一种批量化生产AR衍射光波导的方法和设备与流程

文档序号:20200932发布日期:2020-03-27 20:38阅读:543来源:国知局
一种批量化生产AR衍射光波导的方法和设备与流程

本公开属于增强现实ar、微纳制造和增材制造(3d打印)技术领域,具体涉及一种批量化生产ar衍射光波导的方法和设备,尤其涉及一种能实现任意形状大面积ar衍射光波导(表面浮雕倾斜光栅)低成本批量化生产的方法和设备。



背景技术:

本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。

增强现实(augmentedreality,简称ar)是一种将虚拟信息与真实世界巧妙融合的新技术,它集成了多媒体、三维建模、实时跟踪及注册、智能交互、传感等多种技术,将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,应用到真实世界中,两种信息互为补充,从而实现对真实世界的“增强”。

ar眼镜(头盔显示)是增强现实系统的核心功能部件。与虚拟现实(vr)中用户的视觉被遮挡不同,增强现实(ar)中的用户可以同时观察真实世界和虚拟世界。因此,ar眼镜必须具有透视(see-through)功能,既能看到真实的外部世界,又能看到虚拟的信息。它通常需要设置一个或一组光学耦合器,通过“叠加”的方式,将虚拟信息和真实场景融为一体,互相补充,互相“增强”。ar眼镜的光学显示系统通常由微型显示屏和光学元件组成,目前市场上的ar眼镜采用的显示系统基本上都是各种微型显示屏和棱镜、自由曲面、光波导等光学元件的组合。其中光波导被认为是ar眼镜走向消费级的最理想的解决方案。ar光波导分为几何光波导(geometricwaveguide)和衍射光波导(diffractivewaveguide)两种。几何光波导就是阵列光波导,它通过阵列反射镜堆叠实现图像的输出和动眼框的扩大。几何光波导需要在镜面阵列中的每个镜面上镀不同反射透射比(r/t)比的多层膜,来实现每个出瞳的出光均匀,生产工艺繁冗导致总体良率较低。当前ar眼镜国际大公司所采用的技术方案上来看,衍射光波导已经显示出更好和更广泛的工业化应用前景。

衍射光栅是衍射光波导的核心,根据使用衍射光栅的不同,衍射光波导主要有表面浮雕光栅和体全息光栅。体全息光栅其材料制备复杂、规模量产困难、长期可靠性、材料稳定性难保证。目前业界已经形成的共识是:ar眼镜想要具备普通眼镜的外观,真正走向消费市场,表面浮雕光栅是目前最佳方案。

表面浮雕光栅使用通常的矩形光栅结构,有一半的光被浪费。相比矩形光栅衍射结构,倾斜光栅(slantedgrating,如图1(a))或者三角形的闪耀光栅(blazedgrating)能使得往眼睛方向衍射的光耦合效率达到最高。但是,现有的微纳制造技术(诸如光学光刻、纳米压印、激光干涉光刻等)面临难衍射倾斜光光栅制造困难,尤其是难以实现倾斜光栅低成本批量化生产的挑战性难题。

据发明人了解,目前ar设备生产表面浮雕光栅的方法:(1)利用电子束光刻和刻蚀工艺制造小母版,通过步进压印工艺制造大母版(压印模具);(2)随后采用通过纳米压印(平压平工艺技术,在玻璃基底(即波导片)涂铺可见光波段透明度很高和高折射率指数的树脂材料上压印出倾斜光栅光波导结构。该方案无论是在母模制造、还是倾斜光栅光波导制造方面等面临很大的限制和约束,例如,电子束光刻和刻蚀工艺相结合只能制造非常小面积的母版,而且对于所制造的倾斜光栅只能限定一定几何特征尺寸(倾斜角度较小和槽深较小等),尤其还面临制造成本高和生产周期长的问题。此外,现有的纳米压印技术也只适合倾斜角度较小和槽深较小的倾斜光栅结构,较大倾斜角、较大槽深的倾斜光栅面临脱模困难甚至无法脱模,完全无法制造出。而且还存在压印的面积较小,模具易损坏、脱模缺陷多等问题。因此,无论是对于倾斜光栅设计、还是量产制造都面临难以解决的难题。



技术实现要素:

本公开为了解决上述问题,提出了一种批量化生产ar衍射光波导的方法和设备,本公开可以实现任意形状大面积ar衍射光波导(表面浮雕倾斜光栅)低成本批量化生产。

根据一些实施例,本公开采用如下技术方案:

首先,提供一种批量化生产ar衍射光波导的方法,包括以下步骤:

(1)制造聚合物母版:采用双光子聚合微纳3d打印制造聚合物母版;

(2)制造金属母模:利用步骤(1)制造的聚合物母版,结合精密微电铸技术,制造倾斜光栅金属镍母模;

(3)制造工作软模具:确定支撑层和图形层材料,以步骤(2)制造的倾斜光栅金属镍母模为模具,采用工作软模具复制设备,批量化复制工作软模具;

(4)复合纳米压印光刻制造表面浮雕倾斜光栅:选定压印材料和压印基材,利用步骤(3)制备的工作软模具为压印模具,利用复合纳米压印技术,覆模时,保证工作软模具覆模的方向(辅助辊轮旋转方向)与工作软模具上的倾斜光栅的方向相反,使倾斜光栅结构顺向压印、转移复制至压印材料上;压印时,采用两次压印方法,并且两次压印时压印的方向(辅助辊轮旋转方向)与工作软模具上的倾斜光栅的倾斜方向相反;脱模时,采用“揭开式”脱模,脱模的方向(辅助辊轮旋转方向)与工作软模具上的倾斜光栅的方向一致,完成晶圆级倾斜光栅的制造;

(5)通过激光划片技术,将制造的晶圆级级表面浮雕倾斜光栅切割成ar眼镜所需要的表面浮雕倾斜光栅,完成ar衍射光波导的制造。

上述技术方案中,首先,采用双光子聚合微纳3d打印技术,实现了任意几何形状表面浮雕倾斜光栅母版的快速低成本制造;一方面解决了任意形状倾斜光栅母版制造的难题,另一方面能实现大尺寸晶圆级母版的直接制造,而且还具有制造成本低和生产效率高的优势。

其次,结合金属母模复制和工作软模具制造设备,解决批量化制造工作软模具的问题(工作软模具使用寿命较短,需要经常更换,一方面能实现快速制造,另一方面确保低成本制造)。

最后,采用复合纳米压印光刻技术,覆模时,工作软模具覆模的方向与工作软模具上的倾斜光栅的方向相反,可以采用较小的力就能确保工作软模具上倾斜光栅压入压印材料中,同时保护工作软模具上的倾斜光栅,避免垂直施压或者逆向施压,进而导致工作软模具损坏和难以完全压入压印材料中的问题。压印时,采用两次压印方法,通过采用错位旋转辊轮的方法降低吸附槽所带来的不利影响,确保工作软模具在辊轮均匀施压下与衬底完全共形接触。两次压印时,辊轮旋转方向工作软模具上的倾斜光栅的倾斜方向相反,确保使用非常小的压印力就能实现压印材料对于工作软模具倾斜光栅完全填充。一方面减小压印力,减小工作软模具的变形,提高压印精度和质量;另一方面,保护工作软模具,延长其工作寿命,尤其是还能避免过大的压印力导致易碎玻璃衬底的损坏。脱模时,以“揭开式”的方式与压印衬底分离,脱模时辊轮旋转方向与工作软模具上的倾斜光栅的方向一致。解决传统纳米压印平行式脱模无法实现倾斜光栅结构脱模的难题,尤其是脱模方向与倾斜光栅的方向一致使用很小的脱模力就能实现工作软模具与压印光栅结构的分离,而且还能避免脱模缺陷,延长工作软模具的使用寿命。通过公开的复合纳米压印工艺解决了大倾斜角、大槽深倾斜光栅无法脱模导致无法制造的难题,实现了倾斜光栅无约束(几何形状和尺寸)制造。符合必须具有透视功能的ar眼镜的要求。

各步骤之间相辅相成,实现任意形状大面积ar衍射光波导(表面浮雕倾斜光栅)低成本批量化生产。

作为可选择的实施方式,完成第一轮生产循环后,步骤(1)、步骤(2)和步骤(3)与步骤(4)和步骤(5)并行运行。

作为可选择的实施方式,步骤(1)、步骤(2)和步骤(3)是串行生产;步骤(4)和步骤(5)是串行生产。

作为可选择的实施方式,所述步骤(1)中,聚合物母版的制造步骤具体包括:

根据所设计倾斜光栅几何形状和尺寸,利用数据处理软件将其转换成加工文件;随后,将加工文件输入到双光子聚合微纳3d打印机;

根据设计数据,逐层打印,直至完成整个倾斜光栅的打印;

从打印机的打印平台上取下制造的倾斜光栅,去除支撑结构,进一步后固化处理,制备出倾斜光栅聚合物母版。

作为可选择的实施方式,所述步骤(2)中,制造金属母模的方法:

采用倾斜溅射的方式,在倾斜光栅聚合物母版表溅射沉积种子层cr/cu;

采用精密微电铸工艺,成形复制出倾斜光栅镍母模;

倾斜光栅镍母模与聚合物母版分离,完全去除镍母模上粘附的聚合物母版残留结构和材料,对镍母模倾斜光栅表面处理,以减小表面粗糙度,提高倾斜光栅表面质量。

作为可选择的实施方式,所述步骤(3)中,批量化复制工作软模具的步骤具体包括:

在金属母模先涂覆一层脱模剂,采用精密涂布方式,再涂覆一层液态工作软模具图形层材料,将涂覆有图形层材料的金属母模置于工作软模具复制设备的承片台上,并通过真空吸附予以固定,将支撑层材料吸附包裹在工作软模具复制设备上的滚轮外表面上;

利用工作软模具复制设备,使支撑层材料吸附固定在主动辊轮辊面上,“渐进式”线接触铺放并覆盖在涂有图形层材料的金属母模上,使两者完全贴合;

使用工作软模具复制设备的主动辊轮,辊轮旋转,同时配合工作平台同步移动,在支撑层上通过线接触的方式进行压印,完成首次施压;在工作平台不动的情况下,主动辊轮进行一定角度的错位旋转,然后辊轮旋转并配合工作平台同步移动,完成后续施压,保证支撑层和图形层粘合并降低气泡缺陷产生的概率,再使图形层热固化成型;

利用工作软模具复制设备,并采用“揭开式”脱模方式把黏附有图形层的支撑层与金属母模分离,制造出双层复合工作软模具。

作为进一步的限定,所述“揭开式”方式脱模时,分离工作软模具与金属母模的方向关系为:辊轮旋转的方向与金属母模倾斜光栅的倾斜方向一致。

作为进一步的限定,所述支撑层材料为pdms、pet、pc等高弹性和高透明材料,所述图形层材料为h-pdms、或者pdms、或者低表面能和高弹性模量氟聚合物基材料、或者etfe等。图形层的厚度范围是10-100μm,支撑层的厚度范围是100-3000μm。所述支撑层进行表面改性处理,或者涂覆一层透明的偶联剂材料。

作为可选择的实施方式,所述步骤(4)中,复合纳米压印光刻制造表面浮雕倾斜光栅,覆模时,工作软模具覆模的方向,或辊轮旋转方向,与工作软模具上的倾斜光栅的方向相反;压印时,辊轮旋转方向工作软模具上的倾斜光栅的倾斜方向相反;脱模时,辊轮旋转方向与工作软模具上的倾斜光栅的方向一致。

作为可选择的实施方式,所述步骤(4)中,复合纳米压印光刻制造表面浮雕倾斜光栅的具体过程包括:

在高折射率的玻璃衬底上涂铺一层液态高折射率的聚合物材料,将玻璃衬底置于承片台上,并通过真空吸附方式将涂铺压印材料的玻璃衬底吸附固定在承片台上;将工作软模具包裹在辊轮外表面,用真空管路为辊轮侧面进气孔通入负压,将工作软模具吸附在辊轮外表面;工作台水平移动带动承片台从初始工位移动到压印工位,压印机构带动辊轮和工作软模具从初始工位移动到压印工位;

辊轮旋转并且一侧的气孔依次由负压切换为正压,同时配合工作平台的同步向左水平移动,使工作软模具以“渐进式”线接触铺放到涂有压印材料的玻璃衬底上;

驱动辊轮旋转,并配合工作平台同步移动,在工作软模具上通过线接触的方式进行压印,完成首次施压,接着,在工作平台不动的情况下,辊轮进行一定角度的错位旋转,然后辊轮旋转并配合工作平台同步移动,完成后续施压,工作软模具在辊轮均匀施压下与玻璃衬底完全共形接触,不同次的压印,辊轮旋转方向工作软模具上的倾斜光栅的倾斜方向相反;

将压印材料完全固化,固化方式可以是uv固化,也包括热固化等其它固化方式;

辊轮旋转并且一侧的气孔依次由常压切换为负压,同时配合工作平台的同步向右水平移动,使工作软模具吸附固定在辊轮辊面上,以揭开式的方式与压印衬底分离,脱模时辊轮旋转方向与工作软模具上的倾斜光栅的方向一致。

作为可选择的实施方式,上述方法中的表面浮雕倾斜光栅替换为其它类型衍射光波导。

其次,提供一种批量化生产ar衍射光波导的设备,包括:双光子聚合微纳3d打印机、精密微电铸设备、工作软模具复制设备、复合纳米压印光刻设备和激光划片机,各设备被配置为执行所述方法的相应步骤。

与现有技术相比,本公开的有益效果为:

(1)实现了任意几何形状表面浮雕倾斜光栅衍射光波导的批量化生产。双光子聚合微纳3d打印实现了任意几何形状表面浮雕倾斜光栅母版的快速低成本制造;采用复合纳米压印光刻并结合提出的压印工艺(压印方向和脱模方向),解决了大倾斜角、大槽深倾斜光栅无法脱模导致无法制造的难题,实现了倾斜光栅无约束制造。

(2)生产成本低、效率高,实现了表面浮雕倾斜光栅衍射光波导大规模化制造,解决了表面浮雕倾斜光栅衍射光波导量产的技术瓶颈。双光子聚合微纳3d打印制造表面浮雕倾斜光栅母版制造成本低和效率高,而且还能实现大尺寸晶圆级表面浮雕倾斜光栅衍射直接制造。使用复合纳米压印光刻并结合提出的压印方向和脱模方向,克服了传统纳米压印和脱模过程中由于倾斜光栅特殊结构造成软模具的易于损伤,寿命短,导致生产成本高、效率低的问题。

(3)制造高性能表面浮雕倾斜光栅衍射光波导。本发明提出的方法,对于表面浮雕倾斜光栅的设计和制造都没有约束,尤其能实现任意形状表面浮雕倾斜光栅和大深宽比倾斜光栅的结构的制造,此外,结合透明高折射率的压印材料和平滑的侧壁等,它能制备出高性能表面浮雕倾斜光栅衍射光波导,尤其是实现大视场和超轻超博的衍射光波导制造,突破了消费级ar眼镜的制造难题。

(4)制造的表面浮雕倾斜光栅衍射光波导良率高。本发明采用复合纳米压印光刻,并结合提出的压印工艺(覆模时,工作软模具覆模的方向(辊轮旋转方向)与工作软模具上的倾斜光栅的方向相反。这样一方面采用较小的力就能确保工作软模具上倾斜光栅压入压印材料中,另一方面保护工作软模具上的倾斜光栅,避免垂直施压或者逆向施压(辊轮旋转方向与倾斜光栅倾斜的方向相同)导致工作软模具损坏和难以完全压入压印材料中。两次压印时,辊轮旋转方向工作软模具上的倾斜光栅的倾斜方向相反,确保使用非常小的压印力就能实现压印材料对于工作软模具倾斜光栅完全填充。一方面减小压印力,减小工作软模具的变形,提高压印精度和质量;另一方面,保护工作软模具,延长其工作寿命,尤其是还能避免过大的压印力导致易碎玻璃衬底的损坏。固化时,采用软模具释放,确保复形的精度和质量。脱模时,以“揭开式”的方式与压印衬底分离。脱模时辊轮旋转方向与工作软模具上的倾斜光栅的方向一致。解决传统纳米压印平行式脱模无法实现倾斜光栅结构脱模的难题,尤其是脱模方向与倾斜光栅的方向一致使用很小的脱模力就能实现工作软模具与压印光栅结构的分离,而且还能避免脱模缺陷,延长工作软模具的使用寿命),综合多种策略,减少压印、固化、脱模每个工步的缺陷,大大提高了面浮雕倾斜光栅衍射光波导良率。满足了消费级ar眼镜生产的要求。

(5)实现大面积(大尺寸)晶圆级表面浮雕倾斜光栅单步制造。

(6)大面积纳米压印软模具高效低成本批量化制造,解决了晶圆级表面浮雕倾斜光栅压印工作模具低成本快速制造的问题。

(7)适应性好,柔性化程度高。即能用于单件小批量生产,尤其适合大批量生产。

(8)工艺简单,设备成本低,各步骤之间可以并行运行,生产效率高。

(9)具有非常好的可扩展性。能够满足不同用户的需求。

(10)本公开即可用于表面浮雕倾斜光栅衍射光波导批量化生产,也适合其它类型衍射光波导(例如纳米柱式衍射光波导)的批量化生产。

附图说明

构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。

图1(a)、(b)表面浮雕倾斜光栅衍射光波导示意图。

图2双光子聚合微纳3d打印机原理示意图。

图3双光子聚合微纳3d打印机。

图4复合纳米压印光刻原理示意图。

图5复合纳米压印光刻机。

图6基于提出方法和设备批量化生产ar衍射光波导流程图。

图7基于提出方法和设备批量化生产表面浮雕倾斜光栅示意图。

图8工作软模具制造示意图。

图9表面浮雕倾斜光栅压印制造示意图。

具体实施方式:

下面结合附图与实施例对本公开作进一步说明。

应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。

本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。

实施例一:

图1(a)和图1(b)是要制造的一种衍射光波导(表面浮雕倾斜光栅)示意图。其中倾斜角度、槽深(相对深度)、填充因子(光栅宽度/周期)如图所述。本实施实例所要制造的表面浮雕倾斜光栅的参数:倾斜角度30°;槽深600nm;填充因子(系数)50%。

对于表面浮雕倾斜光栅衍射光波导,倾斜光栅纳米结构,尤其是大倾斜角、大槽深倾斜光栅和任意形状大面积表面浮雕倾斜光栅,现有的各种微纳制造技术,诸如电子束光刻、纳米压印、光学光刻、干涉光刻、激光加工等都无法制造。因为现有的微纳制造技术都是基于平面微纳米图案化(二维)加工,纳米压印光刻主要是2.5维和简单的三维结构制造,对于倾斜光栅纳米结构的倾斜光栅(尤其是大倾斜角、大槽深倾斜光栅)无法脱模,压印时结构也极易损坏模具和已经压印特征结构。现有的各种制造技术都无法实现低成本批量化生产。

为了解决现有技术制造表面浮雕倾斜光栅困难,尤其是无法实现表面浮雕倾斜光栅高效低成本批量化生产的难题,提出一种结合复合纳米压印和微纳3d打印技术,实现任意形状大面积ar衍射光波导(表面浮雕倾斜光栅)低成本批量化生产的方法和设备。本发明采用双光子聚合微纳3d打印实现任意形状倾斜光栅大面积母版的制造(一方面解决了任意形状倾斜光栅母版制造的难题,另一方面能实现大尺寸晶圆级母版的直接制造,而且还具有制造成本低和生产效率高的优势)。采用复合纳米压印光刻技术(结合压印特有适合倾斜光栅压印工艺和复合软模具),解决了大倾斜角、大槽深倾斜光栅无法脱模导致无法制造的难题,实现了倾斜光栅无约束(几何形状和尺寸)制造。

以实施例所述的表面浮雕倾斜光栅为例,结合图2-图9,具体说明基于提出方法和设备批量化生产表面浮雕倾斜光栅的具体过程。

步骤1:制造聚合物母版。

使用双光子聚合微纳3d打印机(nanoscribe公司的quantumx或者photonicprofessionalgt2)制造聚合物母版,打印材料选用ip-g780,图形面积4英寸晶圆。

具体工艺过程:

(1)预处理。根据本实施例所确定的倾斜光栅几何形状和尺寸,利用数据前处理软件将其转换成加工文件;随后,将加工文件输入到双光子聚合微纳3d打印机quantumx。将打印机的料盒中装满打印材料ip-g780。开启双光子聚合微纳3d打印机quantumx。

(2)打印倾斜光栅。根据设置的打印工艺参数,逐层打印,直至完成整个倾斜光栅的打印。

(3)后处理。从双光子聚合微纳3d打印机quantumx打印机的打印平台上取下制造的倾斜光栅模型,去除支撑结构,进一步后固化处理。根据需要,也可以进行抛光等后处理,提高倾斜光栅的表面质量,制备出倾斜光栅聚合物母版。

打印倾斜光栅时,当打印倾斜光栅结构时,采用较小的分层厚度;打印倾斜光栅下面的支撑结构时,采用较大的分层厚度。打印倾斜光栅结构采用较小的分层厚度,有利于提高打印精度。打印倾斜光栅下面的支撑结构时采用较大的分层厚度,有利提高打印效率。

当然,在其他实施例中,打印材料可以替换为其他材料,例如uv固化光刻胶、水凝胶、纳米复合树脂材料等。这些替换属于本领域技术人员容易想到的,理应属于本公开的保护范围。

步骤2:制造金属镍母模。

金属母模选用镍母模。基于骤1制造的ip-g780聚合物母版,采用微电铸的设备为dzy-iii型双槽双路精密电铸机,结合精密微电铸工艺制造镍母模的方法:

(1)聚合物母版导电化处理。采用倾斜溅射的方式,在倾斜光栅聚合物母版表溅射沉积种子层cr/cu,溅射种子层的厚度10纳米。

(2)倾斜光栅镍母模复制。采用精密微电铸工艺,微电铸精密沉积厚度为20μm的金属镍,复制出倾斜光栅镍母模。其中阴极搅拌速度为75mm/s,电铸液循环速度为45ml/min。为了避免金属沉积速度变化太快而造成内应力过大,电流密度采取逐渐增大的方式。电铸液的温度40℃,电铸液ph值3.8-4.0。脉冲电流频率1000hz。

(3)脱模。倾斜光栅镍母模与聚合物母版分离,采用揭开式脱模方法,将倾斜光栅聚合物母版与镍母模顺序逐渐分离,如有未完全脱离或者残留的聚合物结构或者材料,通过使用丙酮、酒精和去离子水等多次超声震洗,完全去除镍母模上粘附的聚合物母版残留结构和材料,并用氮气吹干。随后,对镍母模倾斜光栅表面抛光处理,减小表面粗糙度,提高倾斜光栅表面质量。

当然,在其它实施例,上述制备工艺参数可以根据具体打印需求和环境进行变更。例如,溅射沉积种子层cr/cu的厚度为5-30nm。精密微电铸镍的厚度10-300μm。

或者,在部分实施例中,还可以对各步骤进行优化,如可以采用对聚合物母版敏化和活化处理,随后进行化学镀铜导电化处理,然后再微电铸铜制造金属母模。

上述改动属于本领域技术人员容易想到的,理应属于本公开的保护范围。

步骤3:制造工作软模具。

本实施例制造的工作软模具:pet作为支撑层,其厚度200μm;h-pdms为图形层,其厚度是30μm。基于步骤2制造金属镍母模,采用工作软模具复制设备,结合提出的复制工艺,制造工作软模具的工艺过程:

(1)预处理。在金属母模先涂覆一层脱模剂(脱模剂材料为:cf3(cf2)7ch2ch2po2(oh)2,利用液相沉积工艺在金属母模表面沉积了一层单分子层的抗粘层),然后采用旋涂工艺,在金属母模涂覆厚度为30μm的液态h-pdms材料(工作软模具图形层材料)。将涂覆有h-pdms的金属母模置于工作软模具复制设备的承片台上,并通过真空吸附予以固定。将厚度200μmpet(工作软模具支撑层材料)吸附包裹在工作软模具复制设备上的滚轮外表面上。

(2)pet/h-pdms工作软模具复制。i利用工作软模具复制设备,使pet(吸附固定在主动辊轮辊面上)“渐进式”线接触铺放并覆盖在涂有h-pdms的金属母模上。避免pet与h-pdms之间产生气泡,使两者完全贴合(在贴合之前,可对pet表面进行等离子轰击处理,提高pet与h-pdms之间的黏结力)。ii使用工作软模具复制设备的主动辊轮,辊轮旋转,同时配合工作平台同步移动,在支撑层pet上通过线接触的方式进行压印,完成首次施压。接着,在工作平台不动的情况下,主动辊轮进行30°的错位旋转,然后辊轮旋转并配合工作平台同步移动,完成二次施压,保证pet与h-pdms更好地粘合并降低气泡缺陷产生的概率。iii开启承片台的加热模块,使h-pdms热固化,加热固化温度80℃,固化时间2小时。确保h-pdms完全固化成型。

(3)脱模。关闭加热模块,利用工作软模具复制设备,并结合采用“揭开式”的方式把黏附有h-pdms的pet与金属母模分离,“揭开式”脱模时分离工作软模具(pet/h-pdms)与金属母模的方向:辊轮旋转的方向与金属母模倾斜光栅的倾斜方向一致。充分利用工作软模具复制设备的“揭开式脱模的优点实现大面积大倾角大大高深光栅的制造。制造出双层复合工作软模具。

当然,在其它实施例,上述制备工艺参数可以根据具体打印需求和环境进行变更。例如,错位角度的变换,或者材料厚度的变换等。

只要满足以下条件即可:

制造的工作软模具是透明薄膜复合软模具,它包括图形层和支撑层,图形层位于支撑层之上,图形层包含所要复制的微纳特征结构;其中图形层具有极低的表面能、高弹性模量和透明的特性,支撑层具有透明、高度柔性和薄膜结构的特性。

图形层可以采用h-pdms、或者pdms、或者低表面能和高弹性模量氟聚合物基材料、或者etfe等;

支撑层可以采用pdms、pet、pc等高弹性和高透明材料。

图形层的厚度范围是10-100μm,支撑层的厚度范围是100-3000μm。所述支撑层进行表面改性处理,或者涂覆一层透明的偶联剂材料。

步骤4:制造表面浮雕倾斜光栅。

采用复合纳米压印光刻机,并结合提出的压印工艺和优化的工艺参数,制造表面浮雕倾斜光栅的方法:

(1)预处理。衍射光波导基材选用肖特公司的schottrealview超平和高折射率玻璃晶圆,折射率1.9,基材的尺寸4英寸。在4英寸玻璃晶圆(衬底)上旋涂1000nm的低粘度快速光固化型透明高折射率聚合物材料,将玻璃衬底置于承片台上,并通过真空吸附方式将涂铺聚合物压印材料的玻璃衬底吸附固定在承片台上;将工作软模具pet/h-pdms包裹在辊轮外表面,用真空管路为辊轮侧面进气孔通入负压,将工作软模具pet/h-pdms吸附在辊轮外表面;工作台水平移动带动承片台从初始工位移动到压印工位,压印机构带动辊轮和工作软模具pet/h-pdms从初始工位移动到压印工位。

(2)覆模。辊轮旋转并且一侧的气孔依次由负压切换为正压(延迟片刻后变为正常气压),同时配合工作平台的同步向左水平移动,使工作软模具pet/h-pdms(起初吸附固定在主动辊轮辊面上)“渐进式”线接触铺放到涂有聚合物压印材料的玻璃衬底上,线接触的方式降低了大面积压印气泡缺陷的产生概率,甚至消除气泡。工作软模具pet/h-pdms覆模的方向(辊轮旋转方向)与工作软模具pet/h-pdms上的倾斜光栅的方向(倾斜角度)相反。这样一方面采用较小的力就能确保工作软模具pet/h-pdms上倾斜光栅压入聚合物压印材料中,另一方面保护工作软模具pet/h-pdms上的倾斜光栅,避免垂直施压或者逆向施压(辊轮旋转方向与倾斜光栅倾斜的方向相同)导致工作软模具pet/h-pdms损坏和难以压入压印聚合物材料中。

(3)压印。辊轮旋转,并配合工作平台同步移动,在工作软模具pet/h-pdms上通过线接触的方式进行压印,完成首次施压。接着,在工作平台不动的情况下,辊轮进行20°的错位旋转,然后辊轮旋转并配合工作平台同步移动,完成二次施压(压印过程中,主动辊轮辊面的吸附槽会造成吸附槽与工作软模具pet/h-pdms之间的压印力过小,为了确保压印力均匀,采用错位旋转辊轮的方法降低吸附槽所带来的不利影响,进行二次压印),工作软模具pet/h-pdms在辊轮均匀施压下与玻璃衬底完全共形接触。两次压印时,辊轮旋转方向工作软模具上的倾斜光栅的倾斜方向相反,确保使用非常小的压印力就能实现压印材料对于工作软模具倾斜光栅完全填充。一方面减小压印力,减小工作软模具的变形,提高压印精度和质量;另一方面,保护工作软模具pet/h-pdms,延长其工作寿命,尤其是还能避免过大的压印力导致易碎玻璃衬底的损坏。

(4)固化。辊轮对工作软模具pet/h-pdms施压结束后,辊轮向上升高800μm,打开uv光源,工作台执行3次往返运动,将uv聚合物压印材料完全固化。

(5)脱模。辊轮旋转并且一侧的气孔依次由常压切换为负压,同时配合工作平台的同步向右水平移动,使工作软模具pet/h-pdms逐渐吸附固定在辊轮辊面上,以“揭开式”的方式与玻璃衬底分离。脱模时辊轮旋转方向与工作软模具pet/h-pdms上的倾斜光栅的方向一致。解决传统纳米压印平行式脱模无法实现倾斜光栅结构脱模的难题,尤其是脱模方向与倾斜光栅的方向一致使用很小的脱模力就能实现工作软模具与压印光栅结构的分离,而且还能避免脱模缺陷,延长工作软模具的使用寿命。

同样的,步骤4的各项工艺参数也可以根据具体要求和情况进行变更。这些改变均为本领域技术人员容易想到的,理应属于本公开的保护范围。

需要注意的是,为了获得比较好的效果,步骤4以以下方式的效果较好:

压印材料是透明高折射率的聚合物材料,优选选用低粘度快速光固化型透明高折射率聚合物材料,也包括透明高折射率的无机聚合物材料、玻璃前驱体等。

压印力范围是50-500n。

固化也包括热固化等其它固化方式。

步骤5:后处理。

采用激光划片技术,将步骤4制造的晶圆级级表面浮雕倾斜光栅切割成单个ar眼镜所需要的表面浮雕倾斜光栅,完成ar衍射光波导的制造。

以上五个步骤顺次进行。

工作平台的水平移动速度、吸附辊轮的旋转速度、吸附辊轮各个进气口依次正、负压转换的时间必须保持严格的同步。

工作平台的移动速度为10mm/s,吸附辊轮旋转的线速度为10mm/s。uv-led线光源固化装置的功率为1000w,波长为365nm。

步骤2制造金属镍母模,通过微电铸生长支撑背板。

为了减小金属镍母模因残余内应力而存在弯曲的问题,对制造的金属镍母模进行了去应力后处理,采用真空退火,温度为400℃,时间2小时,退火后金属镍母模随炉冷却至室温。退火后的镍模板内应力有了很大的减少,模板的变得平整,适合压印。

实施例二:

与实施例一不同之处在于,各步骤的工艺参数可以改变。同时,

完成第一轮生产循环后,工艺步骤1、步骤2和步骤3与工艺步骤4和步骤5并行运行。

实施例三:

与实施例一不同之处在于,各步骤的工艺参数可以改变。同时,工艺步骤1、步骤2和步骤3提前串行实施。

实际工艺步骤仅包括步骤4和步骤5,且依次运行。

上述实施例所使用的设备主要包括:双光子聚合微纳3d打印机;精密微电铸设备;工作软模具复制设备;复合纳米压印光刻设备;激光划片机等。

以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1