阵列基板及其制备方法、显示装置制造方法

文档序号:2713016阅读:85来源:国知局
阵列基板及其制备方法、显示装置制造方法
【专利摘要】本发明提供一种阵列基板及其制备方法、显示装置,属于显示【技术领域】,其可解决现有的薄膜晶体管液晶显示器因对盒时发生的对位偏移所导致显示品质降低以及影响正常观看的问题。本发明的阵列基板包括多个子像素单元,在所述阵列基板的出光面侧设置有与各所述子像素单元对应的用于形成不同颜色光的光形成单元。本发明的阵列基板应用于显示装置中可提高显示装置的显示品质。
【专利说明】阵列基板及其制备方法、显示装置

【技术领域】
[0001]本发明属于显示【技术领域】,具体涉及一种阵列基板及其制备方法、显示装置。

【背景技术】
[0002]薄膜晶体管液晶显不器(ThinFilm Transistor Liquid Crystal Display,简称TFT-LCD)具有体积小、功耗低、无辐射、分辨率高等优点,在当前的显示领域中占据了主导地位,并且已经广泛应用于各种现代数字信息化设备中。
[0003]薄膜晶体管液晶显示器一般包括背光模组和液晶显示面板两大部分。液晶显示面板包括阵列基板和彩膜基板以及设置于阵列基板和彩膜基板之间的液晶层。制作薄膜晶体管液晶显示器时,需要将彩膜基板和阵列基板进行精确对盒以形成液晶盒。
[0004]彩膜基板和阵列基板对盒时会发生对位偏移。当对位偏移较大时,显示器进行显示过程中显示屏幕上会产生色偏(color shift)现象。图1示出了彩膜基板2和阵列基板I正常对位的情形,彩膜基板2上包括红色滤光片21、绿色滤光片22和蓝色滤光片23以及黑矩阵24,黑矩阵24用于遮挡阵列基板I上的数据线12以及其他引线处的透过的光线。如图2所示,彩膜基板2相对于阵列基板I向左边方向发生了对位偏移,黑矩阵24相对于数据线12的位置发生了偏移。当与红色滤光片相对应的子像素单元在在像素电极11控制下点亮时,会有来自背光源的光线将相邻的绿色滤光片的边缘点亮(此时黑矩阵24无法形成遮挡),红色和绿色发生串色,本来显示屏幕应该显示红色画面,但是从正面或者一定倾斜角度看,显示屏幕显示的并不是红色画面,而是粉色画面或者类似的非红色画面,即发生了色偏现象。同理,当与绿色滤光片相对应的子像素单元被点亮时,绿色会与蓝色串色,当蓝色子像素单元被点亮时,蓝色会与红色串色。但由于人的眼睛对绿色的敏感度最高,所以当红色与绿色串色时,对观看效果影响最大。
[0005]发明人发现现有技术中至少存在如下问题:由彩膜基板和阵列基板对盒时发生的对位偏移所产生的色偏现象,降低了显示器的显示品质,影响了人们的正常观看。


【发明内容】

[0006]本发明所要解决的技术问题包括,针对现有的薄膜晶体管液晶显示器因对盒时的对位偏移所产生的色偏现象而导致显示品质降低以及影响正常观看的问题,提供一种阵列基板及其制备方法、显示装置,其能够消除因对盒时的对位偏移所产生的色偏现象,从而提闻了显不器的显不品质。
[0007]解决本发明技术问题所采用的技术方案是一种阵列基板,包括多个子像素单元,在所述阵列基板的出光面侧设置有与各所述子像素单元的对应的用于形成不同颜色光的光形成单元。
[0008]将本发明的阵列基板与一彩膜基板对盒应用于显示装置中时,以显示装置的背光源以发出白光的背光源,彩膜基板包括红色滤光片、绿色滤光片、蓝色滤光片为例,当画面只显示红色时,将阵列基板上与彩膜基板的红色滤光片所对应的子像素单元开启,背光源所发出的白光经由阵列基板出光面侧上与其对应的光形成单元后,白光将变成红光,此时红光可以通过彩膜基板上的红色滤光片,从而实现红色的显示,在该过程中,尽管由于阵列基板和彩膜基板对盒产生的偏差会有少量的红光照射到与彩膜基板上红色滤光片相邻的其他颜色滤光片的边缘处,但是由于光的透射原理可知,红光透过与其颜色不同的滤光片的透过率相当低,几乎为零。所以本实施例中所提供的阵列基板的出光面侧设置有与各个子像素单元对应的用于形成不同颜色光的光形成单元,故其可以有效的避免由于阵列基板和彩膜基板由于对位偏差而导致色偏的现象。
[0009]优选的是,所述光形成单元包括:
[0010]红光形成单元,绿光形成单元,蓝光形成单元,所述红光形成单元为由能激发出红光的第一量子点组成的第一量子点层;所述绿光形成单元为由能激发出绿光的第二量子点组成的第二量子点层;所述蓝光形成单元为由能激发出绿光的第三量子点组成的第三量子点层。
[0011]进一步优选的是,所述第一量子点的粒径在18?20nm之间;所述第二量子点的粒径在12?14nm之间;所述第三量子点的粒径在6?8nm之间。
[0012]进一步优选的是,所述第一量子点、所述第二量子点、所述第三量子点为CdSe、ZnS> CdS> CdTe中的任意一种。
[0013]进一步优选地,所述阵列基板包括依次形成在基底上的栅极层、栅极绝缘层、半导体层、源漏电极层、钝化层、像素电极层;其中,所述第一量子点层、第二量子点层、第三量子点层设于所述像素电极层上。
[0014]解决本发明技术问题所采用的技术方案是一种显示装置,其包括上述阵列基板,以及与该阵列基板相互对盒的彩膜基板,所述彩膜基板包括多个不同颜色的彩色滤光片,所述彩色滤光片与所述子像素单元一一对应,并且与所述子像素单元对应的所述彩色滤光片和所述光形成单元形成的光的颜色相同。
[0015]解决本发明技术问题所采用的技术方案是一种阵列基板的制备方法,所述阵列基板包括多个子像素单元,所述阵列基板的制备方法包括:
[0016]在所述阵列基板的出光面上形成与各所述子像素单元对应的用于形成不同颜色光的光形成单元。
[0017]优选的是,所述光形成单元包括:红光形成单元,绿光形成单元,蓝光形成单元,所述红光形成单元为由能激发出红光的第一量子点组成的第一量子点层;所述绿光形成单元为由能激发出绿光的第二量子点组成的第二量子点层;所述蓝光形成单元为由能激发出蓝光的第三量子点组成的第三量子点层,所述阵列基板的制备方法具体包括:
[0018]通过构图工艺在所述阵列基板的出光面上形成第一量子点层的图形;
[0019]在完成上述步骤的基底上,通过构图工艺形成第二量子点层的图形;
[0020]在完成上述步骤的基底上,通过构图工艺形成第三量子点层的图形。

【专利附图】

【附图说明】
[0021]图1为现有的阵列基板和彩膜基板正常对盒后的结构示意图;
[0022]图2为现有的阵列基板和彩膜基板对盒时发生对位偏移的结构示意图;
[0023]图3为本发明实施例1、2的显示装置的结构示意图;
[0024]图4是本发明实施例1、2的显示装置消除色偏的示意图。
[0025]其中附图标记为:1、阵列基板;11、像素电极;12、数据线;13、第一量子点层;14、第二量子点层;15、第三量子点层;2、彩膜基板;21、红色滤光片;22、绿色滤光片;23、蓝色滤光片;24、黑矩阵。

【具体实施方式】
[0026]为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和【具体实施方式】对本发明作进一步详细描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0027]实施例1:
[0028]如图3和图4所示,本实施例提供一种阵列基板,包括多个子像素单元,在所述阵列基板的出光面侧设置有与各所述子像素单元对应的用于形成不同颜色光的光形成单元。
[0029]将本实施例的阵列基板I与一彩膜基板2对盒应用于显示装置中时,阵列基板上的各个子像素单元与彩膜基板上的彩色滤光片是一一对应的,且每个子像素单元与其对应的彩色滤光片组成一个子像素。此时以显示装置的背光源以发出白光的背光源,彩膜基板上包括红色滤光片、绿色滤光片、蓝色滤光片为例,当画面只显示红色时,将与彩膜基板上红色滤光片相对应的子像素单元开启,背光源所发出的白光经由阵列基板出光面侧上与该子像素单元所对应的光形成单元后,白光将变成红光,此时红光可以通过彩膜基板上的红色滤光片21,从而实现红色的显示,在该过程中,尽管由于阵列基板I和彩膜基板2对盒产生的偏差会有少量的红光照射到与彩膜基板2上红色滤光片I相邻的其他颜色滤光片的边缘处,但是由于光的透射原理可知,红光透过与其颜色不同的滤光片的透过率相当低,几乎为零。所以本实施例中所提供的阵列基板I的出光面侧设置有与各个子像素单元的对应的用于形成不同颜色的光的光形成单元,故其可以有效的避免由于阵列基板I和彩膜基板2由于对位偏差而导致色偏的现象。
[0030]优选地,本实施例中的所述光形成单元包括:红光形成单元,绿光形成单元,蓝光形成单元,所述红光形成单元为由能激发出红光的第一量子点组成的第一量子点层13 ;所述绿光形成单元为由能激发出绿光的第二量子点组成的第二量子点层14 ;所述蓝光形成单元为由能激发出蓝光的第三量子点组成的第三量子点层15。当然光形成单元还包括:红光形成单元、绿光形成单元、蓝光形成单元,黄光形成单元。相应的黄光形成单元为由能激发出黄光的第四量子点组成的第四量子点层。当然用于形成不同颜色光的光形成单元可以是不同颜色的滤光片,光形成单元不局限与量子点层。
[0031]需要说明的是,量子点是准零维的纳米材料,由少量的原子所构成,其三个维度的尺寸都在10nm以下。量子点的发射光谱可以通过改变量子点的尺寸大小和化学组成来进行控制。量子点具有光化学稳定性高,荧光寿命长的优点。在本实施例中采用不同的量子点作为不同颜色的光形成单元,故本实施例的阵列基板的性能更好,寿命更长。
[0032]其中,进一步优选地,所述第一量子点的粒径在18?20nm之间;所述第二量子点的粒径在12?14nm之间;所述第三量子点的粒径在6?8nm之间。
[0033]作为本实施例的一种优选结构,所述阵列基板包括依次基底上的栅极层、栅极绝缘层、半导体层、源漏电极层、钝化层、像素电极层;其中,所述第一量子点层13、第二量子点层14、第三量子点层15设于所述像素电极层上。由于阵列基板上的像素电极层与源漏电极层需要连接,故需要在钝化层中形成相应的过孔,若将第一量子点层13、第二量子点层14、第三量子点层15(三者设置在同一层)设于源漏电极层与像素电极层之间,用于将像素电极层与源漏电极层连接的过孔则需要贯穿一量子点层13、第二量子点层14、第三量子点层15所组成的量子点层,而本实施例中的所述第一量子点层13、第二量子点层14、第三量子点层15设于所述像素电极层上,故可以简化工艺。当然在本实施例中第一量子点层13、第二量子点层14、第三量子点层15的位置不局限于像素电极层上,只要是设于阵列基板的出光面侧即可。需要说明的是,本实施例的阵列基板结构也不局限于上述阵列基板结构,也可以是包括设于基底上的薄膜晶体管的各层结构,与薄膜晶体管漏极连接的像素电极,与像素电极相互绝缘层设置的公共电极。当然其他结构的阵列基板也是可以的。
[0034]需要说明的是,上述的栅极层为薄膜晶体管栅极所在层,半导体层为有源层所在层,源漏电极层为源极和漏极所在层,像素电极层为像素电极所在层,其中像素电极层与源漏电极层连接则指像素电极与漏极的连接。
[0035]具体地,如图3、4所示,将本实施例的阵列基板I和彩膜基板2相互对盒应用于显示装置中,其中第一量子点层13与红色滤光片21对应,第二量子点层14与绿色滤光片22对应,第三量子点层15与蓝色滤光片23对应,当两者对盒发生了对位偏移时,从图4中可以看出黑矩阵24相对于数据线12的位置发生了偏移。当显示红色时,阵列基板上与彩膜基板的红色滤光片21对应的子像素单元通过与其对应的像素电极11控制下点亮时,来自背光源的白色光经过第一量子点层(由第一量子点组成)13后,白光变成红光,彩膜基板上的红色滤光片21后进行显示,此时尽管当该红光照射到与红色滤光片21相邻的绿色滤光片22的边缘时,其将被绿色子滤光片22遮挡住,即其透不过绿色滤光片22,从而消除了因红色与绿色串色而引起的色偏现象,提高了显示装置的显示品质。同时,由于上述能激发出红光的第一量子点层13的存在,背光源的发出的白光经过能激发出红光的第一量子点层13变成红光,红光照射到红色滤光片21区域,还可进一步提高显示装置的色度。同理,在进行绿色显示以及蓝色显示时,与红色显示的原理相同,当显示绿色时,阵列基板上与绿色滤光片22相对应的子像素单元被像素电极11驱动点亮,此时,背光源的光经过第二量子点层14后光由白色变成绿色,此时绿色的光只能通过绿色滤光片22,故在蓝色滤光片23的边缘和红色滤光片21的边缘均没有光透过,故不会产生色偏的现象。显示蓝色与红色、绿色的显示原理相同,故在此不详细描述了。
[0036]本实施例中,进一步优选的,第一量子点、第二量子点、第三量子点均为CdSe(硒化镉)、ZnS (硫化锌)、CdS (硫化镉)、CdTe (碲化镉)中的任意一种。
[0037]需要说明的是,在本实施例的阵列基板I的出光面侧设置与子像素单元相对应的用于形成不同颜色光的光形成单元,故可以提高光形成单元与阵列基板的对位精度,故降低了发生色片的概率。
[0038]实施例2:
[0039]本实施例提供了一种阵列基板的制备方法,该阵列基板可以为实施例1中所述的阵列基板I,所述阵列基板I包括多个子像素单元,所述阵列基板的制备方法包括:
[0040]在所述阵列基板I的出光面上形成与各所述子像素单元对应的用于形成不同颜色光的光形成单元。
[0041]优选地,光形成单元包括:红光形成单元、绿光形成单元、蓝光形成单元,如图3、4所示,进一步优选地,所述红光形成单元为由能激发出红光的第一量子点组成的第一量子点层13 ;所述绿光形成单元为由能激发出绿光的第二量子点组成的第二量子点层14 ;所述蓝光形成单元为由能激发出绿光的第三量子点组成的第三量子点层15,所述阵列基板的制备方法具体包括:
[0042]通过构图工艺在所述阵列基板的出光面上形成包括第一量子点层13的图形;
[0043]在完成上述步骤的基底上,通过构图工艺形成包括第二量子点层14的图形;
[0044]在完成上述步骤的基底上,通过构图工艺形成包括第三量子点层15的图形。
[0045]其中,上述所形成第一量子点层13、第二量子点层14、第三量子点层15分别与彩膜基板上的红色滤光片21、绿色滤光片22、蓝色滤光片23相对应。
[0046]需要说明的是,在本实施例中,构图工艺可只包括光刻工艺,或包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺,是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。可根据本发明中所形成的结构选择相应的构图工艺。
[0047]实施例3:
[0048]本实施例中提供了一种显示装置,其包括实施例1中所述的阵列基板1,以及与该阵列基板相互对盒的彩膜基板,所述彩膜基板包括多个不同颜色的彩色滤光片,所述彩色滤光片与所述子像素单元一一对应,并且与所述子像素单元对应的所述彩色滤光片和所述光形成单元形成的光的颜色相同。
[0049]本实施例中的显示装置还可以是:液晶面板、电子纸、液晶电视、液晶显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件。
[0050]本实施例的显示装置的包括实施例1所述阵列基板,故其的显示品质更高。
[0051]可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
【权利要求】
1.一种阵列基板,包括多个子像素单元,其特征在于,在所述阵列基板的出光面侧设置有与各所述子像素单元对应的用于形成不同颜色光的光形成单元。
2.根据权利要求1所述的阵列基板,其特征在于,所述光形成单元包括: 红光形成单元,绿光形成单元,蓝光形成单元,所述红光形成单元为由能激发出红光的第一量子点组成的第一量子点层;所述绿光形成单元为由能激发出绿光的第二量子点组成的第二量子点层;所述蓝光形成单元为由能激发出绿光的第三量子点组成的第三量子点层。
3.根据权利要求2所述的阵列基板,其特征在于,所述第一量子点的粒径在18?20nm之间;所述第二量子点的粒径在12?14nm之间;所述第三量子点的粒径在6?8nm之间。
4.根据权利要求2所述的阵列基板,其特征在于,所述第一量子点、所述第二量子点、所述第三量子点为CdSe、ZnS、CdS、CdTe中的任意一种。
5.根据权利要求2所述的阵列基板,其特征在于,所述阵列基板包括依次形成在基底上的栅极层、栅极绝缘层、半导体层、源漏电极层、钝化层、像素电极层;其中,所述第一量子点层、第二量子点层、第三量子点层设于所述像素电极层上。
6.一种显示装置,其特征在于,所述显示装置包括权利要求1至5中任意一项所述的阵列基板,以及与所述阵列基板相互对盒的彩膜基板,所述彩膜基板包括多个不同颜色的彩色滤光片,所述彩色滤光片与所述子像素单元一一对应,并且与所述子像素单元对应的所述彩色滤光片和所述光形成单元形成的光的颜色相同。
7.—种阵列基板的制备方法,其特征在于,所述阵列基板包括多个子像素单元,所述阵列基板的制备方法包括: 在所述阵列基板的出光面上形成与各所述子像素单元对应的用于形成不同颜色光的光形成单元。
8.根据权利要求7所述的阵列基板的制备方法,其特征在于,所述光形成单元包括:红光形成单元,绿光形成单元,蓝光形成单元,所述红光形成单元为由能激发出红光的第一量子点组成的第一量子点层;所述绿光形成单元为由能激发出绿光的第二量子点组成的第二量子点层;所述蓝光形成单元为由能激发出蓝光的第三量子点组成的第三量子点层,所述阵列基板的制备方法具体包括: 通过构图工艺在所述阵列基板的出光面上形成第一量子点层的图形; 在完成上述步骤的基底上,通过构图工艺形成第二量子点层的图形; 在完成上述步骤的基底上,通过构图工艺形成第三量子点层的图形。
【文档编号】G02F1/1362GK104076564SQ201410253659
【公开日】2014年10月1日 申请日期:2014年6月9日 优先权日:2014年6月9日
【发明者】曲连杰, 郭建, 董宜萍, 林雨 申请人:京东方科技集团股份有限公司, 北京京东方光电科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1