大的角度和相对弱的强度照射。因此,对于照射在入射表面18的中心P的光,高强度的光以大角度范围照射,而对于照射入射表面18的上、下端部Q的光,高强度的光以小角度范围照射。即,对于照射在入射表面18的上、下端部Q的光,大幅度的光以小强度照射。
图11是在没有凹凸的情况下图8和图9的导光板的出射表面处亮度的带状条纹示例图。从导光板20的出射表面20射出的光的分布变成诸如弱光La、强光Lb、强光Lc、强光Ld和弱光Le。以特定入射角射在入射表面18的上、下端部Q的光具有低的强度,并从出射表面20射出,成为弱光La和Le。以相同角度射在入射表面18的中心P的光具有高的强度,并从出射表面20射出,成为强光Lb、Lc和Ld。因此,产生了亮度带状条纹。
在图8和图9中,射在导光板12的入射表面18上的光被入射表面18的凹凸36折射,而从光源14直接射在导光板12上的强光向出射表面20和反射表面22一侧传播。因此,对于直接射在入射表面18的上、下端部Q的光,高强度光以大角度范围在导光板12中前进。因此,例如,图11的弱光La和Le变强且亮度带状条纹消失。在入射表面18的中心P处,入射表面18保持为平坦表面。通过在入射表面18上提供凹凸36,光并不向四个方向散射,并且与使入射表面粗糙化处理的方法相比,可以减少损失。另外,可以通过直线延伸的凹凸36的形状和面积而不是通过表面粗糙度(Ra)和其它统计学上的技术来管理这种结构。
图12是图8的导光板12的改进的视图。在这个示例中,沿导光板12的入射表面18的长边方向延伸的多个凹凸36的形状根据入射表面18的位置而变化。越靠近远离光源14的顶端和底端,凹凸36越大,越靠近接近光源14的中心,凹凸36越小。越靠近接近光源14的中心位置(此处直接照射光的角度大),入射表面18垂直于出射表面20的平面表面的面积越大(宽),而与此相反,越靠近远离光源14的顶端和底端(此处直接照射光的角度小),入射表面18垂直于出射表面20的平面表面的面积越小(窄),从而防止射在导光板12上的光的角度分布根据入射表面的位置而变化。
图13是图8中导光板12的改进的视图。在这个示例中,沿着入射表面18的长边方向形成有多个凹凸36。当从入射表面18的短边方向观察时,它们形成了波浪线。射在导光板12上的光被入射表面18的凹凸36朝出射表面20和反射表面22折射,而从光源14直接照射在导光板12上的强光朝靠近光源14的出射表面20和反射表面22前进。
图14A和14B是图13中导光板的局部放大图。图14A显示了放大的凹凸36。射在入射表面18上的光被凹凸36折射而在导光板12中前进,同时角度范围被放大。图14B显示了显微镜下观察的凹凸36。射在入射表面18上的光在导光板12中前进,同时在凹凸36中总角度范围被放大。
图15是图13中导光板12的改进的视图。图16A和16B是图15的导光板的局部放大图。图16A显示了图15中的中心P处的凹凸36的放大图。图16B显示了图15中上、下端部Q处的凹凸36的放大图在这个示例中,与图13的示例相同,沿入射表面18的长边方向上形成有多个凹凸36。当从入射表面18的短边方向观察时,它们形成了波浪线。另外,凹凸36的形状是越靠近接近光源14的中心(此处直接照射光的角度大),波浪线的振幅越小(波浪线越平),倾斜度变化越小,且越接近平面表面;而越靠近远离光源14的顶端和底端(此处直接照射光的角度小),波浪线的振幅越大且倾斜度变化越大,以便使得射在导光板12上的光的角度分布不随入射表面18的位置而变化。由此,强光前往通常为暗线的区域,减少了亮线和暗线的不均匀性。
图17是图8中导光板12的改进的视图。在图8的示例中,在入射表面18的长边方向上形成的多个凹凸36是圆形截面的凸起,但在本示例中,在入射表面18的长边方向上形成的多个凹凸36是V形截面的凸起。V性截面凸起平行地直线延伸。例如,V形截面凸起的垂直角度是90°,深度是25μm,间隔是100μm。当然,考虑到导光板12的厚度和工作条件(例如压制成形)等,可以改变截面形状的高度或间隔。该形状也可以制成连续锯齿形。该导光板12的动作类似于图8中的导光板12。
图18是图17的导光板12的改进的视图。图17中导光板12的入射表面18的多个凹凸36的形状和间距可以变为图12和图15中导光板12的入射表面18的凹凸36的形状和间距。在图18中,在形成为V形截面凸起的凹凸36中,V形截面凸起的垂直角度是90°到150°,优选为120°。V形截面凸起以0.01到0.1mm的间隔形成。调整V形截面凸起的高度,从而使入射表面18的短边方向上V形截面凸起之间的平坦表面的长度是V形截面凸起的间隔的20~80%。例如,导光板12的厚度是2mm,以50μm的间距形成40个V形截面凸起。导光板12的入射表面18的上、下端部的V形截面凸起的高度是约20μm,而且越接近导光板12的入射表面18的中心,凸起的高度越小。该导光板12的动作类似于图12的导光板12。
图19是图17中导光板12的改进的视图。在本示例中,导光板12的入射表面18的多个凹凸36在入射表面18的长边方向上形成了V形截面的凹槽。该导光板12的动作类似于图8中导光板12。请注意,图8到图15显示的凹凸36也可以形成为入射表面18的长边方向上的凹坑。
图20是图17中导光板12的改进的视图。在本示例中,通过组合多个平面使得导光板12的入射表面18的多个凹凸36形成了凸起截面形状或凹槽截面形状。该导光板12的动作类似于图8中导光板12。
导光板12的入射表面18的多个凹凸36的截面形状可以是诸如正弦波形状的曲面形状。另外,可以制成凹坑棱镜。另外,可以不是棱镜,也可以是弧形截面形状。在这种情况下,曲线近似由多条直线形成。
图21是本发明的照明设备10的另一个示例的示意性剖视图。照明设备10包括导光板12、位于导光板12一侧的包含冷阴极荧光灯的棒状光源14、和罩住光源14的反射镜16。导光板12具有沿平行于光源14方向延长的入射表面18、大致垂直于入射表面18的出射表面20,和位于出射表面20的对侧的反射表面22。另外,漫射板24和棱镜片26或其它光调节片位于导光板12的出射表面20一侧,而反射片28位于导光板12的反射表面22一侧。反射镜16具有罩住光源14的弯曲部分30和在弯曲部分30的两侧平行延伸的一对端部32。端部32超过导光板12的入射表面18,部分地覆盖导光板12。
在图21的照明设备10中,导光板12的入射表面18上具有如图8到图20所示的多个凹凸36,而反射镜16的端部32的内表面上具有多个如图2和图3所示的凹凸34。因此,图21的照明设备10具有上文说明的反射镜的特征和上文说明的导光板12的特征。另外,导光板12的凹凸36把光朝出射表面20和反射表面22折射,因此,光与出射表面20之间的入射角变大,可以在出射表面20靠近入射表面18的位置处以大角度发出光。反射镜16的凹凸34不仅防止了图5到图7说明的亮线,还防止了当导光板12的凹凸36所折射的光从出射表面20射出时出现亮线。
图22显示了导光板12的改进。在本示例中,导光板12具有由位于反射表面22上的球形凹坑形成的微透镜阵列38。微透镜阵列38用来代替漫射材料点21并帮助在导光板12中行进的光从出射表面射出。该微透镜阵列38越远离入射表面则越密。在远离和靠近入射表面18的位置都可以发出出均匀的光。请注意,入射表面18上提供了图8到图20所示的多个凹凸36。可以不用微透镜阵列38而使用由球形凸起组成的微透镜阵列。
图23是照明设备10的改进的视图。在本示例中,在导光板12的反射表面20上设置了含有沿平行于入射表面18的长度方向连续形成的棱镜的棱镜阵列40。图24是图23的棱镜阵列40的局部放大图。例如,可以使棱镜间隔为0.1到0.5mm,使朝向棱镜的入射表面对侧的倾斜表面(d表面)40a与出射表面20之间的倾角为0~5°,使朝向入射表面侧的倾斜表面(β表面)40b与出射表面20之间的倾角为40~50°,使所引导的光在β表面40b上完全反射,并使其在出射表面20的法线方向上发出。
图25是照明设备10改进后的视图。图26是图25中的棱镜阵列40的局部放大图。在本示例中,棱镜阵列40的d表面40a和β表面40b与图23所示的互换,所引导的光在d表面40a上完全反射,光在与出射表面20的法线方向倾斜60~70°的方向上发出,并被棱镜片26在出射表面20的法线方向上折射。
图27是照明设备10的改进的视图。在本示例中,不使用光源14和反射镜16的组合,而是使用由位于长导光元件42两侧的点光源(即LED 44)构成的照明设备。导光元件42位于导光板12的一侧。从LED发出的光穿过导光元件42射在导光板12上。导光板12的入射表面18上形成了多个如图8至图20所示的凹凸36。该照明设备的动作与图8的照明设备10的动作类似。
图28是本发明的一个实施例的显示设备100的视图。液晶显示设备100包括图1到图27中任何一个所示的照明设备10和显示元件90。照明设备10在显示设备100中被用作侧光式背光灯。显示元件90优选包括液晶板。
图29是本发明的照明设备10改进后的视图。在本示例中,导光板12的入射表面18具有凹凸36,而在反射表面22上提供了含有沿平行于入射表面18的长度方向连续形成的棱镜的棱镜阵列40。所引导的光在d表面40a上发生完全反射,光以与出射表面20的法线倾斜60~70°的方向射出,并被棱镜片26在出射表面20的法线方向上折射。如图30所示,当结合入射表面18和反射表面22时,作为验证性试验的结果,从靠近光源到远离光源都可以获得大致均匀的亮度分布。另外,若使用在其上气相沉积了具有高规则反射系数的铝、银合金或其它金属或粘结了金属薄膜的反射片28,反射片所导致的漫射变小,可以把更多的光提供给棱镜。
图30显示了由于入射表面18的处理不同而导致的光源垂直方向上的亮度分布不同的验证性试验的结果。导光板的反射表面22使用了棱镜导光板(棱镜阵列40),并以与出射表面20的法线方向倾斜60~70°的方向发出光。所发出的光被面朝下的棱镜透镜片26弯折到法线方向。当入射表面18被处理为平面时,靠近光源的近侧20mm处的亮度下降很显著。另外,当入射表面18被漫射处理时,靠近光源20mm处的亮度增加,但进入内部的光量减少,远端的亮度最终下降。另外,当入射表面18被处理为棱镜时,从靠近光源到远离光源都可以获得大致均匀的亮度分布。
图31是本发明的导光板12的改进后的视图。在导光板12的出射表面20上设置了三角形棱镜41。由于这种棱镜的影响,可以会聚平行于入射表面的长度方向的光。
接下来将说明棱镜片的特征。在本发明中,反射镜的特征和/或上述导光板的特征可以与在这里说明的棱镜片的特征结合在一起。
图32是根据本发明的一个实施例的诸如笔记本式个人计算机或PDA(个人数字助理)的便携式电子设备中的透射式液晶显示设备(LCD)100的透视图,并显示了微处理器80、光源控制器82和光源驱动器84。液晶显示设备100包括透射式液晶板90和位于其后的平面光源设备或背光灯110。典型的平面光源设备110使用了白色冷阴极荧光灯(CCFL)或诸如荧光灯等的棒状光源。作为典型结构,光源也可以是排列成行的LED阵列。
光源驱动器84与外部AC电源(未显示)和DC电池(未显示)相连。光源控制器82根据来自电子设备(未显示)的微处理器或微控制器80的指令INST启动光源驱动器84。
在图32中,平面光源设备110包括棒状光源14、具有两对侧面(每对侧面中的相对侧面大致平行)的大致为楔形的导光板12、位于导光板12前面的棱镜片26以及位于棱镜片26和液晶板90之间的漫射片24。平面光源设备110由导光板12和棱镜片26反射并折射来自棒状光源14的光,并把光向液晶板90照射。导光板12、棱镜片26、漫射片24和液晶板90相互接触,但在图中,为阐明该结构,显示为它们之间具有间隙。导光板12、棱镜片26、漫射片24和液晶板90中的各个都是矩形的,面积约为200cm2,例如,Y方向长度Ly约为10cm×X方向长度Lx约为20cm。
在图32中,从光源14到导光板12的方向是X方向,光源14的长度方向是Y方向,从导光板26到透射式液晶板90的方向是Z方向。
在图32中,光源12位于导光板12的左侧,并朝导光板12发出光。因此,光源14是平面照明设备110的侧光源。除了导光板12这侧之外,光源14被反射镜16包围。典型的反射镜16是铝片罩盖,其内表面上镀了银或由镜面膜覆盖。在图中,为阐明结构没有显示部分反射镜16。
如图32所示,导光板12在XZ面上大致为楔形,即,其后表面倾斜并沿X方向逐渐变薄。倾角α介于0°到5°的范围内。导光板12通常由丙烯酸树脂制成,在离光源14最近处的最大厚度约为2mm,在离光源14最远处的最小厚度约为1mm。
导光板12的后表面具有多个平行的细长三角形棱镜部分132,其在X方向上排列,由Y方向上延伸的多个凹槽构成。导光板12的后表面覆盖着公知的反射片或反射板28。导光板12的前表面具有多个平行的细长三角形棱镜部分134,其在Y方向上排列,由X方向上延伸的多个凹槽构成。
导光板12的各个后表面棱镜部分132在导光板12内把来自光源14的X方向的光朝前表面的漫射片24折射大约30°,即与导光板12的前表面形成大约60°的出射角。与把漫射片置于导光板12和棱镜片26之间的情况相比,通过把漫射片24置于棱镜片26和液晶板90之间,在某种程度上,显示器的亮度整体上变高。前表面棱镜部分134还在Y方向上会聚向棱镜片26发出的光。
棱镜片26利用棱镜部分134,在大致垂直于前表面的z方向上,把以大致30°,也就是约60°角射在后表面上并穿过后表面的光折射,并把它从前表面向漫射片24射出。棱镜片26的厚度优选为约150μm到250μm的值,例如,约200μm。
棱镜片26也被称为“凸透镜片”,并具有位于靠近液晶板90处的通常为平坦的前表面以及含有多个细长的三角形和四边形棱镜部分142的后表面,该棱镜部分142在靠近导光板12一侧平行于光源的长度方向,即Y方向。三角形和四边形棱镜部分142的倾斜表面与垂直于平坦前表面的直线之间的倾斜角度介于30°~35°,例如,约±32.4°。棱镜片26把以相对于前表面大约30°的角度(相对于平面的入射角大约为60°)射在后表面上的光折射并反射,并在大致垂直的方向上把它从前表面向漫射片24射出。
漫射片24把来自棱镜片26的大致在Z方向上的光以一个角度漫射,以增大液晶显示设备100的视角。
图33A、33B和33D显示了根据本发明的棱镜片26和其改进的棱镜片452和454的结构。图33C显示了图33B和33D中棱镜片142的间距P的分布。由位于图33A、33B和33D的棱镜片26、452和454中棱镜部分142的底部的波峰线或穿过下表面的虚线显示的后表面的面444平行于平坦前表面的面442。
在图33A中,棱镜片26通常包括PET薄膜部分144和侧面贴在该薄膜部分144的后表面446上的多个棱镜部分142。薄膜部分144的厚度优选为100μm。棱镜部分142优选由UV(紫外线)固化树脂制成。棱镜部分142的厚度或高度优选为约100μm。根据本发明的实施例的棱镜部分142包括大量尺寸和形状相同的三角形棱镜部分402,该三角形棱镜部分402位于远离光源14一侧的宽阔区域146;棱镜部分142还包括多个尺寸和形状不同的三角形或四边形棱镜部分404,该三角形或四边形棱镜部分404位于靠近光源14一侧的狭窄区域148。区域148用于改善靠近光源14区域的不必要的高亮度。区域148在X方向上的长度处于导光板12的光源14一侧的最大厚度的3到10倍范围内,例如,对于导光板12的最大厚度为2mm的情况,可以是6mm。
区域146中的多个棱镜部分402的尺寸和形状与普通情况相似,并被多个相似的凹槽408相互分隔开来。该棱镜部分402有两个倾斜表面。区域148中的多个棱镜部分404被多个不同的凹槽410分隔开来。该棱镜部分具有两个倾斜表面412和一个平坦表面406。各个平坦表面406位于两个朝相反方向倾斜的倾斜表面之间。多个平坦表面406大致平行于穿过多个棱镜部分402和404的倾斜表面的虚平面,并大致平行于导光板12在棱镜片26一侧的表面。这些平坦表面406在该图中位于棱镜片26的底面444上。
在传统棱镜中,在区域148中也设置着与区域146中的棱镜部分402尺寸和形状相同的棱镜部分。因此,这就有了下面的缺点在导光板12的光源14侧最大厚度的3.5倍距离区域内,平面光源的亮度变得过高。另外,即使在区域148中对棱镜部分进行分级的漫射处理,也不能够使靠近光源14处的亮度充分降低。通过本发明,由区域148中棱镜部分404的结构消除了这种缺点。
在靠近光源14的区域148中,越靠近光源10,单个棱镜部分404的单个倾斜表面412的面积越小,而越靠近光源14,单个平坦表面406的面积越大。在图33A中,棱镜片26的所有棱镜部分402和404的间距P都相等。棱镜部分404的上表面或基线(即凹槽410的谷底线)位于倾斜面420上。根据倾斜面420的区域,越靠近光源10,单个凹槽410的深度变得越浅,即,越靠近光源14,单个棱镜部分404的高度越小;而越靠近光源14,单个平坦表面406在X方向上的宽度越大,即,单个平坦表面406的面积越大。区域148中最靠近光源处的棱镜404的高度,即凹槽410的深度,优选介于区域146中棱镜部分402的高度(即凹槽410的深度)的50%~70%范围,例如60%。在靠近光源14的区域148中,随着靠近光源14,每单位面积中倾斜表面142的面积比例充分地逐渐变小。另外,在靠近光源14的区域148中,随着靠近光源10,每单位面积中平面表面406的面积与倾斜表面412的面积的比值充分地逐渐变大。
在上述结构的平面照明设备110中,在靠近光源14的区域148中,从发光板12朝棱镜部分404照射的一部分光在大致Z方向上朝漫射片24照射,而从发光板12朝棱镜部分404照射的另一部分光被朝右下方反射。被反射的一部分光被导光板12的后表面上的棱镜部分132反射,穿过导光板12的前表面,被斜向上照射,并穿过棱镜片26后在倾斜方向上反射。
图35A显示了远离光源14的区域146中的棱镜部分402的结构局部放大图。图35B显示了靠近光源14的区域148中的棱镜部分404的结构局部放大图。图35A和35B用于说明光经过棱镜片26的传播。
在图35A中,毗邻的倾斜表面472和473形成的角度θ介于60°到70°范围内,例如65°。如虚线箭头所示,从导光板12以右上方向朝棱镜片26的棱镜部分402照射的大部分光穿过倾斜表面472,在倾斜表面473上被反射,并向上以垂直于前表面的面442的方向照射。
在图35B中,毗邻的倾斜表面474和475形成的角度θ介于60°到70°范围内,例如65°。如虚线箭头所示,从导光板12以右上方向朝棱镜片26照射的部分光穿过倾斜表面474,在倾斜表面475上被反射,并向上以垂直于前表面的面442的方向照射。根据单个倾斜表面474和475的尺寸相应于离光源14的距离而变化,越靠近光源14,朝上照射的光与倾斜光的比值减小。部分剩余光被平坦表面406朝右下方反射,而另一部分光穿过平坦表面406和棱镜片26,以一定斜度向右上方照射。沿Z方向朝上照射的光正好减少这个量。根据单个倾斜表面406的尺寸相应于离光源10的距离而变化,越靠近光源14,朝右下方反射的光和穿过棱镜片26并朝右上方照射的光与入射光的比值增大。
图33B显示了根据本发明另一个实施例的棱镜片452。图33C显示了棱镜部分142在X方向上的间距P的长度分布。在图33B中,棱镜部分402的间距P与棱镜部分404的间距P不同。如图33C中的实线442所示,越靠近光源10,棱镜部分404之间的单个间距P越大。棱镜部分402和404的高度相同,即凹槽408和410的宽度相同。越靠近光源14,区域148的单个平面区的面积越大,这与图33A相同。越靠近光源14,区域148中单个倾斜表面412的间距越大、密度越稀疏。
图33D显示了根据本发明的另一个实施例的棱镜片454。棱镜片454具有图33A中棱镜片26和图33B中棱镜片452两者的特征。即,在棱镜片454靠近光源10的区域148中,越靠近光源14,单个棱镜部分404的高度越低,棱镜部分之间的间距越大,单个凹槽410的深度和宽度越小,单个平坦表面406的面积越大。包含多个凹槽410的谷底线的倾斜面424的斜度小于图33A中面420的斜度,而图33C中的虚线425显示了区域148中棱镜部分404之间间距P的变化趋势,且该变化趋势小于图33C中实线422所示的间距变化趋势。
图34A到34C显示了根据本发明的具有从棱镜片26改进得到的其它结构的棱镜片456、458和460。由棱镜部分404的谷底线或穿过棱镜片456、458和460的下表面的虚线所示的面426和428是倾斜的。棱镜部分404的间距与棱镜部分402的间距相同。
在图34A中,棱镜部分404在区域148中形成为一系列棱镜部分,其尺寸和形状与多个棱镜部分402相同,但沿倾斜面426切除了底部。因此,区域148中棱镜部分404的平坦表面406位于在一定程度上倾斜的面426上。越靠近光源10,单个平坦表面406的面积越大。越靠近光源14,单个倾斜表面412的面积越小。
在图34B中,对棱镜片448进行了修正,使得单个平坦表面406平行于前表面的面144。区域148中棱镜部分404的平坦表面406在Y方向上的中心线位于倾斜面426上。越靠近光源14,单个平坦表面406的面积越大。越靠近光源14,单个棱镜部分404的倾斜表面412的面积越小。
在图34C中,棱镜片460由全部为三角形的棱镜部分404的尺寸和形状以及棱镜144的底面部分(作为凹槽410的谷的平坦表面406)形成。区域148中棱镜部分404的峰线或底面位于倾斜面428上。越靠近光源14,单个平坦表面406的面积越大。越靠近光源14,单个倾斜表面412的面积越小。
本领域的专家很显然可以自由组合图33A到33D和图34A到34C中所示棱镜片的特征。
图36A是平面照明设备110在Y方向上的侧视图。图36B显示了液晶板90的前表面侧的亮度,以离光源的距离为X方向。来自光源14的光在大致向右上方倾斜的方向被导光板12反射,然后反射光被棱镜片261在大致Z方向上折射和反射。图36B中的实线曲线502显示了平面光源的亮度分布,该平面光源使用了传统棱镜片,其在区域148中的棱镜部分的尺寸和形状与区域146中的棱镜部分402相同。与曲线502相比,可以理解棱镜部分404的结构使得曲线504具有总体均匀的亮度。
然而,图36B中的曲线504包括局部不均匀的亮度。例如,在区域148中有时局部显示出诸如高亮度部分506这样的亮度。发明人研究了这种现象并发现出现亮线502的原因在于光源14的反射镜16的棱镜片26侧的镜面端部所会聚的光。因此,在镜面端部上设置了漫射部分118,例如粘结了有漫射能力的白色封漆或施加涂层,以减少亮度,从而获得没有局部高亮部分506的曲线508。
图37A是平面光源110的侧视图,该平面光源具有漫射处理的棱镜片26,以使靠近光源10的区域148中的亮度更加均匀。图37B显示了棱镜片26上相当于X方向上离光源14的距离的漫射处理程度。区域148中光源14侧的棱镜部分404之间的间距P很大,因此,在某种情况下在区域148中出现图36B中曲线504的带506所示的明显的亮度带。这些亮度带可以在区域148的棱镜部分404表面上形成漫射部分52且/或在对应于棱镜部分404的棱镜片26的上表面上可以形成漫射部分524,以进一步局部漫射光,从而使得区域148处的亮度均匀。
如图37B所示,漫射处理使得越靠近光源14漫射程度越大。平面光源110的亮度随漫射处理程度而降低。通过使用图33A、33B、33D和图34A到34C所说明的棱镜的形状把亮度减少目标减小量的例如大约90%,然后通过漫射处理细微调节亮度,从而把亮度减少剩下的例如大约10%,可以在整个液晶板90上获得所期望的亮度均匀性。仅通过漫射处理不可能充分减少区域148中的亮度。通过漫射处理,光仅被部分地削弱。区域148中的额外光不能朝区域146充分反射。
对于这种漫射处理,在与棱镜片26的棱镜部分404的表面和/或薄膜部分144的上表面上要进行漫射处理的部分相对应的负(阴)模(未显示)部分中放置细微的颗粒,以形成擦痕或凹坑。擦痕或凹坑的量随施加颗粒时间的长度和漫射的调节程度而增加。在对应于擦痕或凹坑的棱镜片26上形成包括大量细小凸起的漫射部分522和/或524。
图38A是包含棱镜片26的平面光源110的侧视图,对该棱镜片26进行了漫射处理522,以使区域148中靠近光源的亮度更加均匀,也进行了漫射处理526,以增大视角。在这种结构中,去除了图37A中的漫射片24。通过进行漫射处理526来代替使用漫射片24。在这种情况下,不需要漫射片24,因此,平面光源110的结构变得更简单。图38B显示了图38A中棱镜片的漫射处理522和526程度相对于X方向上距光源14的距离的分布542和544。
图38B中的实线544表示了漫射处理的漫射程度在棱镜片26的前表面上的分布。漫射处理526的漫射程度在整个棱镜片26上大致恒定。实线522所示漫射处理522的漫射程度具有与图37B所示类似的分布。
对于导光板12来说,与平行于长度方向上的视角相比,在垂直于侧光源14的长度方向的方向上的视角一般非常窄。若把平行方向上的漫射程度设置为与垂直于侧光源14的长度方向上的漫射程度相同,则出现平行方向上的漫射程度增强的缺陷。
图40显示了棱镜片26中在X方向和Y方向上具有不同漫射程度的漫射。与垂直方向相比,优选使平行于侧光源14的长度方向上的漫射度相对变弱,并确保在垂直方向和平行方向上都形成理想的漫射程度,从而增大垂直方向上的视角。有一种方法是使漫射程度各向异性的技术,使用已公开的日本专利申请公开No.2001-4813所描述的椭圆形气泡。这里,该文献的全部内容被引入作为参考资料。因此,在图38A的漫射处理部分526上使用这种椭圆形气泡就行了。在图39A的漫射处理部分528上,形成椭圆形气泡,然后在区域148中放置细微颗粒就行了,从而给出了分布546所示的漫射处理程度。在图40中,如以这种方式经过各向异性漫射处理526和528处理后的上表面的漫射范围536所示,穿过棱镜片26并朝前表面前进的光532在X方向上变宽,在Y方向上变窄。
图39A是平面光源110的侧视图,该平面光源包含进行了漫射处理528的棱镜片26,以使亮度更加均匀,并增大区域148中靠近光源14处的视角。同样在这种结构中,以与图38A相同的方式,去除了图37A中的漫射片24。在这种情况下不需要漫射片24,因此,平面光源110的结构变得简单。另外,对棱镜片26的前表面仅进行一次漫射处理即可,因此,处理步骤变得简单。图39B显示了图39A中棱镜片的漫射处理程度的分布546,以离光源14的距离为X方向。
图39B中的实线546显示了棱镜片26的前表面上漫射处理528的漫射程度分布。漫射处理的漫射程度对应于图38B中分布542和544的总和。在棱镜片26的靠近光源14的区域158中,越靠近光源10,漫射程度越大,而在远离光源10的区域56中,其在整个区域中大致恒定。
图41A显示了棱镜片40的透视图,该棱镜片包含被多个凹槽沿Y方向分隔成的棱镜部分402和404。图41B到41D显示了沿图41A中B、C和D方向(Y方向、X方向和Z方向)看到的棱镜片的侧视图。棱镜部分402和404为棱锥形。多个X方向上的凹槽或棱镜形状是导光板12的上表面的棱镜部分134的替代结构。因此,在这种情况下,导光板的上表面134是平的。当棱镜部分402和404不是如图41A所示的棱锥形时,即当导光板12(图32)的上表面上的多个棱镜部分134的峰线与棱镜片26的多个棱镜部分402和404的峰线相互交叉时,从外面传向液晶显示器110的振动将导致导光板12与棱镜部分402和404在这些峰线处相互摩擦,从而将损坏棱镜的峰线部分。使用图41A的棱锥结构可以防止这种损坏。
图42A到42E显示了棱镜部分402和404的基本形状。虚线430显示了棱镜404的平坦部分406的位置。图42A的棱镜部分具有平坦的倾斜表面。图42B的棱镜部分在光源10一侧具有平坦的倾斜表面,在对侧具有弯成凸起的倾斜表面。图42C的棱镜部分具有都弯成凸起的两个倾斜表面。图42D的棱镜部分把底侧的峰的顶点变平了。图42E的棱镜部分把峰的顶点变圆了。由于图42D和42E的结构,减少了棱镜片26的棱镜部分402和404的峰与导光板12的上表面相互摩擦和相互破坏的倾向。
上述实施例仅作为代表性示例给出。各个实施例中的各个元素的组合及其改进和变化对于本领域的技术人员来说是显然的。在不脱离本发明的原理和由权利要求所限定的本发明范围的情况下,很显然,本领域的技术人员可以对上述实施例做出多种改进。
如上所述,根据本发明,通过在反射镜的端部的内表面上提供多个凹凸,减弱了从反射镜和导光板的重叠区域的间隙或导光板的有缺陷的边缘出来射在导光板上并变成亮线的光,因此获得了具有均匀亮度分布的平面光源。另外,通过在导光板的入射表面上提供多个大致平行于导光板的出射表面延伸的凹凸,使得从入射表面向导光板前进的光的角度分布变得均匀,并且改善了亮度不均匀性。
另外,通过组合使用具有棱镜入射表面的导光板、棱镜反射表面、棱镜出射表面以及规则反射系数至少为80%的反射片,可以获得从靠近光源到远离光源的地方都具有高亮度和亮度分布大致均匀的光。
权利要求
1.一种导光板,包括入射表面和大致垂直于所述入射表面的出射表面,所述入射表面具有多个大致平行于所述出射表面延伸的凹凸。
2.根据权利要求1所述的导光板,其中,所述多个凹凸的间距在入射表面上出射表面那一侧的端部以及其它位置上有变化。
3.一种导光板,包括入射表面、大致垂直于所述入射表面的出射表面,以及大致垂直于所述入射表面的反射表面,所述反射表面具有凸起。
4.根据权利要求1或3所述的导光板,其中,所述导光板的出射表面上有凸起。
5.一种光源设备,其包括侧光源、导光板和棱镜片,其中,所述侧光源位于所述导光板的彼此相对的两个侧面中的一个侧面上,并且所述导光板、所述棱镜片彼此重叠,以及其中,所述棱镜片包括位于所述导光板一侧的多个棱镜部分,并构造为在距离所述侧光源预定距离的区域范围内,每单位面积的倾斜表面面积的比例减小。
6.根据权利要求5所述的光源设备,其中,所述棱镜片包括位于所述导光板一侧的多个倾斜表面和至少一个平坦部分,并构造为在距离所述侧光源预定距离的区域范围内,每单位面积的所述平坦部分面积与倾斜表面面积的比值变大。
7.根据权利要求6所述的光源设备,其中,所述棱镜片的棱镜部分构造为在距离所述侧光源预定距离的区域范围内,随着靠近所述侧光源,每单位面积的倾斜表面面积的比例逐渐减小。
8.根据权利要求7所述的光源设备,其中所述多个棱镜部分中的每一个都包括两个倾斜表面,且在距离所述侧光源预定距离的区域范围内,所述棱镜的间距变大。
9.根据权利要求8所述的光源设备,其中,在距离所述侧光源预定距离的区域范围内,随着靠近所述侧光源,所示棱镜的间距逐渐变大。
10.根据权利要求9所述的光源设备,其中,所述棱镜片的距离所述侧光源预定距离的区域范围是所述导光板的所述侧光源侧最大厚度的至少三倍的距离范围。
11.根据权利要求10所述的光源设备,其中,所述多个棱镜部分中处于距离所述侧光源预定距离的区域范围内的各个棱镜部分是具有两个倾斜表面和一个平坦表面的大致四棱镜形状,所述多个棱镜部分中处于距离所述侧光源预定距离的范围之外的区域中的各个棱镜部分是具有两个倾斜表面的大致三棱镜形状。
12.根据权利要求11所述的光源设备,其中,所述多个棱镜部分中的每一个是具有两个倾斜表面的大致三棱镜形状,各个平坦表面位于两个棱镜部分之间。
13.根据权利要求5所述的光源设备,其中,在所述棱镜片的离所述侧光源预定距离的区域范围内,对所述导光板侧的所述棱镜片的表面和/或所述导光板的对侧表面进行漫射处理。
14.根据权利要求13所述的光源设备,其中,与中心区域相比,在距离所述侧光源预定距离的区域范围内,使所述棱镜片的漫射程度变大。
15.根据权利要求13或14所述的光源设备,其特征在于在距离所述侧光源预定距离的区域范围内,随着靠近所述侧光源,所述棱镜片的漫射程度逐渐变大。
16.根据权利要求5所述的光源设备,其中,对位于所述导光板的对侧的所述棱镜片的整个表面进行漫射处理。
17.根据权利要求16所述的光源设备,其中,在距离所述侧光源预定距离的区域范围之外的区域内,位于所述导光板对侧的所述棱镜片的整个表面的漫射程度基本一致。
18.根据权利要求13或16所述的光源设备,其中,所述棱镜片的漫射程度在所述光源的至少是长度方向的平行方向和垂直方向两个方向之间存在差别。
19.根据权利要求13或16所述的光源设备,其中,与平行于所述长度方向相比,所述棱镜片的漫射程度在垂直于所述光源的至少是长度方向的方向上变强。
20.根据权利要求13或16所述的光源设备,其中,还在所述导光板的对侧的所述棱镜片的一侧覆盖所述棱镜片设置有漫射片。
21.根据权利要求5所述的光源设备,其中,在所述侧光源一侧的所述导光板的侧表面的靠近所述棱镜片侧的端部的位置上提供了漫射部分。
22.一种棱镜片,包括位于该片的主要表面中的一个上的多个棱镜,并构造为与中心区域相比,在离所述主要表面的一侧的距离最多为预定距离的区域内,越靠近所述一侧,每单位面积的倾斜表面面积的比例递减。
23.一种液晶显示器,其包括侧光源、导光板、棱镜片和液晶板,其中,所述侧光源位于所述导光板的两个彼此相对的侧表面中的一个侧表面上,以及所述棱镜片包括位于所述导光板侧的多个棱镜部分,并构造为在距离所述侧光源预定距离的区域范围内,每单位面积的倾斜表面面积的比例减小。
24一种电子设备,其包括侧光源、导光板、棱镜片和液晶板,其中,所述侧光源位于所述导光板的两个相对的侧表面中的一个侧表面上,以及所述棱镜片包括位于所述导光板侧的多个棱镜部分,并构造为在距离所述侧光源预定距离的区域范围内,每单位面积的倾斜表面面积的比例减小。
全文摘要
一种反射镜,其具有罩住光源的弯曲部分和在弯曲部分的两侧延伸出来的一对端部。各个端部的内表面具有多个大致平行的凹凸。一种导光板,其具有入射表面和大致垂直于入射表面的出射表面,该入射表面具有多个在大致平行于出射表面的方向上延伸的凹凸。导光板的反射表面也具有凸起。
文档编号G02B6/00GK1504808SQ20031011692
公开日2004年6月16日 申请日期2003年12月1日 优先权日2002年11月29日
发明者靖 原, 原靖, 西尾千香良, 香良, 和, 阿部诚, 平林雅, 山田浩, 高桥利和, 田中章 申请人:富士通株式会社