专利名称:显示装置及其制造方法
技术领域:
本发明涉及一种使用显示板的平板型的显示装置及其制造方法,特别是适合于以高精度安装了驱动电路芯片的显示装置。
背景技术:
笔记本式计算机或显示监视器用的高清晰且可进行彩色显示的显示装置、把液晶板用做便携电话机用的显示板的液晶显示装置、使用电致发光(特别是有机电致发光)元件的有机电致发光显示装置(有机EL显示装置)、使用场致发射元件的场致发射式显示装置(FED)等各种方式的平板型的显示装置,已经实用化或处于实用化研究阶段。
平板型的显示装置,在多个像素矩阵状地配置在玻璃等绝缘基板上的显示区域的周围,安装有用来驱动上述像素的驱动用LSI(也叫做驱动电路芯片、驱动器LSI)。在用薄膜晶体管控制亮灯和灭灯的形式的显示装置中,上述的透明绝缘基板也叫薄膜晶体管(TFT)基板或者有源矩阵基板。在以下的说明中,简称为透明基板或基板。
向TFT基板安装驱动电路芯片,需要使作为在驱动电路芯片的背面(与基板相对的面腹面)所具有的成为连接端子的导体突起、即凸块(bump),与在该TFT基板上形成的布线电极以高精度进行位置对准。通常,对于该位置对准,在使分别设置在TFT基板与驱动电路芯片上的对准标记位置对准后,用各向异性导电粘接薄膜(ACF)等进行固定。
发明内容
图1A~图1B是说明驱动电路芯片所具有的凸块的现有构造的说明图,图1A是俯视图,图1B是剖面图。该凸块,通常用金(Au)形成,故被叫做金凸块。在驱动电路芯片D-IC的Si衬底SI上形成的导体层ALL(由于通常用铝(Al)形成,故在此记为导体层ALL)上设置由例如钛和钯的层叠膜(Ti/Pd)构成的基底金属层UBM,然后在该基底层UBM上设置金凸块A-BMP。该基底金属层UBM被配置为通过在设置在Si衬底SI上的作为绝缘层的钝化膜PAS上形成的开口与金属层ALL连接,在该开口的周围在钝化膜PAS的上部与金凸块A-BMP连接。因此,导体层ALL的形状变成为从金凸块A-BMP的平面形状伸了出来的尺寸。
对于该种驱动电路芯片,用导体层ALL形成有对准标记,在该对准标记与凸块的位置关系上存在5μm左右的位置偏移。因此,与金凸块A-BMP连接的导体层ALL的外形,比该金凸块A-BMP形状大,从该金凸块A-BMP伸了出来,金凸块的位置测量因导体层ALL的外形而受到影响,难以正确地进行金凸块的位置识别。因此,即便是识别对准标记来进行驱动电路芯片与基板的位置对准并进行安装,驱动电路芯片的金凸块与对准标记也会产生上述的约5μm左右的位置偏移的偏差。其结果是向基板安装驱动电路芯片的安装精度降低,带来显示质量的劣化。
本发明具有以下优点可以提供一种提高了驱动电路芯片的安装精度、能进行高质量显示的平板型的显示装置及其制造方法。
本发明在位置对准中使用驱动电路芯片的凸块(例如金凸块)。这时,为了提高位置对准用的凸块的识别性,使在驱动电路芯片的半导体衬底(Si衬底)与该位置对准用的凸块之间形成的导体层的平面形状包含在该位置对准凸块的平面形状的外形内,就是说,在位置对准凸块的周围看不见导体层,使导体层不影响用照相机等得到的凸块的摄影图形。
本发明有代表性的结构如下。
(1)一种安装了驱动电路芯片的显示装置,上述驱动电路芯片包括半导体衬底、输出凸块、位置对准凸块、以及至少一层的导体层,上述至少一层的导体层中的、在上述半导体衬底与上述位置对准凸块之间形成的所有的导体层的平面形状,都包含在上述位置对准凸块的平面形状的外形内,上述至少一层的导体层中的、在上述半导体衬底与上述输出凸块之间形成的至少一层的导体层的平面形状,具有比上述输出凸块的平面形状的外形大的形状。
(2)在(1)中,在上述半导体衬底与上述位置对准凸块之间形成的导体层,包括铝层。
(3)在(1)或(2)中,在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,与在上述半导体衬底与上述输出凸块之间形成的导体层的数量相等。
(4)在(1)中,在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,比在上述半导体衬底与上述输出凸块之间形成的导体层的数量少。
(5)在(1)~(4)中的任意一项中,上述位置对准凸块的平面形状与上述输出凸块的平面形状是相似的形状。
(6)在(1)~(4)中的任意一项中,上述位置对准凸块的平面形状是与上述输出凸块的平面形状不同的形状。
(7)在(1)~(6)中的任意一项中,上述驱动电路芯片安装在显示板的基板上。
(8)在(1)~(6)中的任意一项中,上述驱动电路芯片安装在电路板上。
(9)在(1)~(6)中的任意一项中,上述驱动电路芯片安装在挠性电路板上。
(10)在(1)~(9)中的任意一项中,上述输出凸块和上述位置对准凸块是金凸块。
(11)一种安装了驱动电路芯片的显示装置的制造方法,上述驱动电路芯片包括半导体衬底、输出凸块、位置对准凸块、以及至少一层的导体层,上述至少一层的导体层中的、在上述半导体衬底与上述位置对准凸块之间形成的所有的导体层的平面形状,都包含在上述位置对准凸块的平面形状的外形内,对上述位置对准凸块进行平面摄影,并进行与要安装上述驱动电路芯片的基板之间的位置对准。
(12)在(11)中,上述至少一层的导体层中的、在上述半导体衬底与上述输出凸块之间形成的至少一层的导体层的平面形状,具有比上述输出凸块的平面形状的外形大的形状。
(13)在(11)或(12)中,在上述半导体衬底与上述位置对准凸块之间形成的导体层,包括铝层。
(14)在(11)~(13)中的任意一项中,在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,与在上述半导体衬底与上述输出凸块之间形成的导体层的数量相等。
(15)在(11)或(12)中,在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,比在上述半导体衬底与上述输出凸块之间形成的导体层的数量少。
(16)在(11)~(15)中的任意一项中,要安装上述驱动电路芯片的基板是显示板的基板。
(17)在(11)~(15)中的任意一项中,要安装上述驱动电路芯片的基板是电路板。
(18)在(11)~(15)中的任意一项中,要安装上述驱动电路芯片的基板是挠性电路板。
(19)在(11)~(18)中的任意一项中,上述输出凸块和上述位置对准凸块是金凸块。
另外,上述的结构只是一个例子,本发明并不限于上述的结构,在不偏离本发明的技术思想的范围内可以进行各种变更。
根据本发明,驱动电路芯片的凸块的外形识别容易,在把驱动电路芯片安装到基板上时,能精度良好地使该驱动电路芯片所具有的凸块与安装该驱动电路芯片的基板(例如,显示板的基板(例如TFT基板)、电路板、挠性电路板等))的布线电极进行位置对准,可以防止因驱动电路芯片的安装不良引起的显示质量的劣化。
图1A~图1B是说明驱动电路芯片所具有的凸块的现有构造的图。
图2A~图2B是说明本发明的实施例1的图。
图3A~图3B是说明本发明的实施例2的图。
图4A~图4D是说明驱动电路芯片的金凸块的形成工艺的主要部分剖面图。
图5A~图5C是接着图4A~图4D的说明驱动电路芯片的金凸块的形成工艺的主要部分剖面图。
图6A~图6C是说明驱动电路芯片和TFT基板的位置对准的现有技术的示意图。
图7A~图7B是更详细地说明驱动电路芯片的金凸块形成面上的该金凸块的现有构造的示意图。
图8A~图8B是说明驱动电路芯片的金凸块的形成面上的该金凸块的本发明的一个构造例的示意图。
图9A~图9B是说明驱动电路芯片的金凸块的形成面上的该金凸块的本发明的另一个构造例的示意图。
图10A~图10F是说明驱动电路芯片的金凸块的形成面上的该金凸块的本发明的另一个构造例和TFT基板侧的对准标记的各种形状例的示意图。
图11是说明在把驱动电路芯片安装到TFT基板上时的位置对准方法的示意图。
图12是说明应用了本发明的驱动电路芯片安装的便携电话机用的液晶模块的一个例子的立体图。
图13是说明向TFT基板SUB1上安装驱动电路芯片D-IC的安装状态的示意图。
图14A~图14B是说明本发明的实施例3的图。
具体实施例方式
以下,参照实施例的附图对本发明的实施方式详细地进行说明。
图2A~图2B是说明本发明的实施例1的图,图2A是俯视图,图2B是剖面图。与图1A~图1B相同的参考符号对应于同一功能部分。在本发明中,把金凸块A-BMP本身用作对准标记。在本实施例中,用作对准标记的凸块(位置对准凸块)在与Si衬底SI的面平行的面上来看,金凸块A-BMP的平面形状是矩形,导体层ALL的外形形状形成为小的平面形状(矩形),使得包含在该金凸块A-BMP的外形内。另外,在图2B中,基底金属层UBM,虽然形成为与金凸块A-BMP的外形相同的平面形状(矩形),但是,也可以为小的平面形状,使得该基底金属层UMB同样也包含在金凸块A-BMP的外形内。
即,在本实施例中,在半导体衬底(Si衬底SI)与位置对准凸块之间形成的所有的导体层(导体层ALL与基底金属层UBM)的平面形状都包含在位置对准凸块的平面形状的外形内。另外,所谓“包含在位置对准凸块的平面形状的外形内”与“不从位置对准凸块的外形伸出来”的意思是相同的,故如图2A~图2B所示,可以像导体层ALL那样平面形状比金凸块A-BMP的外形小,也可以像基底金属层UBM那样平面形状与金凸块A-BMP的外形相同。
另外,对于用于对准的凸块以外的输入凸块和输出凸块,导体层ALL也可以从金凸块A-BMP的外形伸出来。对于输入凸块和输出凸块,也可以把导体层ALL用做布线。
在本实施例中,在半导体衬底(Si衬底SI)与位置对准凸块之间形成的导体层的数量(导体层ALL与基底金属层UBM)等于在半导体衬底与输出凸块之间形成的导体层的数量(导体层ALL与基底金属层UBM)。由此,可以使输出凸块与位置对准凸块的高度整齐一致,故在安装驱动电路芯片时稳定性好。此外,由于存在导体层ALL,故也不会使金凸块A-BMP与Si衬底SI之间的紧密接合强度降低。
在把驱动电路芯片安装到TFT基板上时,用照相机对该驱动电路芯片的金凸块A-BMP进行摄影,取得其位置数据,用该数据进行与TFT基板所具有的对准标记之间的位置对准。这时,由于导体层ALL被金凸块遮挡起来,故不会对用于位置对准的金凸块A-BMP的形状的数据取得造成影响。
图3A~图3B是说明本发明的实施例2的图,图3A是俯视图,图3B是剖面图。与图2A~图2B相同的参考符号对应于同一功能部分。在本实施例中,在与Si衬底SI的面平行的面上来看,除去金凸块A-BMP的平面形状是圆形、在其下层形成的基底金属层UBM和导体层ALL的平面形状也是圆形这一点之外,与实施例1大体相同。
图14A~图14B是说明本发明的实施例3的图,图14A是俯视图,图14B是剖面图。与图2A~图2B相同的参考符号对应于同一功能部分。在本实施例中,采用在对准用的凸块的下层只设置基底金属层UBM,而不设置导体层ALL的构造。另外,还采用在半导体衬底(Si衬底SI)与位置对准凸块之间形成的导体层的数量(基底金属层UBM)少于在半导体衬底与输出凸块之间形成的导体层的数量(导体层ALL与基底金属层UBM)的构造。位置对准凸块的高度虽然因该影响而比输出凸块的高度低约1μm,但是,只要在进行安装时可以确保所要的稳定性,则不会有特别的问题。通过在凸块的配置上下工夫,能降低该影响。此外,从提高紧密接合强度的观点出发,最好是在金凸块A-BMP与钝化膜PAS之间形成基底金属层UBM,而不是在钝化膜PAS上直接形成金凸块A-BMP。
接下来,对本发明的制造方法进行说明。首先,用图4A~图4D和图5A~图5C说明驱动电路芯片的金凸块的形成工艺。图4A~图4D和图5A~图5C是说明驱动电路芯片的金凸块的形成工艺的主要部分剖面图,图5A~图5C表示接着图4A~图4D的工艺。
图4A表示凸块加工前的驱动电路芯片的一部分。在构成驱动电路芯片的硅衬底(Si衬底)SI的面上,形成有导体层ALL,以及覆盖导体层ALL的周围地形成作为绝缘层的钝化膜PAS,该钝化膜PAS形成有开口尺寸为D的开口AP。
覆盖图4A的开口AP和钝化膜PAS地形成钛和钯的层叠膜(Ti/Pd)作为基底金属层UBM(图4B)。
覆盖基底金属层UBM地涂敷感光性抗蚀剂RG(图4C),进行使用光掩模的曝光和显影,并进行在感光性抗蚀剂RG上形成凸块用的孔的图形化(图4D)。
在感光性抗蚀剂RG的孔内实施镀金,形成金凸块A-BMP(图5A)。然后,除去感光性抗蚀剂(图5B),用刻蚀等除去在金凸块A-BMP的周围伸了出来的基底金属层UBM(图5C),得到导体层ALL被金凸块A-BMP遮挡起来的驱动电路芯片。
另外,在实施例3的情况下,可以在输入凸块和输出凸块的金凸块A-BMP的下层形成导体层ALL,而只在对准用的金凸块A-BMP的下层不形成导体层ALL。
接着,与现有技术相对比地说明驱动电路芯片与TFT基板之间的位置对准。图6A~图6C是说明驱动电路芯片与TFT基板之间的位置对准的现有技术的示意图。图6A表示驱动电路芯片D-IC的腹面(背面),图6B表示TFT基板的表面。如图6A所示,在驱动电路芯片D-IC的腹面上形成有金凸块A-BMP。并且,在该金凸块A-BMP的形成面,即腹面的预定部位,在此是在角部,用导体层ALL设置芯片侧对准标记D-ALM。该芯片侧对准标记D-ALM与金凸块A-BMP的位置关系的偏差,如上所述为约5μm。
另一方面,如图6B所示,在TFT基板SUB的表面形成有用来与驱动电路芯片D-IC的金凸块A-BMP进行连接的布线电极ELR。并且,在该TFT基板SUB的表面的预定部位,在此是在角部,设置有TFT基板侧对准标记S-ALM。另外,省略了布线的详细情况。
在把驱动电路芯片D-IC安装到TFT基板SUB上时,使芯片侧对准标记D-ALM与TFT基板侧对准标记S-ALM一致来进行位置对准。图6C表示该位置对准的状态。
图7A~图7B是更为详细地说明驱动电路芯片的金凸块形成面上的该金凸块的现有构造的示意图。图7A是俯视图,图7B是沿着图7A的A-A’线的剖面图。在图7A~图7B中,设置在金凸块形成面上的凸块都是相同构造的金凸块A-BMP。另外,对于输入凸块和输出凸块,这些金凸块A-BMP与Si衬底SI之间所具有的导体层ALL的平面形状从金凸块A-BMP的外形向外侧伸了出来。即便是要用对该金凸块A-BMP自身进行了摄影的数据或对驱动电路芯片侧对准标记D-ALM进行了摄影的数据与TFT基板的布线电极进行位置对准,如上所述,也难以取得金凸块A-BMP的正确的位置数据。
图8A~图8B是说明驱动电路芯片的金凸块形成面上的该金凸块的本发明的一个构造例的示意图。图8A是俯视图,图8B是沿着图8A的A-A’线的剖面图。在图8A~图8B中,与图7A~图7B相同的参考符号对应于同一功能。在本构造例中,使在金凸块形成面上设置的凸块的一部分的构造与别的凸块不同。在此,以在驱动电路芯片D-IC的短边侧所具有的各一个金凸块为对准用凸块ALM-B。或者作为对准专用凸块。
由图8A~图8B可知,介于该对准用凸块ALM-B与Si衬底SI之间的导体层ALL特别采用不会从该对准用凸块ALM-B的外形形状伸出来那样的大小。对准用凸块ALM-B的外形形状,与别的输入或输出用的金凸块A-BMP的形状和尺寸相同。另外,虽然省略了基底金属层UBM,但是,由于是以与金凸块A-BMP相同的形状形成的,故不产生特别的问题。根据需要可用导体层ALL形成布线,但是,省略了图示。
根据该构造例,可以进行对准用凸块ALM-B的正确的形状识别,可以提高驱动电路芯片D-IC的金凸块A-BMP(以及对准用凸块ALM-B)与TFT基板SUB的布线电极ELR的位置对准精度,能确保稳定的连接质量,防止由驱动电路芯片的安装不良所引发的显示质量的劣化。
图9A~图9B是说明驱动电路芯片的金凸块形成面上的该金凸块的本发明的另一构造例的示意图。图9A是俯视图,图9B是沿着图9A的A-A’线的剖面图。在图9A~图9B中,与7A~图7B和8A~图8B相同的参考符号对应于同一功能。在本构造例中,使在金凸块形成面上设置的所有凸块的金凸块A-BMP和对准用凸块ALM-B与Si衬底SI之间所具有的导体层ALL的平面形状为不会从金凸块A-BMP、ALM-B的外形形状伸出来的大小。
根据该构造例,除了具有与上述构造例同样的效果之外,还具有无论哪一个凸块都可以用做位置对准用的凸块的效果,可以提高与TFT基板SUB的布线电极ELR的位置对准精度,可以确保稳定的连接质量,防止由驱动电路芯片的安装不良所引发的显示质量的劣化。
图10A~图10F是说明驱动电路芯片的金凸块的形成面上的该金凸块的本发明的另一个构造例以及TFT基板侧的对准标记的各种形状例的示意图。图10A是驱动电路芯片的金凸块的形成面的俯视图,图10B是沿着图10A的A-A’线的剖面图。图10C是说明TFT基板侧的对准标记的第一例的主要部分俯视图。图10D是说明TFT基板侧的对准标记的第二例的主要部分俯视图,图10E是说明TFT基板侧的对准标记的第三例的主要部分俯视图,图10F是说明TFT基板侧的对准标记的第四例的主要部分俯视图。
如图10A~图10B所示,在本构造例的驱动电路芯片的金凸块中,使对准用的凸块ALM-B的平面形状采用与别的输入输出用的凸块A-BMP不同的形状,此外,介于对准用的凸块ALM-B与TFT基板SUB之间的导体层ALL为不会从凸块ALM-B的平面形状的外形伸出来的尺寸。在此,对准用的凸块ALM-B的平面形状采用正方形。其它的输入输出用的凸块A-BMP的平面形状为长方形。另外,虽然未图示,但是也可以采用仅仅改变了尺寸的相似形。
另一方面,用来与驱动电路芯片D-IC的对准用的凸块ALM-B进行位置对准的在TFT基板上形成的TFT基板侧的对准标记,可以采用例如图10C~图10F所示的那样的标记。图10C在与驱动电路芯片D-IC的对准用的凸块ALM-B对应的位置上形成了与该凸块ALM-B相同的平面形状的对准标记S-ALM1。
图10D在与驱动电路芯片D-IC的对准用的凸块ALM-B对应的位置上形成了与该凸块ALM-B不同的平面形状的对准标记S-ALM2。图10E在不与驱动电路芯片D-IC的对准用的凸块ALM-B对应的、不同的位置上形成了与该凸块ALM-B相同的平面形状的对准标记S-ALM1。图10F在不与驱动电路芯片D-IC的对准用的凸块ALM-B对应的、不同的位置上形成了与该凸块ALM-B不同的平面形状的对准标记S-ALM2。
对于使用图10A和图10B的驱动电路芯片D-IC的对准用的凸块ALM-B以及图10C和图10D的TFT基板侧的对准标记S-ALM1、S-ALM2的位置对准,使载置台移动来进行位置对准,使得用照相机摄影而得到的驱动电路芯片D-IC的对准用的凸块ALM-B的数据与TFT基板侧的对准标记S-ALM1、S-ALM2的数据一致。
此外,对于使用图10A和图10B的驱动电路芯片D-IC的对准用的凸块ALM-B以及图10E和图10F的TFT基板侧的对准标记S-ALM1、S-ALM2的位置对准,使装载了驱动电路芯片D-IC的安装机或装载了TFT基板的载置台移动,或者使双方移动来进行位置对准,使得用照相机摄影而得到的驱动电路芯片D-IC的对准用的凸块ALM-B的数据与TFT基板侧的对准标记S-ALM1、S-ALM2的数据一致。
图11是说明在把驱动电路芯片安装到TFT基板上时的位置对准方法的图。在图11中,以液晶显示板PNL为例进行说明。液晶显示板PNL构成为在TFT基板SUB1和滤色片基板SUB2的贴合间隙中封入液晶层(未图示)。TFT基板SUB1采用至少一边从滤色片基板SUB2伸出来的尺寸,在该伸出来的部分的主面上形成有布线电极ELR。在布线电极ELR上连接驱动电路芯片D-IC的金凸块A-BMP地安装驱动电路芯片D-IC。另外,驱动电路芯片D-IC用各向异性导电膜ACF进行粘接固定。
对于把驱动电路芯片安装到TFT基板上时的位置对准,使用照相单元CMU。TFT基板SUB1被放置在X-Y载置台上,驱动电路芯片D-IC被装载在安装机上。首先,用照相单元对驱动电路芯片D-IC的2个对准用的凸块ALM-B(或与之相同的输入或输出用的凸块)进行摄影,取得其位置数据。其次,对TFT基板SUB2的2个部位的对准标记S-ALM1(或S-ALM2)进行摄影,取得其位置数据。
然后,使X-Y载置台或安装机移动,或者使双方进行移动,使得驱动电路芯片D-IC的对准用的凸块ALM-B的数据和TFT基板SUB1的对准标记的数据一致或成预定的关系。这时,在TFT基板SUB1的驱动电路芯片D-IC的安装区域上已经粘贴了具有粘接性的各向异性导电膜ACF。在驱动电路芯片D-IC的对准用的凸块ALM-B与TFT基板SUB1的预定位置一致的位置,把驱动电路芯片D-IC推压到TFT基板SUB1上进行粘接固定。
由此,驱动电路芯片D-IC的输入或输出用的金凸块A-BMP以高精度与TFT基板SUB1的布线电极ELR实现了位置对准。另外,在TFT基板SUB1为透明基板时,从下进行照相单元的摄影,在为不透明基板时,从上进行照相单元的摄影。
以上的说明中的对准用的金凸块的形状,无论是包括正方形或长方形在内的矩形,还是圆形或椭圆形都可以。此外,在使金凸块的外形形状为正方形、其外形尺寸为60μm×60μm的情况下,理想的是使导体层ALL的尺寸为50μm×50μm左右,但是,只要是导体层ALL不因金凸块与导体层ALL的位置偏移而从金凸块的外形伸出来的尺寸就可以。
图12是说明应用了本发明的驱动电路芯片安装的便携电话机用的液晶模块的一个例子的立体图。该液晶显示模块构成为在由TFT基板SUB1与滤色片基板SUB2构成的液晶显示板PNL的背面设置背光源BL。驱动电路芯片D-IC安装在TFT基板SUB1上。此外,在滤色片基板SUB2的显示区域AR的表面粘贴有偏振片PL。
通过挠性印制电路板FPC从设置在背光源BL的背面的信号处理电路板(未图示)向驱动电路芯片D-IC提供显示用的信号、驱动电压。
另外,本发明也可以应用于具有前光源的反射式液晶显示装置。
图13是说明向TFT基板SUB1安装驱动电路芯片D-IC的安装状态的示意图。在TFT基板SUB1上形成有布线电极ELR,在驱动电路芯片D-IC的Si衬底SI的腹面上形成有上述实施例中所说明的金凸块A-BMP。金凸块A-BMP由各向异性导电膜ACF所含有的导电颗粒ECP导电连接在布线电极ELR上。另外,参考符号ADH是作为各向异性导电膜的结构要素之一的粘接剂。
以上所说明的本发明的显示装置,并不限于液晶显示装置,也同样可以应用于向有机EL显示装置、FED显示装置等的其它的显示板上安装驱动电路芯片。此外,不仅是有源矩阵方式的显示装置,也可以应用于无源矩阵方式的显示装置。再有,安装驱动电路芯片D-IC的基板并不限于显示板的基板,也可以是电路板或挠性电路板。此外,本发明并不限于显示装置,也可以应用于所有的电子设备。此外,到此为止所说明的各个实施例,只要彼此不矛盾,也可以对2个以上的实施例进行组合。
权利要求
1.一种安装了驱动电路芯片的显示装置,其特征在于上述驱动电路芯片包括半导体衬底、输出凸块、位置对准凸块、以及至少一层的导体层,上述至少一层的导体层中的、在上述半导体衬底与上述位置对准凸块之间形成的所有的导体层的平面形状都包含在上述位置对准凸块的平面形状的外形内,上述至少一层的导体层中的、在上述半导体衬底与上述输出凸块之间形成的至少一层的导体层的平面形状,具有比上述输出凸块的平面形状的外形大的形状。
2.根据权利要求1所述的显示装置,其特征在于在上述半导体衬底与上述位置对准凸块之间形成的导体层,包括铝层。
3.根据权利要求1所述的显示装置,其特征在于在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,与在上述半导体衬底与上述输出凸块之间形成的导体层的数量相等。
4.根据权利要求1所述的显示装置,其特征在于在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,比在上述半导体衬底与上述输出凸块之间形成的导体层的数量少。
5.根据权利要求1~4中的任意一项所述的显示装置,其特征在于上述位置对准凸块的平面形状与上述输出凸块的平面形状是相似的形状。
6.根据权利要求1~4中的任意一项所述的显示装置,其特征在于上述位置对准凸块的平面形状是与上述输出凸块的平面形状不同的形状。
7.根据权利要求1~4中的任意一项所述的显示装置,其特征在于上述驱动电路芯片安装在显示板的基板上。
8.根据权利要求1~4中的任意一项所述的显示装置,其特征在于上述驱动电路芯片安装在电路板上。
9.根据权利要求1~4中的任意一项所述的显示装置,其特征在于上述驱动电路芯片安装在挠性电路板上。
10.根据权利要求1~4中的任意一项所述的显示装置,其特征在于上述输出凸块和上述位置对准凸块是金凸块。
11.一种安装了驱动电路芯片的显示装置的制造方法,其特征在于上述驱动电路芯片包括半导体衬底、输出凸块、位置对准凸块、以及至少一层的导体层,上述至少一层的导体层中的、在上述半导体衬底与上述位置对准凸块之间形成的所有的导体层的平面形状都包含在上述位置对准凸块的平面形状的外形内,对上述位置对准凸块进行平面摄影,并进行与要安装上述驱动电路芯片的基板之间的位置对准。
12.根据权利要求11所述的显示装置的制造方法,其特征在于上述至少一层的导体层中的、在上述半导体衬底与上述输出凸块之间形成的至少一层的导体层的平面形状,具有比上述输出凸块的平面形状大的形状。
13.根据权利要求11所述的显示装置的制造方法,其特征在于在上述半导体衬底与上述位置对准凸块之间形成的导体层,包括铝层。
14.根据权利要求11所述的显示装置的制造方法,其特征在于在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,与在上述半导体衬底与上述输出凸块之间形成的导体层的数量相等。
15.根据权利要求11所述的显示装置的制造方法,其特征在于在上述半导体衬底与上述位置对准凸块之间形成的导体层的数量,比在上述半导体衬底与上述输出凸块之间形成的导体层的数量少。
16.根据权利要求11~15中的任意一项所述的显示装置的制造方法,其特征在于要安装上述驱动电路芯片的基板是显示板的基板。
17.根据权利要求11~15中的任意一项所述的显示装置的制造方法,其特征在于要安装上述驱动电路芯片的基板是电路板。
18.根据权利要求11~15中的任意一项所述的显示装置的制造方法,其特征在于要安装上述驱动电路芯片的基板是挠性电路板。
19.根据权利要求11~15中的任意一项所述的显示装置的制造方法,其特征在于上述输出凸块和上述位置对准凸块是金凸块。
全文摘要
本发明提供一种显示装置及其制造方法,提高向基板安装驱动电路芯片的安装精度,使得能进行高质量的显示。把驱动电路芯片的凸块(例如金凸块)用于位置对准。此时,为了提高位置对准用的凸块的识别性,使在驱动电路芯片的半导体衬底(Si衬底)与该位置对准用的凸块之间形成的导体层的平面形状包含在该位置对准凸块的平面形状的外形内。即,使在位置对准凸块的周围看不见导体层,并使导体层不会对用照相机等得到的凸块的摄影图形造成影响。
文档编号G02F1/13GK1683960SQ20051006435
公开日2005年10月19日 申请日期2005年4月14日 优先权日2004年4月14日
发明者阿部英明, 佐藤诚, 后藤充 申请人:株式会社日立显示器