专利名称::自稳定电泳抑制全内反射显示装置的制作方法
技术领域:
:本发明提高电泳抑制全内反射(TIR,totalinternalreflection)的图像显示装置的长期稳定性。
背景技术:
:已知可通过可控地抑制TIR而在反射状态与非反射状态之间切换多像素显示装置中选中的像素的状态来显示图像,其中,在所述反射状态下入射在这些像素上的光进行TIR,而在所述非反射状态下这些像素处的TIR受到抑制。还已知电泳可用于在这样的显示装置内可控地抑制TIR并且可控地切换像素的状态。电泳是一种众所周知的现象,带静电的物质由于所施加电场的作用而移动通过一介质。例如,可以可控地施加一电磁场而使粒子通过电泳介质朝向或远离渐逝波区域(evanescentwaveregion)移动来抑制在该区域中选中的像素部分处的TIR。还已知使用电泳移动粒子的显示装置的反复切换可导致粒子的不均匀分布或聚集,随着时间推移使显示装置所生成图像的质量逐渐降低。参见Dalisa,A.,“电泳显示技术(ElectrophoreticDisplayTechnology)”,IEEETransactionsonElectronDevices,Vol.24,827-834,1977;以及Mürau等人的,“理解和消除电泳显示中的部分悬浮不稳定性(Theunderstandingandeliminationofsomesuspensioninstabilitiesinaneletrophoreticdisplay),”J.Appl.Phys.,Vol49,No.9,1978年9月,第4820页-第4829页。已知这些不希望的聚集可通过在单独的微流体区域内胶囊化(encapsulating)悬浮粒子组而减少。参见Nakamura等人的,“利用微胶囊化悬浮物改进电泳显示装置(DevelopmentofelectrophoreticDisplayUsingMicroencapsulatedSuspension),”SocietyforInformationDisplaySymposiumProceedings,第1014页-第1017页,1998以及Drzaic等人的“一种印制的并可卷曲的双稳电子显示装置(APrintedandRollableBistableElectronicDisplay),”SocietyforInformationDisplaySymposiumProceedings,第1131页-第1134页,1998。
发明内容本发明通过提供在电泳悬浮物内热力学稳定的粒子聚集体来提高电泳移动粒子显示装置的长期图像稳定性。所述聚集体可作为大致一体的整体被电泳移动,由此在反射和非反射状态之间切换显示装置的像素,从而无需在单独的区域内胶囊化悬浮粒子组。图1是现有技术的一部分电泳抑制TIR图像显示装置的放大的部分剖面视图,示出了不希望的不均匀粒子分布。图2A是现有技术的一部分电泳抑制TIR图像显示装置在施加电场之前的放大的部分剖面视图。图2B示出选择性施加电场之后的图2A的显示装置。图3A是根据本发明的电泳抑制TIR图像显示装置的一个像素的一部分在施加电场之前的放大的部分剖面视图。图3B示出选择性施加电场之后的图3A的显示装置。具体实施例方式在以下所有描述中,阐释特定的细节是为了更全面地理解本发明。但是,可不遵循这些细节的情况下实践本发明。在其它例子中,没有显示或描述众所周知的部件,以避免模糊本发明的实质。因此,本说明书和附图是解释性,而非限制性之意。图1示出具有一透明前板12及与前板12大致平行并与其隔开的一后板14的电泳抑制TIR图像显示装置10的一部分。前板12的内表面是经由在其上形成的多个平行的反射微棱镜16微构化的。或者,前板12的内表面是经由在其上形成的多个近似半球形的高折射率透明半珠(hemibead)微构化的,如2003年9月4日的美国专利申请第20030165016号所述,其内容在此引用作为参考。薄的、连续的、透明电极18施加到棱镜16的内表面。分段电极20施加到后板14的内表面,以便在每对相邻的棱镜16之间施加独立的电压(相应于单独的像素)。每个像素与棱镜16之一或电极20的段之一之间无需1∶1对应;优选地,每个像素对应于多个棱镜16和(可能不同的)电极20的多个段。电泳介质22,例如低折射率、低粘性、电绝缘液体(例如可从明尼苏达圣保罗的3M(3M,St.Paul,MN)获得的FluorinertTM全氟化烃液体(hydrocarbonliquid))大致填充板12、14之间的空间,在板12与介质22之间形成一TIR界面。在介质22中提供无光散射性的光吸收性的粒子24(例如颜料粒子)的微细分散的悬浮物。一电压源(未示出)电连接到电极18、22之间以在介质22中选中的像素区域上可控地施加电压。横跨所选像素区域施加电压使悬浮在所选区域内的粒子24电泳移动,由此形成从与所选区域的棱镜16的内表面相邻的大约0.25微米的渐逝波区带开始并向该区域内延伸大约5微米的一层。如上所述进行电泳移动时,具有比周围流体高的折射率且远小于光波长因而大致无光散射性的粒子24导致该层具有大致高于周围液体的有效折射率。该吸收性粒子层既具有抑制TIR并导致光线在界面上透射而不是反射的折射率的有功成分(realcomponent),又具有导致光线在通过该吸收性粒子层时吸收光线的无功成分(imaginarycomponent)。光与粒子相互作用时基本没有光散射,而是光被吸收。这使得所选像素区域对于注视板12的外表面的观察者来说呈暗色外观。横跨所选像素区域施加相反极性的电压使粒子24朝该区域的电极20电泳移动,由此通过板12的入射光线在该区域的TIR界面上被TIR反射,使得该区域对于注视板12的外表面的观察者来说呈“白”色外观。电泳抑制TIR图像显示装置的结构和光学特征的更多细节可参见美国专利第6,064,784、6,215,920、6,304,365、6,384,979、6,437,921和6,452,734,其全部内容在此引用作为参考;以及前述美国专利申请第20030165016。电泳抑制显示装置10会随时间推移而表现出不希望的粒子24的聚集。具体地,粒子24易于形成松散的聚集体26,该聚集体26被介质22的内含相对少的悬浮粒子24的区域28所围绕。这样的聚集常常导致显示装置长期的图像质量和整体性能的降低。图2A和2B示出用于减少具有透明前板32和后板34的电泳抑制显示装置30内不希望的粒子聚集的现有技术。前板32的内表面是经由在其上形成多个平行的反射微棱镜36微构化的。微棱镜36的顶部38连接到后板34的内表面,在每对相邻棱镜36的相对斜面之间形成一胶囊化通道40。每个通道40由电泳介质42填充,在板32与介质42之间形成一TIR界面。在每个通道40内,介质42内含无光散射性的光吸收粒子44(例如颜料粒子)的微细分散的悬浮物。在每个通道40内,薄的透明电极45施加到限定该通道的相邻棱镜36的内表面。分段电极46施加到后板34的内表面,以对应每个通道40(或对应所选的一组相邻通道40)生成单独的像素区域。一电压源(未示出)电连接到每个通道的电极对45、46之间,以便横跨对应的像素区域可控地施加电压。横跨所选像素区域施加电压使得悬浮在所选区域内的粒子44电泳移动,由此形成从与所选区域的棱镜36的内表面相邻的大约0.25微米的渐逝波区带开始并向该区域内延伸大约5微米的一层,如通道40C的情况所示(图2B)。如上所述进行电泳移动时,具有比周围流体高的折射率且远小于光波长因而大致无光散射性的粒子44导致该层具有大致高于周围液体的有效折射率。该吸收性粒子层既具有抑制TIR并导致光线在界面上透射而不是反射的折射率的有功成分,又具有导致光线在通过该吸收性粒子层时吸收光线的无功成分。光与粒子相互作用时,基本没有光散射,而是光被吸收。这使所选像素区域对于注视板32的外表面的观察者来说呈暗色外观。横跨所选像素区域施加相反极性的电压使得粒子44朝该区域的电极46电泳移动(即切换),如通道40A和40B的情况中所示,使得通过板32的光线52、54在该区域的TIR界面上被TIR反射,使得该区域对于注视板32的外表面的观察者来说呈“白”色外观。尽管在单独的通道40内胶囊化粒子44的组减少了不希望的聚集,但在某些情况下可能无法制造、填充或维持通道40。根据本发明,电泳介质含有高浓度的光吸收性颜料粒子,组成海绵状电泳悬浮糊状物(paste),该悬浮糊状物中粒子的容积率(volumefraction)足够大使得粒子不能在电泳介质内自由移动,由此防止被认为导致长期粒子聚集的横向粒子运动。具体地,该容积率足够大,使得悬浮物处于热力学稳定状态,由此粒子的均匀分布得以保持。得到所述热力学稳定所需的容积率取决于特定悬浮物内特定粒子的粒子间力的关系。可通过将粒子加到电泳介质直至所述粒子形成大致一体的聚集体来形成该悬浮物,所述聚集体可作为大致一体的整体响应于所施加的电压而被电泳移动和压缩,以便可控地抑制TIR。或者,可初始形成一稀释悬浮物,接着蒸发电泳介质直至获得所需的悬浮物内粒子容积率。优选向悬浮物加入一分散剂(例如KrytoxTM157-FSL,KrytoxTM157-FSM或KrytoxTM157-FSH氟化油,分别具有特定的分子量为大约2500,3500-4000和7000-7500,CASRegistryNo.860164-51-4,DuPontPerformanceLubricants,Wilmington,DE19880-0023),以便促进粒子在电泳介质内稳定悬浮。这在图3A和3B内示意性地示出,图3A和3B示出图1显示装置结构中选中的像素区域,以及具有替代电泳介质22和粒子24的电泳可压缩的、无光散射性的光吸收粒子聚集体56的电泳悬浮物。电压源57电连接在电极18、20之间,以横跨电泳介质22可控地施加一电压。所施加的电压影响电极18、20之间的大致所有粒子24(即,粒子聚集体56)。如图3A所示,所施加的电压朝电极20电泳压缩粒子聚集体56使其远离电极18。这在板12的内表面与粒子聚集体56之间留下一个低折射率电泳流体薄区域58,该区域58的厚度足以使得大致所有渐逝波被限制到流体的无粒子区域(particle-freeregion)并由此导致TIR,使得通过板12的光线60在所示区域的TIR界面上被TIR反射,使得该区域对于注视板12的外表面的观察者来说呈“白”色外观。具体地,粒子24大致是不可压缩的,但是粒子聚集体56具有许多内含电泳介质22的微小的粒子间空隙。由于粒子24因溶剂和分散剂分子与粒子上的表面基团(surfacegroup)之间的化学作用而带有静电,横跨粒子聚集体56施加的电压使得粒子24作为大致一体的整体朝电极18、20中的一个或另一个(取决于所施加电压的极性)移动。由此,压缩粒子聚集体56,使得粒子24更紧凑并将电泳介质22挤出粒子间空隙。如图3B所示,横跨所示像素区域施加相反极性电压使得粒子聚集体56朝电极18电泳压缩(即切换)而远离电极20,到达与所示区域的棱镜16的内表面相邻的大约0.25微米的渐逝波区带内。如上所述朝电极18进行电泳压缩时,通过导致折射率不匹配(所述不匹配抑制TIR),使得粒子聚集体56散射或吸收入射光线62,由此所示像素区域对于注视板12的外表面的观察者来说呈暗色外观。与直觉相反的是,悬浮物内粒子24的大容积率允许粒子24在渐逝波区域内充分运动,以便可控地调制TIR。尽管悬浮物内粒子24的大容积率赋予该悬浮物高体积粘度,填充粒子间空隙的低折射率电泳介质22却具有非常低的粘度,并由此相对易于压缩粒子聚集体56以迫使无粒子低折射率电泳介质22的区域与板12的内表面接触。具体地,由于电泳介质22的粘度较低,并且由于无粒子区域仅需厚到足够限制大致所有渐逝波,所以可保持较好的光学控制。电极20可分段提供多个电极段,如图1所示。由此合适的控制器(未示出)可被用于在所述第一电极与所述电极段的第一个之间施加一第一电压,在所述第一电极与所述电极段的第二个之间施加一第二电压等,以在所选的电极之间建立彼此不同的电场。每个电极段(或相邻电极段组)对应于单独可控的像素。根据前述公开,如本领域的技术人员显见,在不背离本发明的精神或范围的情况下,在实践本发明时可做多种变型或修改。例如,如前所述,悬浮物内的粒子24的容积率应足够大,使得所述悬浮物处于热力学稳定状态,由此保持粒子的均匀分布。获得所述热力学稳定所需的容积率取决于特定悬浮物内特定粒子的粒子间力的关系。对于许多悬浮物来说该热力学稳定出现在大约25%到75%的范围内,并且在上述范围内随着粒子24容积率的增加功效提高。电泳介质22和分散剂构成粒子聚集体56的未被粒子24占据的其余容积率。悬浮物内粒子24的高容积率(在上述范围内)减少了在反复切换后粒子24聚集在一起的可能性。但是,如果悬浮物内粒子24的容积率大于大约75%,保留在粒子间空隙内的电泳介质22不足,使得难以通过压缩粒子聚集体56并将足量的电泳介质22挤出粒子间空隙以形成低折射率电泳流体区域58而获得高反射状态。如果在悬浮物内提供的分散剂不足,粒子聚集体56的所需可压缩性也会削弱,造成粒子24的不稳定悬浮,即,导致粒子24彼此粘附。根据由所附权利要求所限定的主旨解释本发明的范围。权利要求1.一种图像显示装置(10),包括透明前板(12);与所述前板(12)大致平行并与其隔开的后板(14);大致填充所述板(12,14)之间的空间的电泳悬浮物,所述悬浮物还包括电泳介质(22),在所述介质(22)内悬浮着无光散射性的光吸收粒子(24),所述显示装置(10)的特征在于(a)所述粒子(24)占据所述悬浮物的足够大的容积率,由此形成热力学稳定的聚集体(56);以及,(b)用于横跨所述悬浮物施加电压的装置,使得所述聚集体(56)作为大致一体的整体朝所述前板(12)的内表面可控地电泳移动,由此抑制通过所述前板(12)的光线在所述内表面处全内反射。2.根据权利要求1所述的图像显示装置(10),其中,所述粒子(24)占据所述悬浮物超过大约25%的容积率。3.根据权利要求1所述的图像显示装置(10),其中,所述粒子(24)占据所述悬浮物大约25%到75%的容积率。4.根据权利要求1所述的图像显示装置(10),其中,所述悬浮物还包括分散剂。5.根据权利要求4所述的图像显示装置(10),其中,所述分散剂还包括氟化油。6.根据权利要求4所述的图像显示装置(10),其中,所述聚集体(56)作为大致一体的整体朝以下方向可压缩(a)响应于第一施加电压朝所述前板(12)可压缩;以及(b)响应于第二施加电压朝所述后板(14)可压缩。7.根据权利要求6所述的图像显示装置(10),其中,对所述前板(12)内表面微构化。8.根据权利要求6所述的图像显示装置(10),其中,对所述前板(12)内表面棱镜微构化(16)。9.根据权利要求6所述的图像显示装置(10),其中,所述前板(12)内表面还包括多个近似半球形的透明半珠体。10.根据权利要求6所述的图像显示装置(10),其中,所述电泳介质(22)为全氟化烃液体。11.根据权利要求6所述的图像显示装置(10),其中,用于施加电压的所述装置包括在所述前板(12)的内表面上的透明的一第一电极(18)以及所述后板(14)的内表面上的一第二电极(20)。12.根据权利要求11所述的图像显示装置(10),其中,所述第二电极(20)还包括多个电极段,并且,在所述第一电极(18)与所述电极段中选定的一个电极段之间施加电压从而建立一电场,该电场与通过在所述第一电极(18)与所述电极段中除所述选定的一个电极段以外的其它电极段之间施加电压而建立的电场不同。13.一种图像显示方法,其特征在于,包括以下步骤(a)定位透明前板(12),使其与后板(14)大致平行并间隔;(b)在电泳介质(22)内悬浮无光散射性的光吸收粒子(24),由此制成电泳悬浮物,在所述电泳悬浮物内所述粒子占据所述悬浮物足够大的容积率以形成热力学稳定的聚集体(56);(c)用所述电泳悬浮物大致填充所述板(12,14)之间的空间;以及,(d)横跨所述悬浮物施加电压,以便使所述聚集体(56)作为大致一体的整体朝所述前板(12)的内表面可控地电泳移动,由此抑制通过所述前板(12)的光线在所述内表面处全内反射。14.根据权利要求13所述的图像显示方法,其中,所述粒子(24)占据所述悬浮物超过大约25%的容积率。15.根据权利要求13所述的图像显示方法,其中,所述粒子(24)占据所述悬浮物大约25%到75%的容积率。16.根据权利要求13所述的图像显示方法,其中,向所述悬浮物内添加分散剂。17.根据权利要求16所述的图像显示方法,其中,所述分散剂为氟化油。18.根据权利要求16所述的图像显示方法,其中,所述施加电压的步骤还包括(a)施加第一电压,使得所述聚集体(56)作为大致一体的整体朝所述前板(12)压缩;以及(b)施加第二电压使所述聚集体(56)作为大致体的整体朝所述后板(14)压缩。19.根据权利要求18所述的图像显示方法,其中,对所述前板(12)的内表面微构化。20.根据权利要求18所述的图像显示方法,其中,对所述前板(12)的内表面棱镜微构化(16)。21.根据权利要求18所述的图像显示方法,其中,在所述前板(12)的内表面上形成多个近似半球形的透明半珠体。22.根据权利要求18所述的图像显示方法,其中,所述电泳介质(22)为全氟化烃液体。23.根据权利要求18所述的图像显示方法,其中(a)将透明的第一电极(18)施加到所述前板(12)的内表面;(b)将第二电极(20)施加到所述后板(14)的内表面;其中,所述施加电压的步骤还包括在所述第一与第二电极(18,20)之间施加电压。24.根据权利要求23所述的图像显示方法,其中,将所述第二电极(20)分成多个电极段,并且所述施加电压的步骤还包括在所述第一电极(18)与所述电极段中选定的一个电极段之间施加电压从而建立电场,该电场与通过在所述第一电极(18)与所述电极段中除所述选定的一个电极段以外的其它电极段之间施加电压而建立的电场不同。全文摘要一种图像显示装置(10),其包括具有经由棱镜(16)微构化的内表面的透明前板(12)以及与所述前板(12)大致平行并间隔的后板(14)。电泳悬浮物填充所述板(12,14)之间的空间。通过在电泳介质(22)内悬浮无光散射性的光吸收粒子(24),直至所述粒子(24)形成大致一体的热力学稳定的聚集体(56)来形成所述悬浮物。横跨所述悬浮物施加电压从而建立电场,以便使所述粒子聚集体(56)作为大致一体的整体朝所述前板的内表面可控地电泳移动,由此抑制通过所述前板(12)的光线在所述内表面上全内反射。文档编号G02F1/167GK1820223SQ200380110387公开日2006年8月16日申请日期2003年12月10日优先权日2003年7月24日发明者洛恩·A·怀特黑德,米歇尔·A·莫斯曼申请人:英属哥伦比亚大学