形成金属氧化物膜的方法和在气体放电管中形成二次电子发射膜的方法

文档序号:2972705阅读:181来源:国知局
专利名称:形成金属氧化物膜的方法和在气体放电管中形成二次电子发射膜的方法
背景技术
1.发明领域本发明涉及形成金属氧化物膜的方法和在气体放电管中形成二次电子发射膜的方法。更特别地,本发明涉及在管内壁形成金属氧化物膜的方法。
2.相关技术描述传统已知的在管内壁上形成金属氧化物膜的方法有多种,在这些方法当中,例如,通常使用这样一种方法,包括在管内壁上施用一种含有机金属化合物的涂层溶液以形成涂层膜,并在涂层膜上进行热处理,从而形成金属氧化物膜。
但是,上述方法所得金属氧化物膜的问题在于金属氧化物膜的厚度不均匀。这一问题在内径不大于2mm的细管中更为显著。
厚度不均匀事实上是由于在对含有有机金属化合物的涂层膜进行热处理过程中,当温度达到有机金属化合物的熔点时,涂层膜的粘度突然降低,致使涂覆在三维表面上的涂层溶液由于重力作用而滴落,从而造成厚度不均匀,而这一涂层膜最终会转化为金属氧化物膜。如果金属氧化物膜的厚度变得不均匀,就会导致膜发生破裂,并且金属氧化物膜所需的一些特征,如二次电子发射特征和阻值也会发生部分变化。
出于这一原因,希望提供一种通过使用有机金属化合物对于三维表面——如管内壁——形成厚度均匀的金属氧化物膜的方法,所述的有机金属化合物在热处理后形成金属氧化物膜。
发明概要根据本发明,提供了一种形成金属氧化物膜的方法,该方法包括当通过对管内壁上形成的含有有机金属化合物的涂层膜进行热处理而形成金属氧化物膜时,在热处理之前或与热处理同时对涂层膜进行紫外照射处理或臭氧处理。
另外,根据本发明,提供了一种在气体放电管中形成二次电子发射膜的方法,该方法包括当通过对玻璃管内壁上形成的含有有机金属化合物的涂层膜进行热处理而形成二次电子发射膜时,在热处理之前或与热处理同时对涂层膜进行紫外照射处理或臭氧处理,其中玻璃管为内径不大于2mm的细长玻璃管。
从以下给出的详细描述中,本申请的这些及其它目的将变得更加明显。但是,应当理解这些详细说明和具体实施例虽然表示出本发明的优选实施方案,但仅作为示例给出,因为对于本领域技术人员来说,由这些详细说明,在本发明的精神和范围内的各种变化及改进将变得显而易见。
附图简述

图1(a)-(d)为本发明用于形成金属氧化物膜的方法的说明性示意图;图2(a)-(d)为本发明用于形成金属氧化物膜的方法的说明性示意图;图3(a)和(b)为本发明用于形成金属氧化物膜的方法的说明性示意图;图4为本发明用于形成金属氧化物膜的方法中所用设备的说明性示意图;图5为使用了以本发明方式在其内壁上形成了二次电子发射膜的气体放电管的显示装置示意图。
优选实施方案描述本发明一个特征在于通过对涂层膜进行紫外照射或臭氧处理促进涂层膜中有机金属化合物的分解及金属氧化物的聚集,其中涂层膜是通过在三维表面——如管内壁——上施用涂层溶液得到的,该涂层溶液含有有机金属化合物,它在热处理时会变成金属氧化物膜。
由于这一特征,即使在随后的热处理中温度达到有机金属化合物的熔点,已部分分解的有机金属化合物将不会达到其熔点,从而在包括这类部分分解化合物的区域中保持了涂层膜的粘度。而且,与上述区域相比,在已进行了进一步分解使得金属氧化膜聚集的区域中仍然保持了较高的粘度。这样,由于涂层膜的粘度甚至在热处理温度下也不会陡然降低,就可能防止涂层膜的热滴落。
具体而言,如图1(a)和图2(a)的透视图及图1(b)和图2(b)的截面图所示,通过对管内壁“a”上形成的涂层膜“b”进行紫外照射和臭氧处理,以及热处理,如图1(d)和图2(d)所示,可以得到厚度均匀的金属氧化物膜“c”。在图2(a) 中,参数“d”表示含臭氧气体。相反,在不进行紫外照射或臭氧处理的情况下,如图1(c)和图2(c)所示,金属氧化物膜c的厚度不均匀。
现在将对本发明进行详细描述。
在本发明中,首先在管内壁上形成含有有机金属化合物的涂层膜。
作为管,可不加任何限制地使用具有各种形状且由各种材料形成的任何管。具体而言,管与侧面垂直的截面除圆形外还可为椭圆形,轨道形,多边形——如四边形或五边形,或不确定形状。另外,管可为直管或弯管。作为管材,可使用玻璃和金属——如铝,铁和铜。而且,当与管侧面垂直截面的开口尺寸(指环形截面的直径,或其它截面形状的最大长度)不大于5mm时,本发明特别有效。开口尺寸的优选范围为0.5至5mm,更优选0.5至2mm。管长度优选不低于10cm,更优选为30cm至3m。
其次,对于可用于本发明的有机金属化合物而言,没有特别的限定,只要其在热处理时能变成金属氧化物并且是可被紫外照射或臭氧处理分解的化合物。这种有机金属化合物的实例包括脂肪酸盐或金属——如镁,铝,钛,锡,钙,硅等——的醇化物。
作为金属醇化物,可例举由低级醇——如甲醇,乙醇,正丙醇和异丙醇——与金属组成的醇化物。
对于脂肪酸,可例举脂族单羧酸,或脂族多羧酸——如脂族二羧酸、脂族三羧酸和脂族四羧酸。另外,构成脂肪酸的碳链可以是饱和的或不饱和的。而且,碳链可带有取代基。虽然对这种取代基的类型没有特别的限定,但可能在脂肪酸分解或燃烧时残留下来的那些是不希望的。
更具体而言,饱和脂族单羧酸的实例包括甲酸,乙酸,丙酸,丁酸,戊酸,己酸,庚酸,辛酸,壬酸,癸酸,正十一烷酸,十二烷酸,正十三烷酸,十四烷酸,正十五烷酸,十六烷酸,十七烷酸和十八烷酸。
不饱和脂族单羧酸的实例包括烯属单羧酸,如丙烯酸,丁烯酸,巴豆酸,异巴豆酸,乙烯基乙酸,甲基丙烯酸,戊烯酸,己烯酸,庚烯酸,辛烯酸,癸烯酸,十一烯酸,十二烯酸,十四烯酸,十六烯酸和十八烯酸;炔属单羧酸,如丙炔酸,2-丁炔酸,乙基丙炔酸,丙基丙炔酸,丁基丙炔酸,戊基丙炔酸,十一炔酸(undecinicacid)和硬脂炔酸;二烯属单羧酸,如戊二烯酸,二烯丙基乙酸,香叶酸和癸二烯酸;以及多不饱和单羧酸,如辛三烯酸,亚麻酸和油酸。
饱和脂族二羧酸的实例包括草酸,丙二酸,丁二酸,戊二酸,己二酸,庚二酸,辛二酸和癸二酸。
不饱和脂族二羧酸的实例包括烯属二羧酸,如丁烯二酸,衣康酸,柠康酸,中康酸,戊烯二酸,二氢粘康酸;和二烯属二羧酸,如粘康酸。
在本发明中,对于有机金属化合物,优选脂肪酸和金属的盐。这是因为脂肪酸盐加热时易于分解或燃烧,溶剂溶解度高,在分解或燃烧后能提供质密的膜,易于处理(包括安全性)并且廉价,而且易于与各种金属成盐。另外,在脂肪酸中,优选使用具有2-19个碳的饱和脂族单羧酸。特别优选的脂肪酸为丁酸,戊酸,己酸,庚酸和壬酸。
含有有机金属化合物的涂层膜可通过将含有有机金属化合物的涂层溶液涂覆在管内壁上形成。涂层溶液至少由有机金属化合物和有机溶剂组成,而且为了把所施用组合物的粘度调节到可进行最优操作的粘度,可加入增稠剂。涂层溶液的粘度优选为1-100000cps,更优选100-1000cps。在本说明书中,粘度值测量使用螺旋粘度计。
对于有机溶剂,例如,可以使用伯醇,如甲醇,乙醇,1-丙醇,1-丁醇,1-戊醇,1-己醇,1-庚醇等。这些有机溶剂可单独或组合使用。
对于增稠剂,可以列举的有伯醇,如乙二醇,丙二醇,丁二醇,己二醇,二甘醇,双丙二醇,双己二醇(dihexylene glycol),乙二醇单甲醚,乙二醇单乙醚,乙二醇单丙醚,乙二醇单丁醚,丙二醇单甲醚,丙二醇单乙醚,丙二醇单丙醚,丙二醇单丁醚,二甘醇单甲醚,二甘醇单乙醚,二甘醇单丙醚和二甘醇单丁醚,以及丙二醇单甲醚乙酸酯,丙二醇单乙醚乙酸酯,α-terpionol,乙二醇二甲醚,乙二醇二乙醚,乙基纤维素等。这些增稠剂可单独或组合使用。
当管较长时,丙二醇单甲醚乙酸酯,丙二醇单乙醚乙酸酯,α-terpionol,乙二醇二甲醚和乙二醇二乙醚是有用的。
对于涂层膜的厚度,由于最终形成的保护膜、透明电极膜、绝缘膜或二次电子发射膜的厚度经热处理后会降低到初始厚度的95-60%,涂层膜厚度的确定优选应将这一厚度降低考虑进去。特别地,优选厚度范围为0.5μm-10μm。如果厚度低于0.5μm,则难以得到具有均匀厚度的涂层膜,因此这样的厚度不是优选的。另一方面,如果厚度高于10μm,则涂层膜在热处理时容易因为重力作用而产生流动,从而难以得到具有均一厚度的金属氧化物膜,因此这样的厚度也不是优选的。更具体而言,对于保护膜,厚度的优选范围为2-3μm,尽管它取决于待形成金属氧化物膜的保护性能。对于透明电极膜,厚度的优选范围为0.5-1μm,尽管它取决于待形成金属氧化物膜的导电性。对于绝缘膜,厚度的优选范围为2-5μm,尽管其取决于待形成金属氧化物膜的绝缘特性。对于二次电子发射膜,厚度的优选范围为0.1-1μm,尽管其取决于待形成金属氧化物膜的二次放电特性。
任何已知方法均可用作形成涂层膜的方法而无任何特别的限制。例如,可通过使涂层溶液流过垂直放置从而其开口位置对着上和下方向的管以形成涂层膜。或者,也可通过从管的任何一个开口端注入涂层溶液,并围绕该开口端进行旋转涂覆而形成涂层膜。该涂覆操作可在管被加热或管的内压根据需要降低时进行。
根据本发明,通过加热涂层膜形成金属氧化物膜时,在热处理之前或与热处理同时对涂层膜进行紫外照射处理或臭氧处理。紫外处理时,用管外发射并穿透管壁的紫外线照射涂层膜。紫外处理所用紫外线的例子非限制性地包括汞灯的I线和G线和波长不超过300nm(例如254nm)的紫外线。照射条件对汞灯的I线和G线而言优选为20分钟或更长,更优选为20-30分钟。使用波长不超过300nm(例如254nm)的紫外线时,照射时间优选为10分钟或更长,更优选为10-20分钟。照射气氛非限制性地可以是,在使用汞灯的I线和G线时为常压;在使用波长不超过300nm(例如254nm)的紫外线时优选应使用氮气或稀有气体气氛。
另外,上述紫外照射处理可通过一个预定图案的遮罩(mask)进行,由此可形成具有预定图案的金属氧化物膜。特别地,如图3(a)和图3(b)所示,在管内壁“a”上形成涂层膜“b”后,在预定的位置形成遮罩“e”,然后用来自光源“f”的紫外光通过遮罩“e”进行照射,之后进行热处理,从而得到具有预定图案的金属氧化物膜“c”。在图3(b)中,参数“g”表示未形成金属氧化物的区域。
然后通过将涂层膜至少暴露在臭氧中而进行臭氧处理。特别地,例如,暴露在含有1-5体积%臭氧的气体(如空气,氮气,稀有气体等,但不局限于此)中。处理时间优选为10分钟或更长,更优选为10-20分钟。还优选将臭氧充分地吹入管中。
同样,在上述热处理之前对涂层膜可进行干燥处理以除去涂层溶液中所含的有机溶剂。尽管干燥处理的条件随涂层溶液组成及管直径、长度的不同而不同,但干燥处理优选在60-110℃进行10-20分钟。另外,干燥处理优选在流动气氛(如空气)中进行以充分除去有机溶剂。此外,如果需要的话,干燥处理可在减压或升压下进行。
为形成涂层膜并干燥涂层膜,可使用如图4所示的设备。在该图中,参数1表示管,参数2表示第一加热器,参数3表示第二加热器,参数4表示涂层溶液,参数11表示液体分送/回收泵,参数12表示涂层溶液贮罐(accommodator),参数13表示废液泵,参数14表示废液贮罐,参数15表示电磁阀,参数16表示液体分送软管,参数17表示紫外照射装置,参数18表示电源滑动器,参数19表示排放装置。
在这一形成涂层膜的设备中,涂层膜可在多个管1的内表面上同时形成。这些管1由夹持器装置(未示出)垂直地夹持。
电源滑动器18可在图中箭头A所示方向上移动。第一加热器2、第二加热器3和紫外照射装置17联接到电源滑动器18上,从而在电源滑动器18移动时沿箭头A所示方向移动。第一加热器2的长度足以部分覆盖管1,而第二加热器3的长度足以在长度方向上完全覆盖管1。
液体分送/回收泵11将涂层溶液4从涂层溶液贮罐12中吸出并将其送入管1中,并在将涂层溶液4涂覆到管1内表面上之后,抽吸并回收涂层溶液4以将其再次贮存于涂层溶液贮罐12中。
废液泵13在管1内表面上形成涂层膜期间生成的废液池中的涂层溶液吸出并排入废液贮罐14中。
电磁阀15在液体分送/回收泵11和废液泵13之间切换。
排放装置19用于排出溶剂,该溶剂是在涂层溶液4的干燥过程中从管1上方开口处排出的挥发性组分。
现在,将解释这一涂层膜形成装置的操作。
首先,将涂层溶液4涂覆在管1的内壁上。这是通过以下操作完成的由液体分送/回收泵11从涂层溶液贮罐12中吸取涂层溶液4,将涂层溶液4从管1下部送入管1中,然后从管1下部抽取涂层溶液4并贮存于涂层溶液贮罐12中,之后对电磁阀15进行切换。
然后电源滑动器18向上移(或者可预先移动),而第一加热器2、第二加热器3和紫外照射装置17则位于管1上部的位置。然后对第一加热器2和第二加热器3通电加热并通过第一加热器2在管1上部对涂层溶液进行干燥。此时,由于在管内低于第一加热器2的位置形成液体汇集,该汇集的液体由废液泵13抽出并排入废液贮罐14中。
此时,电源滑动器18一点一点向下移动以使新的液体汇集不断地在低于第一加热器2的位置形成,并持续重复这一操作,第一加热器2和第二加热器3移至低于管1的位置。这样,在管1的整个内表面上形成了厚度均匀的干燥涂层膜。
经过这种方式,通过使管内流通孔被粘度降低的涂层溶液封闭,或者换言之,通过在从上到下加热管使管内涂层溶液循序干燥时形成液体汇集,涂层溶液的物理作用力被很好地平衡并均匀分布在环形方向上,因此可以得到均匀的涂层膜厚度。
另外,通过用紫外照射装置17对涂层膜进行紫外线照射可改善涂层膜中的有机金属化合物的分解并使金属氧化物聚集。在此,第二加热器3用于防止干燥过程中挥发的溶剂粘附到干燥的涂层膜上。此方法形成的涂层膜在一个烘焙装置中进行热处理变成金属氧化物膜。
在图4所示紫外照射处理中,涂层膜的形成与干燥步骤连续进行,但是,它们的连续进行并不是必需的。例如,紫外照射操作可与涂层膜烘焙操作中的热处理同时进行。
在上述紫外照射操作或臭氧处理之后或同时进行的热处理优选在含氧气氛中进行,处理温度为300-500℃,处理时间为30分钟至2小时,尽管上述条件取决于有机金属化合物的类型。更特别地,当使用己酸镁作为有机金属化合物时,热处理在410-470℃温度下进行;当使用己酸钛时,温度为300-400℃。此处含氧气氛为至少含有氧的气氛,且氧的浓度优选为空气中组成至100体积%。另外,为改善向金属氧化物膜的转化效率,热处理优选在流动气氛下进行。而且,如果需要的话,热处理可以在减压或升压下进行。
以下将解释以上述方式形成的金属氧化物膜用作显示装置的二次电子发射膜的情况。
图5为一例显示装置示意图,其所用的气体放电管中有以本发明如上所述的方法在内表面上形成的二次电子发射膜。
图中,参数31表示前侧基材,参数32表示背侧基材,参数21表示气体放电管,参数22表示显示器电极对(electrode couple)(主电极对),参数23表示信号电极(也称为数据电极)。
提供了二次电子发射膜和荧光层的细长气体放电管21的内部(放电空间)充满了放电气体,并且其两端均被封闭。信号电极23在背侧基材32上形成并沿气体放电管21的纵向放置。显示电极对22在前侧基材31上形成并沿着与信号电极23相交叉的方向放置。
信号电极23与显示电极对22的放置应使它们在装配时分别与气体放电管21的外围下部与外围上部紧密接触。此时,为确保紧密接触,显示电极与气体放电管表面可用放在它们之间的导电胶粘在一起。
当二维地观看显示装置时,信号电极23与显示电极对22相交的部分形成一个单元发光区域。为获得显示,显示电极对22的任何一行可用作扫描电极。在该扫描电极与信号电极23的交叉处产生选择性放电以选择一个发光区域,并使用与发光相关联的管内表面区域中产生的壁电荷,通过显示电极对22产生显示放电。选择性放电是在垂直面对的扫描电极与信号电极23之间的气体放电管21中产生的表面放电,而显示放电则是在一个平面上彼此平行放置的两个显示电极之间的气体放电管21中产生的表面放电。
在所示电极结构中,每一个发光部分均安置有三个电极,且显示放电由显示电极对产生。然而,该结构不局限于此,也可得到这样的结构,即,在显示电极对22与信号电极23之间产生显示放电的结构。
也就是说,电极结构可以是这样的类型显示电极对22由一个显示电极执行,而选择性放电与显示放电(表面放电)在作为扫描电极的该显示电极与信号电极23之间产生。
实施例通过在气体放电管内壁上形成二次电子发射膜的实施例对本发明进行进一步描述,但是应当理解本发明不受这些实施例的限制。
实施例1将含有1重量份己酸镁、1重量份乙醇和1重量份丙二醇单甲醚乙酸酯的涂层溶液(粘度20-30cps)涂覆于内径为0.8mm、长度为250mm的玻璃细管内壁上形成气体放电管的管状容器,并干燥涂层溶液,进而形成涂层膜。具体而言,涂覆操作按如下步骤进行将涂层溶液引入到细管端部,将细管置于旋转器中,并围绕端部进行旋转涂覆。干燥操作在70℃进行15分钟。涂层膜的厚度为约25000埃。
然后,将在上面形成了涂层膜的细管的前后表面均用来自低压汞灯的波长254nm的紫外线照射10分钟。照射后,在不超过450℃的温度下进行约30分钟的热处理,从而得到氧化镁膜。
这样得到的氧化镁膜最薄点的厚度为3000埃,最厚点的厚度为4500埃。相反,不进行紫外照射的情况下,所得氧化镁膜最薄点的厚度为1000埃,最厚点的厚度为8000埃。因此,可以确定通过紫外照射可以将氧化镁膜制成均匀膜。
实施例2将含有1重量份己酸镁、0.5重量份乙醇和0.4重量份二甘醇单丙醚乙酸酯的涂层溶液(粘度350-400cps)涂覆于内径为0.8mm,长度为1000mm的玻璃细管内壁上,并干燥涂层溶液,进而形成涂层膜。具体而言,涂覆操作按如下步骤进行将涂层溶液引入到细管端部,后者向上竖直放置以使细管内部充满涂层溶液,然后缓慢地排出涂层溶液。干燥操作在涂层溶液排放过程中通过一个局部加热器进行,随着充满细管的涂层溶液顶面的移动,所述局部加热器在邻近充满细管的涂层溶液顶面附近扫过粘附在管壁上的涂层溶液。涂层膜的厚度为约20000埃。
然后,将在上面形成了涂层膜的细管的前后表面均用来自极高压汞灯的G线和I线的混合紫外线照射20分钟。照射后,在不超过450℃的温度下进行约30分钟的热处理,从而得到氧化镁膜。
这样得到的氧化镁膜最薄点的厚度为3000埃,最厚点的厚度为4500埃。相反,不进行紫外照射的情况下,所得氧化镁膜最薄点的厚度为1000埃,最厚点的厚度为8000埃。因此,可以确定通过紫外照射可以使氧化镁膜均匀。
根据本发明,可提供一种针对三维表面——如管内壁——形成具有均一厚度金属氧化物膜的方法,该方法使用经热处理可转化为金属氧化物膜的有机金属化合物。
权利要求
1.一种形成金属氧化物膜的方法,包括当通过对在管内壁上形成的含有有机金属化合物的涂层膜进行热处理以形成金属氧化物膜时,在热处理之前或与热处理同时对涂层膜进行紫外照射处理或臭氧处理。
2.权利要求1的形成金属氧化物膜的方法,其中紫外照射处理或臭氧处理在热处理之前且与涂层膜的干燥处理同时进行。
3.权利要求1的形成金属氧化物膜的方法,其中紫外照射处理通过一个预定图案的遮罩进行。
4.权利要求1的形成金属氧化物膜的方法,其中管的开口尺寸的范围为0.5-2mm,管的长度的范围为30cm-3m。
5.一种形成气体放电管的二次电子发射膜的方法,包括当由金属氧化物膜形成的二次电子发射膜是通过对在玻璃管内壁上形成的含有有机金属化合物的涂层膜进行热处理来形成时,在热处理之前或与热处理同时对涂层膜进行紫外照射处理或臭氧处理,其中所述玻璃管为内径不大于2mm的长玻璃管。
全文摘要
根据本发明,提供一种形成金属氧化物膜的方法,该方法包括当通过对在管内壁上形成的含有有机金属化合物的涂层膜进行热处理以形成金属氧化物膜时,在热处理之前或与热处理同时对涂层膜进行紫外照射处理或臭氧处理。
文档编号H01J11/34GK1495289SQ03154968
公开日2004年5月12日 申请日期2003年8月19日 优先权日2002年8月19日
发明者山田齐, 司, 渡海章, 石本学, 中泽明, 粟本健司, 筱田传 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1