专利名称:光学元件的制作方法
技术领域:
本发明涉及在接合基片上形成的光学元件。
背景技术:
把2块基片接合起来形成的光学元件,对一块基片进行薄片化后进行脊形加工,即可形成脊形光波导。在对该基片进行接合的情况下,不使用粘接剂等使基片之间牢固接合的技术,已知的是直接接合技术。利用直接接合,能对玻璃、半导体、强电介质、压电陶瓷等各种材料进行高精度的接合,有希望应用于光学元件。作为电介质基片、半导体基片、玻璃基片等直接接合基片中的光学元件的一例提出了光波导型元件。例如在(日本)专利第2574594号公报和特开平06-222229号公报中,公开了使强电介质结晶基片铌酸锂和钽酸锂与同种类基片或玻璃基片进行直接接合而形成光波导的方法。
并且,在二块基片之间通过薄膜使其接合而形成的光学元件,也已提出了几种方案。用2块基片,一块作为波导层的光学元件,成为波导层的基片,折射率不高不行。因此,在基片间布置折射率比波导层低的薄膜,能不受基片波导率的影响,对光进行波导。例如,在上述(日本)专利第2574594号公报和特开平06-222229号公报中,说明采用SiO2和SiN作为薄膜材料。并且,在(日本)专利第2574606号公报中,说明采用低熔点玻璃作为薄膜材料。并且,(日本)专利特开平06-289347号公报中,说明采用金属氧化物等作为薄膜材料。
如前所述,不设置薄膜层,而是用折射率相等的同种类的基片构成的光学元件,不能作为光波导使用。并且,例如,像直接接合铌酸锂基片和Mg掺杂铌酸锂基片的情况那样,即使在直接接合折射率不同的2种基片的情况下,也不能在折射率小的基片上形成光波导。
在2块基片之间设置薄膜,就能解决上述问题。但是,在2块基片之间设置薄膜很困难。如(日本)专利2574594号公报和特开平06-222229号公报所示,例如在采用SiO2作为薄膜的情况下,很难控制薄膜层的表面光洁度,通过溅射和蒸发淀积的薄膜,其表面光洁度差。这种表面光洁度不适合直接接合。例如,用CVD(化学汽相淀积)设备等来形成薄膜,能提高表面光洁度。但CVD设备存在的问题是价格昂贵,体积大。并且,根据薄膜形成条件等不同,薄膜和基片的贴紧性和接合强度分布不均匀,在对已接合的基片进行机械加工时,达不到足够的适应强度。
此外,如(日本)专利2574606号公报所示,在采用低熔点玻璃作为薄膜层的情况下,例如采用的方法是,在基片上涂敷浆状的溶化玻璃,进行接合的基片在贴紧后进行烧结。所以,很难控制膜厚的均匀性。再有,在特开平06-289347号公报所述的技术中,不能具体特定薄膜所用的金属氧化物材料,缺乏实用性。
并且,在直接接合基片上,形成光波导时的光波导的高度控制和光波导的高度均匀性控制,重要的措施是对直接接合的基片中形成光波导的基片的厚度和均匀性进行测量。但是,存在的问题是,一般,上述光波导相对于形成基片的厚度均匀性测量很难用光学方式来进行,而是依靠直接接合基片整体的厚度测量,所以,光波导的厚度均匀性很差。
发明内容
本发明的目的是提供一种容易制作且所用基片的选择性强、对基片进行接合的结构的光学元件。
本发明的光学元件,具有波导基片和基体基片,上述波导基片和上述基体基片进行接合,在上述波导基片和上述基体基片的接合面上,一部分具有不接合的非接合区。这样,没有薄膜层,不管波导基片和基体基片的折射率如何,均能获得良好的光波导特性。
再者,希望上述波导基片和基体基片,利用直接接合法进行接合。这样,能实现高精度接合。
并且,希望上述波导基片和上述基体基片的折射率大致相等。这样,在上述波导基片和上述基体基片的接合中,能实现高精度接合。尤其,在直接接合中,能实现高精度接合。
再者,也可以使上述波导基片和上述基体基片之间通过薄膜层进行接合。
并且,希望上述波导基片和上述薄膜层之间、以及上述基体基片和上述薄膜层之间至少一边利用直接接合法进行接合。这样,能实现高精度接合。
再者,希望在上述波导基片上形成光波导,上述非接合区域的宽度超过上述光波导向垂直方向的投影面的宽度,上述投影面位于上述间隙内。
这样,没有波导损耗,能获得良好的波导特性。
并且,上述光波导也可以采用脊形光波导。
再者,上述非接合区域可以是通过将上述波导基片和上述基体基片的至少一个沿厚度方向加工成凹状来形成的。
并且,希望上述非接合区域的厚度不小于0.01μm。这样,没有波导损耗,能获得良好的波导特性。
再者,希望在非接合区域上形成折射率比上述波导基片小的充填材料。这样,没有波导损耗,能获得良好的波导特性。
并且,希望上述充填材料是紫外线固化树脂。这样,容易制作,没有波导损耗,能获得良好的波导特性。
再者,上述充填材料也可作为电介质材料。
并且,上述充填材料至少可以形成在与上述波导基片相接,上述光波导基片向垂直方向的投影面上。
再者,希望设置多个上述非接合区域,上述非接合区域形成为等间隔。这样,接合面的强度高。
图1是表示涉及本发明第1实施例的光学元件结构的斜视图。
图2是表示溅射膜的原子间力显微镜的表面光洁度测量结果的图,图2(a)是表示Ta氧化物溅射膜的表面光洁度测量结果,图2(b)表示SiO2溅射膜的表面光洁度测量结果。
图3是表示涉及本发明第1实施例的光学元件的另一种结构的斜视图。
图4是图3的光学元件的第三象限法的正投影图。
图5是表示涉及本发明第2实施例的光学元件的结构的斜视图。
图6是关于薄膜层的各表面上的反射光的说明图。
图7是表示薄膜层的厚度T与光反射率R的关系的特性图。
图8是表示涉及本发明第3实施例的光学元件的结构的斜视图。
图9是表示第3实施例的光学元件的非接合区域的布置位置用的图,是采用第三象限法的正投影图。
图10是表示涉及本发明第3实施例的光学元件的其他结构的斜视图。
图11是表示涉及本发明第4实施例的光学元件的结构的斜视图。
图12是表示涉及本发明第4实施例的光学元件的其他结构的斜视图。
图13是表示涉及本发明第4实施例的光学元件的另一其他结构的斜视图。
图14是按制造工序顺序来表示涉及本发明的第5实施例的光学元件的正视图。
图15是表示涉及本发明第5实施例的其他光学元件的结构的图,图15(a)是光学元件的斜视图,图15(b)是光学元件的正视图。
图16是表示涉及本发明第6实施例的光学元件的结构的斜视图。
图17是表示涉及本发明第6实施例的其他光学元件的结构的斜视图。
具体实施例方式
以下详细说明本发明的实施例。在此,光学元件以光波导型元件为例,形成光波导的波导基片的材料,采用强电介质晶体、即掺杂MgO的LiNbO3晶体(以下简称为MgO:LN晶体),对作为光学元件的基片的基体基片,以采用LiNbO3晶体(以下简称LN晶体)的情况为例进行说明。本发明并非仅限于该结构。
直接接合技术已知的是不采用粘合剂等,使基片进行牢固接合的技术,它能对玻璃、半导体、强电介质、压电陶瓷等各种材料进行高精度接合。直接接合基片例如可以使接合基片(接合的二块一组的基片)中的二块经过薄片化后进行脊形加工作为光波导使用,它作为制作光学元件的有效方法之一,引人注目。过去,在LN晶体、LiTaO3晶体(以下简称LT晶体)、MgO:LN晶体、兰宝石等各种氧化物基片中,在同种类基片之间和不同种类基片之间进行直接接合。并且,也有在这些基片之间通过薄膜进行直接接合的例子。薄膜材料采用SiO2和SiN、低熔点玻璃、金属氧化物等。
第1实施例的光学元件,是这样的结构的光学元件,例如在由LiNbxTa(1-x)O3(0≤x≤1)构成的强电介质晶体和其他基片之间通过薄膜层进行接合。薄膜层尤其采用包含这样的膜在内的薄膜层,即该膜以Ta2O5或Nb2O5为主要成分。并且,所谓以Ta2O5或Nb2O5为主要成分是指含有不少于80%的Ta2O5或Nb2O5。并且,如果含量不少于90%则更理想。
这样,能以高精度来控制薄膜层的厚度。所以,例如,作为LiNbxTa(1-x)O3晶体的一种MgO:LN晶体基片和LN晶体基片进行接合,容易制作出以耐光损伤性良好的MgO:LN为光波导的光学元件。而且,由LiNbxTa(1-x)O3构成的强电介质晶体是具有光学非线性的强电介质晶体,利用该晶体来构成光学元件,能实现利用非线性光学效应的光调制器和波长变换元件。
本发明人通过实测已证实在薄膜层中采用以Ta2O5或Nb2O5为主要成分的膜所产生的效果,如下所示。首先,薄膜层的热膨胀系数接近LiNbxTa(1-x)O3晶体基片的热膨胀系数,所以,即使高温处理,也不会出现膜与基片剥离。并且,作为较简便的成膜方法,RF溅射成膜时,能使成膜的平面度良好。并且,在包括亲水性处理的直接接合工艺及其以后的光学元件制作工艺中,耐化学药品性良好,处理时对膜的质量影响小。并且,膜的强度、与LiNbxTa(1-x)O3晶体基片的贴合性良好,直接接合的强度高。即使在金属氧化物中,尤其Ta2O5或Nb2O5作为由LiNbxTa(1-x)O3构成的强电介质晶体直接接合的薄膜层,是特别适用的材料。并且,Ta2O5膜与Nb2O5膜相比,折射率低,与LiNbxTa(1-x)O3晶体基片相比,也是折射率低。因此Ta2O5膜尤其适用于制作采用LiNbxTa(1-x)O3晶体基片的光波导型元件。
直接接合技术的有益用途之一是对不同性质的基片之间进行接合时精度高,强度好,能实现具有各种特性的元件。不同种类基片之间的直接接合,其有用性很突出。采用强电介质晶体的不同种类基片直接接合的最简单例子是,玻璃和LN晶体、以及玻璃和LT晶体的不同种类基片的直接接合。但是,一般的直接接合方法是在几百℃~1000℃范围内进行热处理,所以,要求接合基片的热膨胀系数大致相等。因此,可以认为,例如,与上述结构(玻璃和LN晶体的直接接合、以及玻璃和LT晶体的直接接合相比),LN晶体和MgO:LN晶体的热膨胀系数大致相等,折射率不同,采用这种材料的方法比较容易。
过去,提出了LN晶体和MgO:LN晶体的直接接合。采用此法的光波导型光学元件也已示出。在此情况下,LN晶体的折射率大于MgO:LN晶体的折射率,所以采用LN晶体作为光波导。LN晶体和MgO:LN晶体,两者均为具有光学非线性的强电介质晶体,非线性光学常数大致相等。并且,与MgO:LN晶体相比,LN晶体价格低,所以利用非线性光学效应的光调制器和进行长波长的波长变换的情况下,大都采用LN晶体光波导。但是,例如,向波长500nm以下的短波长进行波长变换的光波导型波长变换元件中,伴随光照射而产生不均匀的局部折射率变化(一般称为光损伤的现象),所以,很难采用LN晶体光波导。
另一方面,MgO:LN晶体是已知的耐光损伤性良好的材料,尤其作为短波长的波长变换元件材料大有希望。所以,在此情况下,以采用MgO:LN晶体作为光波导为好。
这样,考虑到直接接合基片的功能方面或成本方面,可以找到一种选材的方法,即不管各种基片的折射率如何,均可用作光学元件。
过去,关于采用直接接合的光学元件,提出的方案是在基片之间布置SiO2、SiN、低熔点玻璃等中间层(薄膜层)。例如特开平06-289347号公报中公开了这样的直接接合光学元件及其制造方法,即其中间层的材料的折射率低于形成光波导的基片材料的折射率。这样,折射率比LN晶体低的MgO:LN晶体可以用作光波导。但是,例如作为使用低熔点玻璃时形成中间层和直接接合的方法,例如采用如下方法,即,对溶化在溶剂等内的玻璃材料涂敷在接合的基片上之后,一边使其与接合的基片紧密结合进行加压,一边进行烧结。因此,存在的问题是,低熔点玻璃的厚度均匀性难于控制,而且,用蒸发淀积和溅射等简便的方法而形成的SiO2膜和SiN膜,其表面平整性(平面度)差,因此不能直接接合。
因此,本发明人针对在直接接合的中间所形成的膜层能均匀控制厚度的电介质薄膜,进行了特性研究。其结果发现,例如可以采用以Ta2O5和Nb2O5为主要成分的电介质膜等。
以下利用附图,详细说明涉及本发明第1实施例的光学元件。
图1是表示第1实施例的光学元件的结构的斜视图。如图1所示,第1实施例的光学元件,其结构是,基体基片2和波导基片1通过薄膜层4进行积层。
例如,在波导基片1上采用X切割的MgO:LN晶体基片。并且,在基体基片2上采用X切割的LN晶体基片。并且,在波导基片1上进行脊形加工,形成脊形光波导3。薄膜层4采用以Ta2O5为主要成分的电介质单层膜。
以下说明制作第1实施例的光学元件的方法。首先,在波导基片1或基体基片2中的某一块的主面上形成薄膜层4,薄膜层4的形成方法,例如,可采用RF(高频)溅射,薄膜层4的Ta2O5薄膜为100nm~400nm厚,例如形成在LN晶体波导基片1上。这时根据溅射条件,来改变以Ta2O5为主要成分的薄膜层4的折射率。实测结果为对波长623.8nm的光折射率在2.05~2.10范围内变化。对相同波长的光,波导基片1即MgO:LN晶体的折射率为2.17左右,所以,在第1实施例的光学元件完成时,能向光波导3内送入波长623.8nm的光,使其进行波导。
在波导基片1上形成了薄膜层4后,对作为直接接合面的薄膜层4的表面和LN晶体的基体基片2的表面进行亲水性处理。具体来说,在波导基片1上所形成的薄膜层4和基体基片2上进行了丙酮超声波清洗之后,在氨水∶过氧化氢水∶纯水=1∶1∶6的混合溶液(以下称为氨过氧化氢水)内浸渍15分以上,在纯水中清洗,然后进行干燥处理。并且,氨过氧化氢水可以使用一般的浓度、即20%~40%。氨过氧化氢水的浓度最好为30%。
然后,在把波导基片1和基体基片2的各自的结晶轴方向对准的状态下,使薄膜层4的表面和基体基片2的表面相接触,稍稍加压。这样,薄膜层4和基体基片2形成贴紧状态。进一步,对形成在波导基片1上的薄膜层4和基体基片2进行热处理,这样,使薄膜层4和基体基片2直接接合。在热处理时使用炉子,为了防止接合基片剥离和急剧加热造成破损,升温速度例如预定为100~500℃/小时,在350~800℃下进行热处理。
而且,所谓直接接合,是指不使用粘合剂和树脂等使2块基片牢固接合的方法。例如用上述方法通过OH基的氢键使基片之间形成紧密结合状态。进一步再通过加热,使OH基作为H2O分子从接合面上脱离,所以,基片之间能形成更加牢固的结合状态。并且,此方法以外,也还有用静电吸引力进行直接接合的方法。
在这样通过直接接合而获得的直接接合基片上,为了形成光波导3,对波导基片1进行表面研磨和薄片化,最终使厚度减小到3~4μm为止。然后,利用光刻法来制作光波导图形,在减薄了的波导基片1的表面上,通过干法腐蚀来形成1.5~2μm的台阶,这样来形成脊形光波导3。而且,光波导3的两端面(入射出射面)在形成脊形后,进行镜面研磨。
在此,进一步详细说明薄膜层4。一般利用溅射和蒸发淀积方法,在基片上被覆电介质膜的情况下,人们知道,因成膜条件(温度和成膜周围气体)不同,形成的膜的特性(折射率和吸收系数)发生变化。并且,已知膜的表面状态(表面光洁度),因包括成膜设备在内的成膜方法不同而有很大差异,例如蒸发淀积,RF溅射、CVD等方法和设备的不同,使膜的均匀性和微密度、表面光洁度有很大差异,并且,即使用同一种方法,也因材料不同而使其表面状态不同。
但是,在第一实施例的光学元件中,当对薄膜层4和基体基片2进行接合时,在波导基片1上形成的薄膜层4的表面光洁度会影响接合状态。例如,表面光洁度差时,光学元件的精度低。尤其利用直接接合来对薄膜层4和基体基片2进行接合时,由于薄膜层4的表面光洁度差,而无法进行接合。例如,用RF溅射或ECR溅射而形成的SiO2膜,已知因表面光洁度差而不能直接接合。根据这种过去的实验结果,一般不用电介质溅射膜来进行直接接合。但是,如本发明那样,薄膜层4采用以Ta2O5或Nb2O5为主要成分的单层或多层膜,即使用溅射法来成膜,也能使薄膜层4的光洁度很高,能达到直接接合所需的光洁度。
图2表示溅射膜的表面光洁度。图2(a)是钽氧化物(作为溅射源的靶是Ta2O5)溅射膜的采用原子间力显微镜的表面光洁度测量结果,图2(b)表示SiO2溅射膜采用原子间力显微镜的表面光洁度的测量结果。从图2中可以看出,钽氧化物的表面光洁度(最大值2nm)优于SiO2表面光洁度(最大值6nm左右)。与钽氧化物溅射膜相同程度的表面光洁度,例如铌氧化物溅射膜(靶为Nb2O5的膜)也能达到上述表面光洁度。但,铌氧化膜的折射率对波长632.8nm光为2.25~2.35,大于MgO:LN晶体。因此,在波导基片1为MgO:LN晶体的情况下,不能封闭光,不能形成光波导3。但是,在采用折射率更高的材料,例如硅片等半导体材料的情况下,可以利用铌氧化膜作为薄膜层4。薄膜层4的折射率低于波导基片1,根据波导基片1所用的材料不同,可以适当选用以Ta2O5或Nb2O5为主要成分的电介质膜中某一适合的。
实验证明,其耐化学药品性强。这是进行直接接合所必须的特性。例如,在上述直接接合时的亲水性处理中,进行氨过氧化氢处理,SiO2溅射膜因氨过氧化氢而被浸蚀,膜厚的面内均匀性进一步恶化,所以不能适用于直接接合的薄膜层4。另一方面,以Ta2O5或Nb2O5为主要成分的电介质膜不受氨过氧化氢侵蚀,并且对在其他工艺中使用的有机溶剂和缓冲氢氟酸(氢氟酸∶氟化氨∶水=1∶5∶50的混合溶液)也有很强的耐蚀性。
在此,把以下Ta2O5为主要成分的电介质膜作为薄膜层4使用来制作第1实施例的光学元件,其结果表示如下。介入以Ta2O5为主要成分的薄膜层4的直接接合基片,在直接接合后的工艺(MgO:LN晶体的波导基片1的薄片化研磨、光刻、干法腐蚀、端面研磨等)中,未发现剥离和劣化,保持了非常良好的接合状态。尤其作为溅射条件,在不低于100℃的温度气氛中,进行成膜,这样薄膜层4的Ta2O5溅射膜本身的强度和对波导基片1的贴紧性很牢固,对于薄片化研磨时接合面和溅射面上防止剥离和劣化效果很好。
并且,已形成的光波导3的波导特性也很好。充分的光封闭效应和低损耗光波导已得到确认。并且,为了形成单模用光波导3,必须精密地进行薄膜层4的折射率控制和光波导3的形状控制。如以Ta2O5为主要成分的电介质那样,采用作为波导基片1的MgO:LN晶体和折射率接近的材料,其效果是,能大幅度提高光波导设计余量。
以Ta2O5为主要成分的电介质膜作为薄膜层4。此外,在采用以Nb2O5为主要成分的电介质膜作为薄膜层4的情况下,同样,在直接接合中也能保持非常良好的接合状态。再者,光波导3中的光的波导也是良好的。而且,与Ta2O5或Nb2O5相比折射率高,所以,可根据波导基片1中所用的材料而分别选用。
以上说明了以Ta2O5为主要成分的电介质单层膜用作薄膜层4,但也可以把以Ta2O5为主要成分的多层膜作为薄膜层4使用。例如,对以Ta2O5为主要成分的电介质膜的成膜氛围气体(氩气和氧气的流量和溅射设备的箱内压力)加以改变,或者对成膜温度和溅射设备的所加电力加以改变,即可形成折射率不同的膜。例如,在MgO:LN晶体(对波长632.8nm光的折射率为2.17)波导基片1上,利用对波长632.8nm的光的折射率为2.05和2.10的2种Ta2O5为主要成分的薄膜,能形成多层膜。波导基片1和基体基片2相连接的层采用折射率为2.05的层。并且,把折射率为2.05的膜层的厚度定为77nm,仅把折射率为2.10的膜层的厚度为75nm,对其交替地进行成膜。这样构成的,由9层的多层膜而构成的薄膜层4,其反射率为2.3%,19层的多层膜的薄膜层4的反射率为7.1%。也就是说,通过增加层数使折射率上升。另一方面,以Ta2O5为主要成分的单层膜,反射率为0.32%。与此相比,容易获得10倍以上的反射率。
并且,同样,由铌氧化物构成的多层膜、以及由Ta氧化物和铌氧化物构成的多层膜,可以作为薄膜层4而进行直接接合。这样,能制作出低损耗,有充分光封闭效应的光波导型元件。在采用由钽氧化物和铌氧化物构成的多层膜的情况下,例如形成使低折射率的钽氧化物膜层与光波导3相连接,在相反侧的面上,利用高折射率的铌氧化膜层来形成薄膜层4,基体基片2和铌氧化膜层也可以采用直接接合结构。若采用该结构,则能把光的封闭状态控制到希望的状态。
并且,薄膜层4也可以采用多层结构,即其中包含以Ta2O5或Nb2O5为主要成分的膜、以及由金属材料构成的金属层在内的多层结构。例如也可以在直接接合的面上构成金属层。
来自直接接合基片里面的反射光,对于由波导基片1表面的反射光以及来自薄膜层4的反射光所产生的干扰条纹来说,变成杂波成分而出现。例如,在研磨作业时所使用的保持台和波导基片1的粘接中,在出现灰尘混入和粘合剂不匀的情况下,由于直接接合基片的里面和研磨面表面保持倾斜状态,所以,可以观测出从直接接合基片里面(直接接合基片和保持台进行连接的面)来的反射光以及波导基片1表面上的反射光所造成的干扰条纹。这样,不易看清从本来被观测的薄膜层4来的反射光、以及薄片化基片表面的反射光所造成的干扰条纹。因此,通过把金属层布置在直接接合的中间层内,能消除这种杂波成分,容易进行被薄片化的基片的减薄处理。
如图3所示,在基体基片2上形成薄膜层4,其上再形成具有脊形光波导3的波导基片1。薄膜层4的构成部分是由钽等金属材料构成的金属层5、以及以Ta2O5或Nb2O5为主要成分的电介质层6。例如,金属层5形成在基体基片2侧,电介质层6形成在波导基片1侧。而且,在制作该光学元件时,在X切割的LN晶体基片的基体基片2上形成薄膜层4。然后,X切割的MgO:LN晶体基片的波导基片1和薄膜层4用直接接合法进行接合,在波导基片1上形成光波导3。在薄膜层4的金属层5上,例如用Ta膜,电介质层6采用以Ta2O5为主要成分的单层膜。而且,金属层5也可以采用任意金属,只要能获得与上述同样的效果即可。
金属层5和作为强电介质晶体的MgO:LN晶体所构成的波导基片1、或者金属层5和LN晶体即基体基片2的界面上,不能用直接接合法进行牢固的接合。以Ta2O5为主要成分的单层膜所构成的电介质层6和波导基片1,能很好地进行直接接合,所以,对其进行直接接合。这时,若金属层5过于接近光波导3,则会造成波导光的吸收损耗。例如,在波导光功率大的情况下,会造成光学元件破损。所以,金属层5必须离开光波导3,其离开的程度达到波导光的易消失的(evanescent)区域以上。金属层5和波导基片1离开50nm以上即可。而且,所谓易消失的区域,是指当光在光波导中传输时光渗漏出到外部的区域。在该区域内若形成金属层5,则波导光受金属层5的影响,可能造成光学元件破损。
在利用直接接合来制作光学元件时,首先在基体基片2上通过RF溅射而依次形成金属层5和电介质层6。金属层5的厚度为5nm~100nm,电介质层6的厚度为10~200nm。
然后,利用直接接合法如上所述对薄膜层4和波导基片1进行接合,进行光波导3的形成。在该光学元件中,金属层5和光波导3(波导基片1)的距离等于电介质层6的厚度。在该厚度不小于50nm的情况下,该光学元件的波导特性良好,充分的光封闭效应和低损耗光波导已得到确认。
图4是图3的光学元件采用第三象限法的正投影图。如图4(a)的俯视图所示,金属层5并非形成在整个接合基片面上,而是利用图形制作法,形成在未形成金属层5的金属去除部位5a上。而且,在图4(a)的俯视图中,用图表示了金属层5,实际上,在金属层5上还积层了薄膜层6和波导基片1。透过这些,可以看到金属层5。
金属层5如图4(a)所示进行图形制作,这样,容易判定形成光波导3时的位置。也就是说,把金属去除部位5a作为标记,对准位置即可。这样,其优点是,在安装光学元件时能达到很高的安装精度。波导基片1和基体基片2中所采用的LN晶体和MgO:LN晶体所构成的光学元件的光波导3中,出现取决于这些晶体轴向的波导损耗。例如,在利用LN晶体的X切割基片,形成Y轴方向传输的光波导3的情况下,在偏离Y轴数度的方向上形成光波导,这样使波导损耗极端增大。因此,考虑到晶体轴向,在能获得希望的特性的方向上对准光波导3的形成方向是很重要的。
并且,尤其在利用光波导3制作波长变换元件的情况下,为了提高波长变换效率,必须形成使晶体极化方向周期性反转的周期状极化反转结构。单一极化的LN晶体的极化方向位于晶体的C轴方向(=Z轴方向),例如已知,利用周期状电极来施加高电压电场,能形成上述周期地极化反转。波长变换,希望光波动的振动方向和极化方向相一致。因此,为了进行高效率波长变换,希望形成该周期状极化反转结构和光波导3垂直的状态。这样,采用直接接合基片的、例如作为波长变换元件的光学元件的制作工序中必须判定晶体轴向。
在过去的光波导制作工序中,未示出对晶体基片方向进行判定的方法。因此,必须在进行直接接合的基片里面(光波导形成面和相反的面)上,利用激光标记法等来形成用于位置对准的标记。但是,如上所述,通过包括已制成图形的金属层5在内的薄膜层4,对波导基片1和基体基片2进行接合,这样,不需要用于对准的标记。也就是说,在基体基片2上形成了包括已形成了图形的金属层5在内的薄膜层4。其上面,当放置波导基片1时,把通过该图形制作而形成的金属去除部位5a作为标准进行接合,这样晶体轴向不会偏移。
并且,形成在光波导3的入射端3a附近部分上的金属层5,当来自激光器的入射光与光波导3相耦合时、容易产生光吸收所造成的元件破损。所以,例如图4(b)所示,在光波导3的入射端3a附近,设置金属去除部位5a是有效的。根据实测,在至少离开光波导3的入射端3a表面1μm以内的区域内,没有金属层即可。也就是说,金属去除部位5a的凹进深度d不小于1μm即可。
在第1实施例中,表示在由LiNbxTa(1-x)O3构成的强电介质晶体基片和其他晶体基片的直接接合中,通过以Ta2O5或Nb2O5为主要成分的电介质膜,即薄膜层4进行接合制作光学元件的情况。但是,除了由LiNbxTa(1-x)O3构成的基片外,例如在Si片和SiO2基片等中,通过薄膜层进行接合的情况下,也是利用以Ta2O5或Nb2O5为主要成分的电介质膜即薄膜层4,同样能有效地用作平面度好、耐化学药品性强的薄膜层4。
第2实施例的光学元件,是通过薄膜进行接合的基片之一进行薄型化时能对基片厚度进行高精度的均匀性鉴定的光学元件。以下详细说明薄片化能达到的良好的厚度均匀性。而且,在第2实施例中说明了,作为采用薄片化基片的光学元件制作的一例,在LN晶体和MgO:LN晶体的直接接合基片上对MgO:LN晶体进行薄型化,形成光波导的情况。本发明并非仅限于本结构和光波导型元件,在接合方法上也并非仅限于直接接合。
在LN晶体和MgO:LN晶体中形成光波导的方法,过去已提出了多种。例如,在利用LN晶体和MgO:LN晶体的非线性光学特性的波长变换元件中,作为形成光波导的方法,已提出了质子交换法和钛扩散法。但是,已知,这些方法采用了向晶体内注入杂质的折射率变化,所以,非线性光学常数随之变坏。对此,采用接合基片的光波导型元件利用被接合的基片的折射率差,具有基片厚度方向的光封闭效应,仅进行直接接合基片的形状加工,形成光波导,所以其优点是从原理上不会影响晶体的特性。因此,利用这种非线性光学效应来实现光波导型元件的方法,可以说是非常有效的方法。
一般在光波导型元件的形成中,对光波导形状(厚度和宽度)要求均匀性高。尤其在具有周期状极化反转结构的光波导型波长变换元件中,输入基本波和谐波的相位匹配在整个波导中达到均匀,这样,能进行高效率的波长变换。相位匹配波长取决于极化反转周期和基本波以及谐波的实效折射率,所以,光波导形状(宽度和高度)若相对于波导方向发生变化,则变换效率显著降低。例如在用干法腐蚀来形成脊形光波导的情况下,光波导宽度取决于作为腐蚀掩模用的光致抗蚀剂图形制作精度,所以,能实现亚微米的高精度。
另一方面,光波导的高度控制,例如能用研磨法进行薄片化。但很难达到亚微米精度的高度控制。其原因是,采用简便方法的高度绝对值和均匀性测量方法有限,已采用的有以下两种,一种是厚度绝对值测量方法,它采用台价高差计等进行测量,另一种是均匀性评价方法,它用激光从基片表面进行照射,利用干涉仪来观测从直接接合基片的表面和里面来的反射光。尤其如第1实施例所示的那样,在LN晶体和MgO:LN晶体的直接接合基片中,对于在MgO:LN晶体内形成光波导,通过薄膜层的直接接合是有效的。但是,在过去提出的薄膜层中,从位于薄片化的基片里面的薄膜层得不到充足的反射光,不能用干涉仪来进行均匀性评价。所以,很难达到高精度的高度均匀性。
以下利用附图,详细说明涉及本发明第2实施例的光学元件。由于在第1实施例所示的通过薄膜的直接接合基片上,形成光波导,所以,在被接合的基片中的一块的薄片化中,已薄片化的基片的厚度,有希望达到高精度的均匀性。第2实施例的光学元件,能对形成光波导的波导基片的厚度进行评价,能使薄片化的厚度均匀性良好。而且,在第2实施例中,说明以下光学元件,即作为采用薄片化基片的光学元件制作的一例,用LN晶体作为基体基片,用MgO:LN晶体作为波导基片,这些基体基片和波导基片通过薄膜层进行接合,对波导基片进行薄片化来形成光波导。而且,光学元件的材料和结构并非仅限于此。
第2实施例的光学元件,在通过薄膜层进行接合的基片中,薄片化的波导基片对特定的波长λ的光是透明的,对波长λ的光来说波导基片的折射率为n1。并且,通过波导基片和薄膜层进行接合的基体基片,对波长λ的光的折射率为n2。并且,作波导基片和基体基片的中间层使用的薄膜层,对波长λ光的折射率为n3(≠n1≠n2),薄膜层的膜厚T设自然数为k,其关系为T≠(k×λ)/(2×n3)。通过满足以上条件,利用薄膜层的高精度的膜厚均匀性以及来自薄膜层的反射光,测量波导基片的均匀性,进行薄片化。具体来说,对从薄片化的波导基片的表面和薄膜层来的反射光所形成的干扰条纹进行观测,能测量出晶体基片的厚度均匀性。这样,实现了具有良好均匀性的薄片化基片的光学元件。在该薄片化基片部分上进行脊形加工,即可制作出光波导型元件。
图5是表示涉及本发明第2实施例的光学元件结构的斜视图。它表示通过薄膜层对LN晶体基片和MgO:LN晶体基片进行接合而构成的光学元件的一例。在图5中,作为X切割的MgO:LN晶体基片的基体基片2和作为X切割的LN晶体基片的波导基片1,通过薄膜层4而进行接合。而且,波导基片1和薄膜层4通过直接接合法而进行接合。也就是说,在基体基片2上用溅射等方法来形成薄膜层4,再者,对以Ta2O5为主要成分的电介质单层膜即薄膜层4,以及作为X切割的LN晶体基片的波导基片1进行直接接合。而且,这样,波导基片1和基体基片2通过薄膜层4进行接合的状态,称为直接接合基片。然后,对直接接合基片的波导基片1进行薄片化,即可制作出光学元件。而且薄膜层4作为以Ta2O5为主要成分的电介质单层膜。
在通过研磨来对直接接合基片的波导基片1进行薄片化的情况下,应当使薄片化的波导基片1的厚度达到均匀一致。为实现这一目的,除了要求直接接合基片本身平行度好(厚度均匀)外,还需要保持台具有一定的面精度,以便在研磨时保持接合基片不移动,并且,要求直接接合基片和保持台的粘接均匀性、薄膜层4的膜厚均匀性等多种因素保持高精度。
为了减小薄片化后的波导基片1的厚度不均匀性,首先,可以采用平行度好的波导基片1和基体基片2。并且,在研磨时,确保对直接接合基片进行粘接的保持台的平面度。再者,因为利用粘合剂把直接接合基片粘接到保持台上进行研磨,所以,若粘接剂厚度不均匀,则薄片化的波导基片的厚度当然不均匀。为防止此现象,例如利用热固化性粘合剂,采用旋转涂敷等方法在直接接合基片的背面上均匀地涂敷,进行加压加热处理,粘接在保持台上。但是,这样也仍会使粘接的直接接合基片产生微小的变形,所以,以直接接合基片的背面(保持台和直接接合基片的粘接面)为标准,进行薄片化,也会产生厚度不均匀。因此,进一步采用以下方法。
一般,在波导基片1是透明的情况下,对厚度均匀性进行观测的方法有简便而且高精度的光学方法即干扰条纹观测。干扰条纹观测是在基片表面上例如照射波长633μm激光,并观测基片表面的反射光及其下层的薄膜层表面的反射光的干扰状态,检查基片厚度均匀性。当厚度有误差时,产生干扰条纹,所以容易检查出厚度不均匀。但是,在通过薄膜层4的直接接合基片的波导基片1的薄片化时由于从薄膜层4来的反射光较弱,所以,出现很难观测干扰条纹的问题。
因此,第2实施例的光学元件,其结构充分增加了从薄膜层4来的反射光,图6是关于薄膜层4的各表面上的反射光的说明图。并且,图7是表示薄膜层4的厚度T与光反射率R的关系的特性图。在图6中,反射光8是薄膜层4和波导基片1的界面上的反射光;反射光9是薄膜层4和基体基片2的界面上的反射光。一般,在折射率分别为na、nb的2种电介质中,从na的电介质垂直射入到nb的电介质中的光在电介质界面上的非涅尔反射的反射率R由下式表示R=|(na-nb)/(na+nb)|2×100(%)。
例如,表示波导基片1为MgO:LN晶体基片、基体基片2为LN晶体基片、薄膜层4为Ta2O5时的计算值。例如,对波长632.8nm光的波导基片1的折射率为2.166,薄膜层4的折射率为2.10,基体基片的折射率为2.23,从上述式中求出反射率R。通过计算可以看出波导基片1和薄膜层4的界面的折射率R为0.024%,基体基片2和薄膜层4的界面的反射率R为0.09%,非常小。在此,若反射光过弱,则不能观测反射光所产生的干扰条纹。因此,利用光波长λ和薄膜层4的折射率n3和自然数k,若膜厚度T满足下式条件,T≠(k×λ)/(2×n3)则能利用反射光8和反射光9的干扰,来增大作为结果的从薄膜层4来的反射光。
从图7中可以看出,例如,在干扰条纹观测中使用的光源的波长λ为632.8nm,对波长λ的薄膜层4(Ta2O5)的折射率n3为2.1,所以,若薄膜层4的膜厚T为150.67nm及其数倍,则来自薄膜层4的反射率几乎为0%,没有反射光。所以偏离该膜厚T越多,反射光越强。
令k为自然数,薄膜层4的膜厚T如下T=(2k-1)×λ/(4×n3)在此情况下是理想的,反射光8、反射光9变成互相增强最大的干扰条件,从薄膜层4来的反射光量增大到非涅尔反射的10倍以上。这样,能够观测由来自薄膜层4的反射光和波导基片1的表面反射光而形成的干扰条纹。利用该干扰条纹观测,能对研磨中的波导基片1的厚度均匀性进行评价。根据观测的干扰条件,为减小不均匀性,例如改变研磨时的加重分布,任意进行研磨,能使波导基片1均匀地薄片化。
本发明人,利用上述方法观测的干扰条纹,在面内1条以下的状态下进行研磨,同时利用台阶高差计来测量波导基片1的厚度绝对值,最后使波导基片1薄片化成功,达到厚度3.5μm,厚度误差300nm以下。而且,利用波长632.8nm的光源来进行干扰条纹观测,能判断出每一条干扰条纹约有300nm的不均匀性。通过实测,已确认,利用该薄片化的波导基片1,通过于法腐蚀,例如形成图1所示的脊形光波导,能获得良好的光波导特性。并且,也能在薄片化基片上进行周期状极化反转形成和光波导形成,也能制成波长变换元件。在该波长变换元件中,通过提高光波导的厚度均匀性,能达到良好的相位匹配状态,实现高波长变换效率。
而且,用k表示自然数,膜厚T由下式表示T=(k×λ)/(2×n3)在此情况下,在反射光8和反射光9之间产生互相减弱的干扰,结果从薄膜层4来的反射光减到极小,这是因为薄膜层4的一边的界面上的反射光和另一边的界面上的反射光的相位偏离π/2。而且,这是n1>n3、n2>n3的情况。
在n1>n3>n2的情况下,在T=((2k-1)×λ)/(4×n3)的情况下,反射光减到极小。
也就是说,在n1>n3、n2>n3的情况下,膜厚T为T≠(k×λ)/(2×n3),在n1>n3>n2的情况下,可以是T≠((2k-1)×λ)/(4×n3)。
并且,尤其,脊形光波导4的膜厚T,根据T=(2k-1)×λ)/(4-n3)在±30nm以内的情况下,从薄膜层4来的反射光强度能从最大值减小到5%以下。所以,把薄膜层4的膜厚T设定在该范围内,容易观测干扰条纹,所以,希望在该范围内进行膜厚控制。而且,在反射光8或反射光9的强度非常小的情况下,反射光8和反射光9即使通过干扰而互相增强,也是从薄膜层4来的反射光强度较小。但是,实验证明n1和n3的折射率差或n2和n3的折射率差中,如果至少一方不小于0.05,那么,能观测出干扰条纹。
在第2实施例中,举例说明了薄膜层4采用以Ta2O5为主要成分的电介质单层膜。薄膜层4的材料并非仅限于此。并且,薄膜层4,关于多层膜的情况也成立同样的原理。例如,薄膜层4采用由折射率不同的多层而构成的多层膜的情况下,如一般已知的那样,根据各层的折射率和层厚度,可以求出低反射条件或高反射条件。
例如,如上所述,在MgO:LN晶体(对波长632.8nm光的折射率为2.17)的波导基片1上,利用对波长632.8nm光的折射率为2.05和2.10的2种以Ta2O5为主要成分的薄膜来形成多层膜。这时,波导基片1和基体基片2相连接的层采用折射率为2.05的层。并且,把折射率为2.05的层的厚度定为77nm;把折射率为2.10的层的厚度定为75nm,使其交替地进行成膜。这样构成的采用9层多层膜的薄膜层4的反射率为2.3%。采用19层多层膜的薄膜层4的反射率为7.1%。这样,通过对多层膜的各层的折射率和厚度进行控制,能控制反射率。
而且,所谓低反射条件是指各层界面上的反射光之间因相位不同而互相抵消,使反射光强度减小的条件。并且,所谓高反射条件,是指相反地各层界面上的反射光之间进行合成,使反射光的强度增大的条件。根据高反射条件来设计薄膜层4,这样能使薄膜层4整体的反射光量达到最大。
而且,在第2实施例中叙述了把干扰条纹观测用的光源波长λ定为632.8nm的情况。但是,一般作为测量用途的光源波长,有380nm、410nm、441.6nm、488nm、532nm等。无论对哪个波长,都能用同样的计算方法来计算出最佳薄膜层4的厚度,能增大从薄膜层4来的反射光量。
以下利用附图,详细说明涉及本发明第3实施例的光学元件。在此,光学元件采用通过直接接合而制作的光波导型元件为例,作为直接接合的2块基片,采用强电介质晶体的LiNbO3晶体(以下简称为LN晶体)基片和掺杂MgO的LiNbO3晶体(以下简称MgO:LN晶体)基片,以此情况为例加以说明。但本发明并非仅限于本结构。
第3实施例的光学元件,其结构是在采用光学研磨后的2块基片的接合基片(指接合的二块一组的基片)的光学元件中,在接合面的一部分的区域中具有作为间隙的非接合区域。
第3实施例的光学元件是在对同种类基片或不同种类基片进行接合,形成光学元件的情况下,在接合面的一部分上设置间隙(非接合区域)。这样,能获得基片厚度方向的折射率台阶(高度)差。因此,例如,对接合基片的一边进行薄片化后进行脊形加工,形成光波导,这样,不管基片的折射率如何,均能制作出光波导型光学元件。
以下利用附图,详细说明涉及本发明第3实施例的光学元件。图8是表示涉及本发明第3实施例的光学元件结构的斜视图。第3实施例的结构是,不使用第1和第2实施例的薄膜层4,而是设置非接合区域24,这样在基体基片22和波导基片21的接合面附近获得折射率台价差。因此,无论是采用什么材料的波导基片21,都能形成光波导,改善波导特性。所以能提高基片材料的选择性。
例如,波导基片21采用X切割的MgO:LN晶体基片。并且,基体基片22采用X切割的LN晶体基片。再者,波导基片21进行脊形加工,形成脊形光波导23。并且,光波导23不与基体基片22相连接,在基体基片22和光波导23之间,设置作为非接合区域24的间隙(以下简称为间隙)。对波导基片21和基体基片22的各主面进行光学研磨。再者,基体基片22的波导基片21侧的面,具有加工成凹状的非接合区域24,在对基体基片22和波导基片21进行接合的情况下,非接合区域24变成间隙。非接合区域24在对波导基片21和基体基片22进行接合后,变成将其隔开的间隙。
以下说明制造第3实施例的光学元件的方法。首先,在基体基片22上形成非接合区域24。形成非接合区域24的方法有很多。例如可以采用干法腐蚀。在基体基片22的一边的主面上利用RF溅射或EB蒸发淀积方法形成200nm的Cr膜,利用光刻和湿法腐蚀法来进行作为非接合区域24的区域的图形制作。然后,把Cr作为腐蚀掩模,在基体基片22上进行干法腐蚀,形成深度为100nm到300nm的非接合区域24即腐蚀沟槽。然后,利用湿法腐蚀法来除去作为掩模使用的Cr。而且,也可以用上述以外的方法来形成基体基片22。
对作为直接接合面的波导基片21的一边的主面、以及基体基片22的形成了非接合区域24的主面进行亲水性处理。具体来说,对波导基片21和基体基片22分别进行直接接合的主面进行丙酮超声波清洗,然后,浸入到氨水∶过氧化氢水∶纯水=1∶1∶6的混合溶液(以下简称为氨过氧化氢)中15分以上,用纯水清洗后进行干燥处理。并且,氨过氧化氢水可以使用一般的浓度、即20%~40%。氨过氧化氢水的浓度最好为30%。
然后,对波导基片21和基体基片22的晶体轴向进行对准,使其与各进行了亲水性处理的主面进行接触,稍稍加压,这样,形成了非接合区域24的部位除外,使波导基片21和基体基片22形成贴紧状态。
再者,通过对该贴紧的波导基片21和基体基片22进行热处理,能获得直接接合基片。热处理使用炉子,为防止接合基片剥离和急速加热造成破损,把升温速度设定为50~500℃/小时,在350~800℃下进行。
为了在这样获得的直接接合基片上形成光波导23,对波导基片21进行表面研磨和薄片化,最终把波导基片21的厚度减少到3~4μm。然后,利用光刻来进行与光波导23相对应的图形制作,在薄片化的MgO:LN晶体基片,即波导基片21上通过干法腐蚀来形成1.5~2μm的台阶,这样形成脊形光波导23。而且,光波导23的两端面在脊形形成后,进行镜面研磨。
而且,接合基片,可以不形成脊形波导,例如用作衍射光栅,调制器、偏转器等的光学元件。
以下进一步详细说明非接合区域24。一般在光波导型元件中,向光波导内充分封闭光和低损耗光波导是最重要的特性。并且,为了使光波导的传输特性在整个光波导中均匀一致,并提高制造的合格率,在光波导形状控制方面必须确保均匀性。即使在光波导形状控制中,也是在对接合基片的一边的基片进行薄片化,形成光波导的情况下,尤其薄片化的基片(波导基片21)的厚度均匀性好是必须的条件。
接合面25在波导基片21的主面中,是与基体基片22相接合的面。在接合面25中,波导基片21和基体基片22,有一部分未进行接合。这是因为第3实施例的光学元件在波导基片21和基体基片22之间,具有作为非接合区域24的间隙。所以,在接合面25中,在形成该间隙区的范围内形成光波导23,这样,能在光波导23和间隙之间产生折射率台阶高差。这样,容易获得在光波导23的基片厚度方向上的充分的光封闭效应。这时,若在光波导23在接合面25上投影的区域内,具有与基体基片22相接合的区域,则光波导23的光封闭效应不充分,波导光的传输损耗增大。也就是说,非接合区域24包括光波导23在接合面25上投影的区域在内,成为比该投影区域更大的区域是很重要的。这样,能充分获得折射率台阶高差所产生的光封闭效应。
形成光波导23的工艺是波导基片21的薄片化后。通过设置非接合区域24,在为通过光刻来形成光波导23而进行图形制作时,光波导23和非接合区域24的位置对准,以非接合区域24为基准,很容易进行。并且,例如以基体基片22的晶体轴为基准来形成非接合区域24,即可与基体基片22的晶体轴对准,形成光波导23。这样,能控制波导损耗。
再者,以下说明与光波导23的宽度方向相同的方向的非接合区域23的宽度、以及各非接合区域24之间的光波导23的宽度方向的形成间隔。在形成多个非接合区域24的情况下,为了取得充分的接合强度以适应直接接合后的工艺,要在非接合区域24之间取得足够的间隔,在把非接合区域24的中心之间的间隔设定为不小于1mm而进行形成的情况下,通过实测已经证实,如果非接合区域的宽度为1μm~500μm,那么能取得足够的直接接合强度。并且,通过实测已证明,非接合区域24的中心之间的间隔为30μm~1mm,非接合区域24的宽度不大于30μm,能获得充分的直接接合强度。再者,例如,若光波导23的宽度为5μm,则与其相适应,希望非接合区域24的宽度为10~30μm。并且,非接合区域24的宽度为30μm,非接合区域24的中心之间的间隔最好不小于100μm。
若考虑制作光学元件时的合格率和大量生产及光波导23的特性,则例如在形成宽度3μm的光波导23的情况下,希望把非接合区域24的宽度设定为5~10μm,把非接合区域24的形成间隔设定为数10μm。
并且,若非接合区域24仅在接合面上的一个方向上形成,则在接合基片的机械加工(例如切断和研磨)时,对基片的负荷取决于非接合区域24的形成方向,具有偏移倾向。这样,例如在切断和研磨时会产生光学元件的破损。为防止这种现象,非接合区域24如图9所示,希望制成格子状。
图9是表示非接合区域24的布置位置的图,是采用第三象限法的正投影图。如图9的俯视图所示,不仅沿光波导23,而且在与光波导23垂直方向上也布置非接合区域24。并且,该格子的间隔全都是等间隔。也就是说,非接合区域24形成等间隔的格子状。用这种结构,能分散减轻切断和研磨时的负荷,所以接合强度高。这时,改变接合区域的稀密程度,对耐机械加工强度进行了实际测定,其结果证明机械强度高。通过图形制作,把非接合区域24在直接接合面内布置成等间隔的格子状,能提高直接接合基片的机械强度。
以下说明与基片厚度方向相对应的非接合区域24的深度(间隙深度)。如上所述,由于光波导23是脊形结构,所以,光波导23的宽度方向和基体基片22的相反侧的光封闭效应很充分。并且,必须使波导光不从光波导23的非接合区域24侧泄漏。也就是说,非接合区域24的间隙深度、即大小必须达到在光波导23中传播的波导光的渗出光在基体基片22内不存在。
因此,间隙深度定为0.005μm~0.5μm,制作第3实施例的光学元件,对各元件的特性进行评价时,在间隙深度为不小于0.01μm的情况下,光波导23的厚度方向光封闭效应未出现恶化。所以,在非接合区域24充满空气的状态下,如果非接合区域24的间隙深度不小于0.01μm,那么,波导光在光波导23中能充分传播。而且,如上所述,利用干法腐蚀来进行非接合区域24的形成,能使对间隙深度的控制达到数个百分点的高精度。
而且,波导基片21和基体基片22采用平行度(厚度均匀性)高的规格的基片,在波导基片21的研磨、薄片化中也能使厚度控制达到高精度。例如,厚度薄片化为3μm的波导基片21的厚度均匀性在3英寸晶片面内可以达到±50nm以下。
并且,用直接接合法来对波导基片21和基体基片22进行接合时,接合的面的平面度很重要。例如,接合的面的表面光洁度若不小于5nm,则很难进行接合。所以,在波导基片21和基体基片22的直接接合处理前,进行成膜和腐蚀等工艺的情况下进行接合的面的平面度变坏引起关注。但是,在通过了上述Cr溅射,光刻、湿法腐蚀、干法腐蚀等工艺的基体基片22中,通过实测已证明,主面的平面度没有变坏,容易和波导基片21进行直接接合。
并且,在波导基片21的研磨、薄片化工序中,空气间隙部分(非接合区域24)的破损以及,因有非接合区域24而造成的接合强度下降、即研磨加工时的剥离等也引起关注。但是,进行直接接合后的波导基片21和基体基片22基片,在直接接合后的工艺(波导基片21的薄片化研磨、光刻、干法腐蚀、端面研磨等)中,未发现剥离和劣化,也已证明接合状态保持得十分良好。
再有,也已确认,第3实施例的光学元件中的光波导23的波导特性良好,能制成充分的光封闭效应和低传播损耗的光波导。
而且,波导基片21和基体基片22进行直接接合,具有非接合区域24的光学元件的结构例中,把基体基片22加工成凹状,形成了非接合区域24。但也可以把波导基片21加工成凹状,形成非接合区域24,这种结构也容易实现,具有同样效果。
并且,波导基片21和基体基片22所用的材料也并不仅限于此,而是通过设置非接合区域,不限定各基片的折射率,即可利用不同种类基片之间或相同种类基片之间的直接接合来获得光学元件。而且,在基片之间接合时也可以采用直接接合以外的接合。
而且,图10是表示涉及第3实施例的光学元件的另一种结构的斜视图。如图10所示,也可以在非接合区域34内设置光波导33。这种结构,预先准备形成了脊形光波导33的波导基片31、以及具有加工形成凹状的非接合区域34的基体基片32,作为波导基片31例如采用X切割的MgO:LN晶体基片。并且,基体基片采用X切割的LN晶体基片。波导基片31和基体基片32的各主面进行光学研磨。基体基片32加工成凹状,在形成的非接合区域34内,具有光波导33,而且具有对光波导33和基体基片33进行隔开的间隙。在该结构中也是直接接合状态和光波导33的波导特性良好。
而且,第3实施例的光学元件,作为光波导型元件进行说明。但并非仅限于光波导型元件。例如也可以在接合面的一部分上,形成周期性的非接合区域,作为衍射光学元件。
以下利用附图,详细说明涉及本发明第4实施例的光学元件。
图11是表示第4实施例的光学元件的斜视图。第4实施例的光学元件是在第3实施例的光学元件的非接合区域内充填与接合基片的材料不同的材料,例如紫外线固化树脂,这样,除了直接接合的基片间的接合强度外,还能得到紫外线固化树脂的粘接力,能增强接合。这样,能更加提高接合后的工艺(采用研磨的直接接合基片的薄片化等)中的耐机械加工强度。
在图11中,通过将作为X切割的MgO:LN晶体基片的波导基片41、以及作为X切割的LN晶体基片的基体基片42进行接合而构成。在基体基片42上,形成加工成凹状的非接合区域44,充填写紫外线固化树脂47。并且,对波导基片41和基体基片42的各主面进行光学研磨。在图11中,形成多个非接合区域44。其数量并非仅限定于此。而且,该光学元件,也可以使波导基片41的折射率高于充填在非接合区域44内的紫外线固化树脂47和基体基片42,把波导基片41作为波导,并可以改变各折射率差,有选择地进行波导。再者,也可以对波导基片41进行脊形加工,作为脊形波导使用。
第4实施例的光学元件的制造方法,与第3实施例的光学元件的制造方法在中途以前是相同的。也就是说,相同的工序是在基体基片42上,例如用RF溅射或EB蒸发法来进行Cr成膜,用光刻和湿法腐蚀法来进行Cr图形制作,进行干法腐蚀,形成非接合区域44。然后,在波导基片41和基体基片42上进行亲水性处理,形成贴紧状态,通过加热处理来进行直接接合。以后的工序与第3实施例不同。
在用上述制造方法制成的直接接合基片的、作为非接合区域44而形成的间隙内,充填紫外线固化树脂47。
这时紫外线固化树脂47利用毛细管现象而被吸入到直接接合基片内部所形成的非接合区域44内,尤其紫外线固化树脂47采用粘度较低的(大致在60cp以下),这样能使毛细管现象的进行速度显著加快,能使充填更加简便,时间更短。然后,从直接接合基片表面进行紫外线照射。这样,充填的紫外线固化树脂47经过固化,即可在波导基片41和基体基片22之间获得很强的粘接力。然后,也可以对该光学元件例如进行脊形加工,制成光波导。并且,此外,根据用途再进行其他加工,或者直接使用。
再者,第4实施例的光学元件,当机械加工时,紫外线固化树脂47变成缓冲材料,也具有分散和减轻基片上承受的负荷的效果。这样,例如在对波导基片41进行研磨、薄片华时也能降低基片破损和直接接合部分剥离的可能性。并且,在第4实施例光学元件例如用作为光波导型光学元件的情况下,由于非接合区域44内具有充填材料,所以,间隙内不会侵入异物与波导基片41相连接,波导特性不会变坏。
而且,在第4实施例的光学元件中,其他结构例示于图12。如图12所示,也可以使波导基片41和基体基片42再通过薄膜层45进行接合。能精密地控制薄膜的厚度均匀性。尤其当使用电介质作为薄膜时,通过选择材料,能达到各种折射率和吸收系数。
图12所示的光学元件的制造方法,与图11所示的光学元件的制造方法一样,形成了非接合区域44的基体基片42和波导基片41进行接合。在此,在波导基片41上例如和第1、第2实施例所示的形成光学元件薄膜层4的方法一样,预先形成薄膜层45。而且,希望薄膜层45的折射率小于波导基片41和基体基片42,例如采用以Ta2O5为主要成分的单层膜。
具有非接合区域44的基体基片42和具有薄膜层45的波导基片41,与薄膜层45和基体基片42的形成非接合区域44的一侧进行直接接合。然后,在非接合区域44内充填紫外线固化树脂47。再者,从直接接合基片表面进行紫外线照射,使充填的紫外线固化树脂47进行固化。
并且,在第4实施例的光学元件中,再一种结构例示于图13。如图13所示,也可以采用这样的结构、即在基体基片42上,在相同的层上有选择地形成薄膜层45和非接合区域44,再在其上面形成波导基片41。上述结构,是在波导基片41或基体基片42上用溅射等方法形成薄膜层45,利用光刻和干法腐蚀进行图形制作,把薄膜层45的一部分除去即可完成。薄膜层45被除去的部位成为非接合区域44。对波导基片41和基体基片42进行直接接合之后,在非接合区域44内充填紫外线固化树脂47。
如上所述,即使在通过薄膜层45对波导基片41和基体基片42进行接合的情况下,也能部分地除去薄膜层45,设置非接合区域44,充填紫外线固化树脂47进行固化,从而提高接合强度。
而且,充填到非接合区域44内的材料采用了紫外线固化树脂,但并非仅限于此。
以下利用附图,详细说明涉及本发明第5实施例的光学元件。
图14(a)~图14(d)是按制造工序的顺序来表示第5实施例的光学元件的正视图。第5实施例的光学元件,其结构是在第3实施例的光学元件的非接合区域上形成电介质层。
图14(d)是制成的光学元件的状态的正视图。图14(d)中,由作为X切割的MgO:LN晶体基片的波导基片51、以及作为X切割的LN晶体基片的基体基片52互相连合而构成。在基体基片52上加工成凹状的区域内形成了薄膜层55。薄膜层55例如是以Ta2O5为主要成分的单层膜。
以下说明第5实施例的光学元件的制造方法。首先,如图14(a)所示在基体基片52上形成非接合区域54。然后,如图14(b)所示,在基体基片52的表面上,通过溅射来淀积薄膜层55。在基体基片52上形成薄膜层55,所以,例如在该状态下,即使进行直接接合,也是接合强度低,耐机械加工的薄膜强度不足。因此,如图14(c)所示,形成仅在非接合区域54上淀积薄膜层55的状态。具体来说,利用CMP(化学机械研磨)设备,通过研磨来除去非接合区域54以外的薄膜层55,使包括薄膜层55在内的基体基片52的表面平整。而且,已知CMP设备是精度非常高的研磨设备,能达到亚微米以下的研磨量绝对值控制、以及数10nm以下精度的研磨面平面度。
非接合区域54的深度为100nm~300nm,淀积的薄膜层55的厚度为150nm~350nm。并且,CMP处理能控制到基体基片52的主面被磨削50nm左右。这样,使基体基片52的表面完全露出,而且,薄膜层55的表面和基体基片52的表面均很平整。而且,不小于非接合区域54的深度的淀积薄膜层55,通过CMP处理,能使薄膜层55的表面和基体基片52的表面均很平整。
利用CMP设备,在研磨的同时,能对研磨面进行镜面研磨。所以不需要另外为直接接合而进行镜面研磨。
如图14(d)所示,对基体基片52和波导基片51的晶体轴向进行对准,使基体基片52的形成了非接合区域55的的主面,以及波导基片51的主面进行接触,稍稍加压使其形成贴紧状态,通过加热处理进行直接接合。由CMP设备进行研磨处理的基体基片52,在与波导基片51的直接接合中能实现与对通常的基片之间进行直接接合时大致相同的贴紧状态和直接接合状态。
在这样得到的接合基片中,也是通过获得直接接合的高精度基片贴合,与第1实施例所示仅薄膜层和基体基片进行直接接合时相比,能同时实现以下两个目的一是因具有基体基片52和波导基片51的直接接合状态,从而大幅度提高了耐机械加工性;二是由于具有电介质薄膜,所以提高了光学元件的功能(低损耗,高功能)。
而且,即使薄膜层55仅仅形成在非接合区域54的一部分上亦可。例如,图15(a)、(b)所示,在形成了光波导53的光学元件中,薄膜层55形成在波导基片51上,至少形成在光波导53向垂直方向的投影面上即可。若是该结构,则波导光能被充分封闭到波导内。这样,能减小薄膜层55的体积,所以,能降低成本。
以下说明图15(a)、(b)所示的光波导的制造方法。首先,在形成波导基片51的光波导53的面的相反面上,形成薄膜层55。然后,利用光刻、干法腐蚀来对薄膜层55制作图形,至少在光波导53的正下面形成薄膜层55。最后,对波导基片51和基体基片52进行直接接合。这样,不进行研磨处理,即可制造光学元件。而且,也可以在非接合区域54内的空间54a内充填树脂等。这样,将提高接合面的强度。
以下用附图来说明本发明第6实施例的光学元件。第6实施例的光学元件是对已光学研磨的多个基片进行积层,例如对各基片之间分别用直接接合法进行接合。再在各基片上周期性地形成非接合区域。
图16是表示本发明第6实施例的光学元件的斜视图。第6实施例的光学元件是,在具有非接合区域的基片上对其他基片进行直接接合,对该直接接合后的基片进行薄片化,形成非接合区域,这些工序反复进行,即可形成积层结构的光学元件。基体基片62a具有平行地按等间隔来形成的沟槽、即非接合区域64a。在基体基片62a上,平行地按等到间隔来形成多个棒状基片62b,使其与非接合区域64a垂直。在各棒状的基片62b之间形成沟槽状的非接合区域64b。再在基片62b上平行地按等间隔来形成多个棒状的基片62c,使其与非接合区域64b垂直。在各棒状的基片62c之间,形成沟槽状的非接合区域64c。
以下说明第6实施例的光学元件的制造方法。具体来说,首先,在LN晶体基片的基体基片62a上,例如利用以Cr溅射膜为腐蚀掩模的干法腐蚀法来形成非接合区域64a。在Cr图形制作后,以Cr为腐蚀掩模在基体基片62a上进行干法腐蚀,按照等间隔来形成深度3μm的条状腐蚀槽(非接合区域)。而且,用光刻法制作图形,能以高精度制作出任意形状的图形。例如,也可以用周期状的多角形图形来形成非接合区域。具体来说,能形成图17所示的光学元件。也就是说,也可以形成这样的光学元件,即周期性地具有6角形腐蚀槽(非接合区域64d、64e)的基片62d、62e之间,进行接合的方式是6角形的周期偏移半周期。
另一方面,与上述情况相同,在LN晶体基片的基片62b的一边的主面上,形成3μm的腐蚀槽,即非接合区域64b。而且,基片62b的腐蚀槽的方向,为了使基体基片62a和基片62b的各腐蚀槽的方向分别垂直,在对基体基片62a和基片62b的接合加以考虑后进行决定。然后,利用湿法腐蚀来除去用作掩模的Cr,对作为直接接合面的基体基片62a的形成了非接合区域64a的主面、以及基片62b的形成了非接合区域64b的主面进行亲水性处理。然后,对基体基片62a和基片62b的晶体轴向进行对准,使基体基片62a的包括非接合区域64a的主面、以及基片62b的包括非接合区域64b的主面进行接触,形成基体基片62a和基片62b的贴紧状态。进一步对该贴紧基片进行热处理,即可对基体基片62a和基片62b进行直接接合,获得直接接合基片。
在这样获得的直接接合基片中,对基片62b进行表面研磨、薄片化,把基片62b的厚度减小到2.5μm为止。这样,基片62b并不是一块基片,而是多个棒状基片。进一步,利用和上述相同的方法,对形成了采用腐蚀槽的非接合区域64c的基片62c,和多个棒状的基片62b进行直接接合,并使非接合区域64b和非接合区域64c垂直,然后进行表面研磨和薄片化。并且,重复进行该作业,对基片进行积层。也就是说在基片上形成非接合区域,使设置了非接合区域的基片的非接合区域面向接合基片进行直接接合,通过研磨使直接接合后的基片薄片化,形成多个棒状的基片。
在上述工序中,能形成具有周期状积层结构的晶体基片。这是一种电介质,它被称为光子学晶体,具有折射率周期性变化的结构,能控制光波。光子学晶体具有一种对光波有能带结构的特性,能实现特有的光波导控制,故引人注目。一般,光子学晶体采用电子束曝光法进行制作,在晶体中周期状地布置形成直径为数100nm~几百μm的空位。因此,光子学晶体的制作,需要精细的加工,所以非常困难。
第6实施例的光学元件的制造方法,通过用干法腐蚀来形成非接合区域,即可形成周期状的非接合区域。并且,非接合区域的大小和形成间隔或者基片的厚度方向深度,可以制作到从亚微米级到几十微米。所以,采用第6实施例的光学元件的制造方法,也能制作光子学晶体。并且,一般,光子学晶体的形成采用必须严密控制成分和晶体结构的多晶材料。若采用第6实施例,则也能用结构均匀的单晶材料来制作。
而且,实施例中具体所示的构成光学元件的材料及其结构,归根结底只是一例,本发明并非仅限于这些具体例子。并且,接合基片的方法也并非仅限于直接接合。
权利要求
1.一种光学元件,其特征在于具有波导基片和基体基片,上述波导基片与上述基体基片进行接合,在上述波导基片和上述基体基片的接合面上,一部分具有不接合的非接合区。
2.如权利要求1所述的光学元件,其特征在于上述波导基片和基体基片,通过直接接合进行接合。
3.如权利要求1所述的光学元件,其特征在于上述波导基片与上述基体基片的折射率大致相等。
4.如权利要求1所述的光学元件,其特征在于上述波导基片和上述基体基片之间通过薄膜层进行接合。
5.如权利要求4所述的光学元件,其特征在于上述波导基片和上述薄膜层之间、以及上述基体基片和上述薄膜层之间,至少其一通过直接接合进行接合。
6.如权利要求1所述的光学元件,其特征在于在上述波导基片上形成光波导,上述非接合区域的宽度大于等于上述光波导向垂直方向的投影面的宽度,上述投影面位于上述非接合区域内。
7.如权利要求6所述的光学元件,其特征在于上述光波导是脊形光波导。
8.如权利要求1所述的光学元件,其特征在于上述非接合区域是通过将上述波导基片和上述基体基片的至少一个沿厚度方向加工成凹状来形成的。
9.如权利要求1所述的光学元件,其特征在于上述非接合区域的厚度不小于0.01μm。
10.如权利要求1所述的光学元件,其特征在于在上述非接合区域上形成折射率比上述波导基片小的充填材料。
11.如权利要求6所述的光学元件,其特征在于在上述非接合区域形成折射率比上述波导基片小的充填材料,上述充填材料与上述波导基片相接,至少形成在上述投影面上。
12.如权利要求10或11所述的光学元件,其特征在于上述充填材料是紫外线固化树脂。
13.如权利要求10或11所述的光学元件,其特征在于上述充填材料是电介质材料。
14.如权利要求1所述的光学元件,其特征在于设置多个上述非接合区域,上述非接合区域形成为等间隔。
15.如权利要求1所述的光学元件,其特征在于在上述非接合区域形成折射率比上述波导基片小的薄膜层,上述薄膜层与上述波导基片相接。
16.如权利要求6所述的光学元件,其特征在于在上述非接合区域形成折射率比上述波导基片小的薄膜层,上述薄膜层与上述波导基片相接,至少形成在上述投影面上。
17.如权利要求15或16所述的光学元件,其特征在于上述薄膜层是紫外线固化树脂。
18.如权利要求15或16所述的光学元件,其特征在于上述薄膜层是电介质材料。
全文摘要
本发明提供一种容易制作且所用基片的选择性强、对基片进行接合的结构的光学元件。该光学元件具有波导基片和基体基片,上述波导基片与上述基体基片进行接合,在上述波导基片和上述基体基片的接合面上,一部分具有不接合的非接合区。
文档编号G02B6/12GK1916673SQ20061012808
公开日2007年2月21日 申请日期2003年6月2日 优先权日2002年5月31日
发明者杉田知也, 水内公典, 山本和久 申请人:松下电器产业株式会社