专利名称:可靠性较高的光纤耦合光开关的制作方法
技术领域:
本申请基于1998年6月19日提交的美国临时申请60/090,021,因此要求该临时申请的优先权。
本发明涉及一种可靠性较高的光纤耦合开关。尤其,本发明涉及一种起双向光学纵横接线器作用的熔融耦合器光开关(FCOS)。这种光开关用磁场弯曲耦合区,以便在交叉状态和条形状态之间切换。由弯曲引起的应变使耦合光纤处于不同的弯曲半径状态,从而产生可变的功率耦合比。
背景技术:
目前,光纤通信系统用光缆在诸如广域网和局域网等通信网内传递信息。开关允许改变网络内的光路,以便将信息传送到特定的单元,或绕过特定的单元。此等用途的开关必须在经历许多次切换循环后仍具有高度的可靠性、需具有较低的插入损耗、较低的串扰以及较短的切换时间。
已知几种形式的光纤开关。在一些开关结构中,切换功能是通过将一光学器件放在光路内来实现的。一种类型的现有光开关是用可移动的阻塞元件将光从一根光纤切换至另一根光纤,或者切换至关断位置。授予Calaby等人的美国专利4,790,621揭示了用可移动棱镜将光从一根光纤切换到另一根光纤的方案。授予Wagner的美国专利4,261,638揭示了用反射部件沿不同光路切换光的方案。
机械式开关结构也是已知的。在这类器件中,光纤固定安装在一个可移动的部件上,而可移动部件本身从第一位置移到第二位置,实现光路切换。授予Lee的美国专利4,911,520使用一种半悬的玻璃舌状物,光纤固定在舌状物的边缘。用相同的方法沿一固定块的边缘固定第一和第二光纤。玻璃部件从第一位置移至第二位置,使得固定在上面的光纤离开包含第一固定光纤的第一光路,并进入包含另一固定光纤的第二光路。
在授予Young的美国专利4,407,562中,光纤固定在可移外罩外表面的槽中。移动外罩使得光纤端面与其它光纤阵列对准和不对准,从而实现切换。使用对准槽可以影响可移外罩与放置外罩的外壳对准。授予Kraetsch等人的美国专利4,896,937提供了两个V形槽,一个在盖子中,另一个在外罩的基座中。将固定有光纤的铁磁条移入一个V形槽内,便可实现切换。
授予Lemonde的美国专利4,759,597将光纤固定在磁性摇臂上。摇臂的枢轴转动使光纤在上下支持板中各槽内的相应光纤之间移动。
授予Dautartus等人的美国专利4,946,236揭示了一种开关,该开关将移动力施加到光纤身上。开关包括多根由磁性套管包裹着的光纤。诸光纤位子槽内,而槽是由一根穿过某个部件的细长菱形内通道的转角限定的。施加磁场,使光纤从槽的一个角移至另一个角。
美国专利5,175,776揭示了一种光纤开关,它包括一基座,基座上有一块状部分。在块状部分的一个表面上至少形成第一和第二槽。光纤的第一预定长度部分靠近位于一个槽内的光纤端面。光纤中沿此第一预定部分的轴在第一部分之后分离,位于一倾斜的坡道上,使这部分光纤向前弯曲。光纤的弯曲产生偏置力。最好,坡道表面相对基座成一角度,角度在5至15度的范围内。如果需要,坡道可以带槽。切换部件可以相对基座从第一位置到第二位置来回移动。切换部件的移动一般与偏置力的方向横交。在其移动期间,切换部件在操作上与光纤接合,从而反抗偏置力将第一预定部分移离一个槽,并移入另一个槽。当移动光纤时,偏置力作用在光纤上,迫使光纤的第一预定部分移向另一槽的底部。在较佳的情况下,切换部件呈轭状,通过一摇杆装置与一致动螺线管连接。轭状物在操作上与光纤中位于坡道和带槽的块之间的部分接合。
上述现有技术中的光开关在包装方面有许多缺点,包括光纤弯曲半径和环境灵敏性、性能和可靠性,以及可制造性。
在另一个现有文献中,授予Miller等人的美国专利5,146,519(已转让给本申请的受让人)揭示了一种光纤耦合器光开关,此开关通过在一端在弯曲和耦合状态之间旋转耦合器来进行工作,由此可以根据旋转程度来调谐耦合特性。
鉴于以上叙述,本发明的一个目的是提供一种光开关,它具有相对较大(应力较低)的光纤弯曲半径;对诸如温度等环境条件的变化不太灵敏;性能的可靠性较高;容易且可以反复制造;并且可以根据线性移动调节耦合特性。
发明内容
依照本发明的一个说明性实施例,光开关包括熔融耦合器,熔融耦合器最好由玻璃制成,具有第一端、第二端和在两端之间的耦合区。在耦合器的第一端有第一和第四光学端口,在耦合器的第二端有第二和第三光学端口。夹持元件将耦合器第一端固定夹在一弹性支撑件中,用于减小耦合元件中的集中的应力。耦合器的第二端是自由的。磁性套管围绕自由端附近的耦合器。第一制动部件位于套管的一侧。第二制动部件位于套管中远离第一制动部件的另一侧。有一磁路,用于生成第一磁场,使套管移入,与第一制动部件接触,并且用于生成第二磁场,使套管移入,与第二制动部件接触。在第一位置(耦合器与第一制动部件接触),第一端口与第二端口光学连接,第四端口与第三端口光学连接。在第二位置(耦合器与第二制动部件接触),第一端口与第三端口光学连接,第四端口与第二端口连接。
在本发明的一个实施例中,第一制动部件包括第一平型制动件和第一V形槽制动件。同样,第二制动部件可以包括第二平型制动件和第二V形槽制动件。本发明的光开头可以包括诸如霍耳元件等传感器元件,用于检测第一磁场或第二磁场,从而检测光开关的状态。
在另一实施例中,有一绝热接头,它位于套管和耦合器之间。绝热接头由一种弹性材料制成,用于匹配耦合器和套管的热膨胀系数。请注意,为绝热目的而选择制动部件与基底的固定位置,并且固定位置受所用材料的影响。
附图概述结合附图将更好地理解以下详细描述,但这些描述仅是举例,并不限制本发明。附图中,类似的元件用相同的标号表示,附图有
图1A、1B和1C示意地示出了本发明熔融耦合器光开关的工作情况;图2A是一顶视图,示出了依照本发明一说明性实施例的光开关的一部分;图2B是一侧视图,示出了依照本发明一说明性实施例的图2中光开关的一部分;图3A是一透视图,示出了依照本发明一说明性实施例的光开关;图3B是一顶视图,示出了依照本发明一说明性实施例的图3A中的光开关;图3C是一侧视图,示出了依照本发明一说明性实施例的图3A中的光开关;图4是一透视图,示出了依照本发明另一说明性实施例的具有V形槽制动件的光开关;图5是光开关的截面侧视图,示出了依照本发明另一说明性实施例的绝热接头。
图6A、6B和6C示出了本发明可以使用的平型和V形槽制动件。
本发明的详细描述本发明的熔融耦合器光开关(FCOS)是一种可电切换的器件,它起闭锁式双向光学纵横接线器的作用,带有单模光学尾纤。在本文中,“闭锁”是指FCOS在没有附加电输入的情况将保持所需的状态。FCOS使用熔融耦合器技术和磁场,通过磁性套管或衔铁,使耦合区机械弯曲,从而在交叉状态和条形状态之间切换。图1A是本发明FCOS的示意图。器件有四个端口,端口1和端口4位于器件的第一端,端口2和端口3位于器件的第二端。在图1B所示的交叉状态下,端口1与端口3光学连接,端口4与端口2光学连接。在图1C所示的条形状态下,端口1与端2连接,端口4与端口3连接。
如上所述,本发明的光学开关是基于熔融耦合器的。而熔融耦合器在现有技术中是公知的。例如,参见美国再颁专利33,296。作为举例,熔融耦合器可以包括具有第一纵向部分的第一单模光纤,其中第一纵向部分包括折射率相对较高的内纤芯,以及折射率相对较低的包层。器件还可以包括具有第二纵向部分的第二单模光纤,其中第二纵向部分包括折射率相对较高的内纤芯,以及折射率相对较低的包层。耦合区包含在器件中,第一和第二纵向部分相互并排地熔合在一起。耦合器还包括一个外罩,用于使第一和第二纵向部分基本上保持平直,并且将第一和第二纵向部分保持在稳定的环境中。其它的耦合器设计方法也是已知的。
作为举例,在外罩的一端,一对尾纤形成端口1和端口4。在外罩的另一端,另一对尾纤形成端口2和端口3本发明的FCOS10利用了熔融耦合器具有可变光功率分束比的特性,其中可变光功率分束比是机械弯曲在耦合区内引起的应变的函数。将耦合器的一端放在一衔铁中,并在磁场的帮助下使耦合器的一端机械弯曲。弯曲产生的应变使耦合波导处于不同的弯曲半径状态,从而产生可变的功能耦合比。这使得FCOS成为一个开关。
图2A和2B示出了本发明熔融耦合器光开关10的一部分。如图所示,FCOS 10包括熔融光耦合器19。该熔融光耦合器具有一外罩或细长罩59,外罩59最好由硼硅玻璃制成,包含耦合光纤。外罩包括位于其第一端57的第一圆柱区61、位于其第二端58的第二圆柱区62,以及位于两端之间的耦合区55。最好,熔融光耦合器19长50毫米,其中第一圆柱部分61长13毫米长,第二圆柱部分62长13毫米,而耦合区55长24毫米。另外,第一和第二圆柱部分的直径分别为2.5毫米。
第一对尾纤21和23分别表示第一和第四光学端口,它们位于熔融光耦合器19的第一端57,而第二对尾纤25和27分别表示第二和第三光学端口,它们位于熔融光耦合器的第二端58。尾纤可以用例如具有CPC3涂层的CorningSMR-28制成。另外,每根尾纤的长度例如可以为2米。
如图所示,光耦合器的第一端57通过夹持元件固定在基板18上。例如,基板大约3.380英寸长,0.895英寸宽,并且由诸如SiO2、INVAR 36或其它低CTE的材料制成。夹持元件的尺寸为0.50英寸×0.50英寸×0.19英寸(L、W、T),并且可以用钢、玻璃等材料制成。另外,磁性套管或衔铁52围绕熔融光耦合器的第二端58。磁性套管的长度和直径分别为0.250英寸和0.188英寸。接触套管62在磁性套管52的两端与细茎部59结合并与磁性套管52结合。此接触套管可渗磁(它由铁合金制成),并且包括0.188英寸的球面,用于接触平型和V形槽制动件。
参照图3A、3B和3C,它们分别是本发明熔融耦合器光开关10(包括图2和图2B的各元件)之更完整实施例的透视图、顶视图和侧视图。具体地说,第一和第二端板28、29分别与基板18的第一和第二端连接。端板28和29的尺寸是0.72英寸×0.31英寸×0.355英寸(L、W、T),并且可以用诸如铝等材料制成。与每个端板28和29固定的分别是应变释放毂(strain relief hub)14和34,它们与端板构成一体。应变释放毂14和34的作用是光纤21、23、25和27进入开关外壳的固定点。应变释放毂14和34与端板结合,并分别具有小的锚定孔1、4和2、3。每孔具有每根光纤的直径0.03英寸。应变释放毂14和34还分别具有一个凸出部,其尺寸为0.114英寸×0.110英寸,用于固定应变释放引出罩(strain relief boot)12和32。这种结构允许有足够大的结合面积来承受施加在光纤21、23、25和27上的外界负载所产生的力。应变释放引出罩12和32通过硅橡胶粘结剂与应变释放毂粘结,并且固定有多个900微米大小的松管(未图示),用于保护每根光纤。按同样的方法,用硅橡胶粘结剂将松管与应变释放引出罩相连。在设计可靠性较高的器件时,为了防止光纤长期受应力负载,对应变释放毂及其光纤锚定孔的位置有严格的要求。当器件体积较大时,这不是问题,但是由于要求在例如25年的长时间里将光纤的应力限制在<30,000 PSI,所以这约束了包层尺寸。另外,请注意,应变释放引出罩和毂减小了应变,并且在尾纤上起弯曲限定器的作用。
如以上参照图2A和2B所示,磁性套管52围绕熔融光耦合器的第二端58。另外,磁性套管52的上下分别绕有线圈组54和56。线圈组54和56形成磁场发生器,诸如可变磁阻磁路。每个线圈的长度和直径分别为0.31英寸×0.20英寸。另外,每个线圈组包括大约一千个线圈绕组。
第一制动部件30位于磁性套管52的上侧。第二制动部件40位于磁性套管的下侧。在本发明的一个较佳实施例中,第一制动部件30包括第一平型制动件33和第一V形槽制动件35,它们被线圈组54分开。同样,第二制动部件40包括第二平型制动件43和第二V形槽制动件45,它们被线圈组56分开。作为举例,每个平型制动件和V形槽制动件都由防蚀钢制成。
图6A和图6B示出了可以在本发明中使用的平型制动件,而图6C示出了V形槽制动件。具体地说,图6B示出了平型制动件33,图6A示出了另一实施例的平型制动件64(两者尺寸类似)。两种平型制动件都包括卸荷凹部65(用于消除结合蠕动)、线圈线轴交界面66、切换冲击稳定器(由于结合面积小,所以很重要),以及接触面68。图6C所示的V形槽制动件35包括V形槽接触面。
如图4所示,在另一实施例中,使用开放式的V形槽制动件135和145。与“封闭式”V形槽制动件相比,开放式有利于制造过程。
现在描述FCOS 10的工作过程。磁场发生器通过第一和第二线圈组54和56分别有选择地产生第一或第二互斥的磁场。相应地,由第二线圈组56产生和第一磁场使磁性套管52和第二圆柱区62移入,与处于第一位置的第一制动部件30接触。同样,由线圈组54产生的第二磁场,使磁性套管和第二圆柱区移入,与处于第二位置的第二制动部件40接触。利用平型制动件,并结合V形槽制动件和第二圆柱区的球面,保证了在操作期间,耦合器的第二端58可以通过三个明确的接触点(一个在平型制动件上,两个在V形槽制动件上)来定位。
所产生的磁场使耦合区弯曲,从而在交叉状态和条形状态之间切换。弯曲产生的应变使得耦合光纤处于不同的弯曲半径状态,从而产生可变的功率耦合比。换句话说,磁场使熔融光耦合器19的第二端58沿预定的旋转平面旋转,直到耦合器锁定于制动部件30或40,到达两个平衡位置中的一个位置(即,交叉状态或条形状态)。以下讨论有关机理。
在第一位置(这时,磁性套管52与第一制动部件30接触),端口1与端口3光学连接,而端口4与端口2光学连接。如上所述,这是交叉状态。在第二位置(这里,磁性套管52与第二制动部件40接触),端口1与端口2光学连接,端口4与端口3光学连接。第二位置处于条形状态。为了在交叉和条形状态之间切换FCOS,按需要使电流通过线圈组54或56。这会将磁性套管52推离与激励线圈相连的制动部件,并推向另一制动部件。
例如,当电流通过线圈组54时,磁性套管52被推向第二制动部件40,并且FCOS处于条形状态。同样,当电流通过线圈组56时,磁性套管52被推向第一制动部件30,并且FCOS处于交叉状态。请注意,应如此选择每个线圈组中的线圈绕组数量,以便可以用例如充电至15V的60mF电容器提供的脉冲对交叉状态或条形状态反复切换,然后直接通过线圈放电。
FCOS 10可以选择包括传感器元件22,例如霍耳效应传感器,用于检测FCOS是处于条形状态还是交叉状态。具体地说,传感器元件22在带磁芯的轴上与一选定的制动部件接触。请注意,根据磁性套管所接触的制动部件,磁通量通过磁芯轴从磁心漏磁或向磁心漏磁。由此,当传感器元件22检测到磁通量方向的180度变化时,便检测出熔融耦合器光开关的状态。
在图5所示的另一较佳实施例中,有一绝热的接头50,它位于磁性套管52和熔融光耦合器19之间。最好,绝热的接头由弹性材料制成,使得耦合器和套管的热膨胀系数基本上匹配。请注意,尽管耦合区55中的光纤在图示中是分离的(以便于观察),但应该理解,光纤实际上是融合在一起的。
最好,本发明的FCOS 10经设计,使得端口1和2以及端口3和4之间的方向性在1540至1560纳米的光波长范围上大于30Db。另外,例如,FCOS可以处理高达50mW的平均光功率,峰值光功率大约为250Mw。另外,FCOS可以固定在一金属板上,金属板的最大平整度要求为0.001英寸,粗糙度要求大约为64×106英寸,或者固定在一印刷电路板(PWB)。
最后,上述讲述仅是对本发明的说明。不脱离以下权利要求书的精神和范围,本领域的熟练技术人员可以导出各种其它的实施例。
权利要求
1.一种光开关,其特征在于,包括光耦合器,它包括第一、第二和第三光学端口;衔铁,它由一磁铁材料制成,用于支持所述耦合器的一部分;磁场发生器,用于产生对所述衔铁进行作用的第一磁场状态,使所述耦合器处于第一机械位置,这时所述第一端口与所述第三端口光学耦合,并且用于产生对所述衔铁进行作用的第二磁场状态,使所述耦合器处于第二机械位置,这时所述第一端口与所述第二端口光学耦合;第一制动部件,用于将所述耦合器保持在所述第一机械位置上;以及第二制动部件,用于将所述耦合器保持在所述第二机械位置上。
2.如权利要求1所述的光开关,其特征在于,所述第一和第二制动部件是V形槽制动件。
3.如权利要求1所述的光开关,其特征在于,所述第一和第二制动部件是平型制动件。
4.如权利要求1所述的光开关,其特征在于,还包括基板,所述磁场发生器包括第一和第二线圈组,它们位于所述基板上,彼此相对;所述第一制动部件位于所述基板上,与所述第一线圈组相邻;所述第二制动部件位于所述基板上,与所述第二线圈组相邻,与所述第一V形槽制动件相对;并且所述衔铁位于所述第一和第二线圈组之间。
5.如权利要求1所述的光开关,其特征在于,还包括磁场检测器,用于检测所述第一磁场状态和所述第二磁场状态。
6.如权利要求5所述的光开关,其特征在于,所述磁场检测器元件是霍耳元件。
7.如权利要求2所述的光开关,其特征在于,还包括第一平型制动件,用于与所述第一V形槽制动件协作,将所述耦合器保持在所述第一位置;第二平型制动件,用于与所述第二V形槽制动件协作,将所述耦合器保持在所述第二位置;
8.如权利要求1所述的光开关,其特征在于,还包括一绝热接头,该接头位于所述衔铁和所述耦合器之间,由一种弹性材料制成。
9.如权利要求4所述的光开关,其特征在于,所述耦合器包括第一端和第二端,所述第一端与所述基板固定连接,并且所述第一和第二制动部件相对所述耦合器第一端与所述基板无热连接。
10.一种光开关,其特征在于,包括耦合器,它包括位于第一端的第一和第四端口、位于第二端的第二和第三端口,以及位于第一和第二端之间的耦合区;夹持元件,用于固定地夹住所述耦合器的第一端,所述耦合器的第二端松开;磁铁套管,它围绕所述耦合器,靠近其自由端;第一制动部件,它位于所述套管的一侧;第二制动部件,它位于所述套管上远离所述第一制动部件的另一侧;以及磁路,用于产生第一磁场,使所述套管移入,与所述第一制动部件接触,并且用于产生第二磁场,使所述套管移入,与所述第二制动部件接触;所述第一制动部件包括第一平型制动件和第一V形槽制动件;所述第二制动部件包括第二平型制动件和第二V形槽制动件。
11.如权利要求10所述的光开关,其特征在于,还包括传感器元件,用于检测所述第一磁场或所述第二磁场。
12.如权利要求10所述的光开关,其特征在于,还包括一绝热接头,它位于所述套管和所述耦合器之间,由一种弹性材料制成,用于匹配耦合器和套管的热膨胀系数。
13.一种光开关,其特征在于,包括耦合器,它包括第一和第二光学输入端,以及第一和第二光学输出端,并在具有第一端和第二端的所述耦合器之间具有一耦合区;夹持元件,用于固定夹住所述耦合器的所述第一端,所述耦合器的第二端松开;磁铁套管,它围绕所述耦合器,靠近其自由端;第一制动部件,它位于所述套管一侧;第二制动部件,它位于所述套管上远离所述第一制动部件的另一侧;以及一绝热接头,它位于所述套管和所述耦合器之间,由一种弹性材料制成,用于匹配耦合器和套管的热膨胀系数。
14.如权利要求13所述的光开关,其特征在于,所述第一制动部件包括第一平型制动件和第一V形槽制动件;所述第二制动部件包括第二平型制动件和第二V形槽制动件。
全文摘要
一种光开关(10)包括熔融耦合器(19),熔融耦合器具有第一和第二端以及位于其间的耦合区。在耦合器的第一端有第一和第四光学端口,在耦合器(19)的第二端有第二和第三端口。夹持元件(20)固定地夹住耦合器的第一端,而第二端松开。磁性套管(52)围绕耦合器(19),靠近其自由端。第一制动部件(30)位于套管的一侧。第二制动部件(40)位于套管上远离第一制动部件(30)的另一侧。有一磁路,用于产生互斥磁场,磁场使套管移入,与第二制动部件(40)接触。在第一位置上,第一端口与第三端口光学连接,第四端口与第二端口光学连接。在第二位置上,第四端品与第三端口光学连接。在本发明的一个较佳实施例中,第一制动部件(30)包括第一平型制动件和第一V形槽制动件(45)。同样,第二制动部件(40)可以包括第二平型制动件和第二V形槽制动件(45)。光开关(10)可以包括传感器元件(22),用于检测第一磁场或第二磁场,从而检测光开关(10)的状态。
文档编号G02B6/28GK1306627SQ99807556
公开日2001年8月1日 申请日期1999年6月11日 优先权日1998年6月19日
发明者W·L·德博依顿, E·R·拉纳利 申请人:康宁股份有限公司