专利名称::半导体器件键合装置以及使用该装置键合半导体器件的方法
技术领域:
:本发明涉及一种半导体器件键合装置以及使用该半导体器件键合装置键合半导体器件的方法,其中所述半导体器件键合装置重复进行键合半导体器件和衬底的操作。
背景技术:
:作为将半导体器件键合到衬底上的装置,公知一种用于在将凸起设置在半导体器件和衬底之间的状态下,键合半导体器件和衬底同时利用超声波振动使其相对振动的半导体器件键合装置。如果通过使用常规的半导体器件键合装置重复进行键合操作,则键合强度(例如,剪切强度)例如由于半导体器件的保持部件的污染或者其上安装衬底的平台的污染而降低。为了解决上述问题,在JP2002-313837A中建议了一种包括判断装置的半导体器件键合装置,所述判断装置通过检测在半导体器件和衬底之间的相对振动的变化来判断是否存在保持部件的污染。然而,在保持部件的污染存在与否和剪切强度之间不存在特定的相互关系,并且由此在JP2002-313837A中所建议的半导体器件键合装置不足以使剪切强度保持在预定值或以上。
发明内容本发明提供一种半导体器件键合装置以及使用该半导体器件键合装置键合半导体器件的方法,所述半导体器件键合装置可以使剪切强度保持在预定值或以上。本发明的半导体器件键合装置是一种重复进行键合半导体器件和衬底操作的半导体器件键合装置,该半导体器件键合装置包括施压部件,在将凸起设置在半导体器件和衬底之间的状态下,将半导体器件压向衬底一侧;超声波振动施加部件,通过将超声波振动施加到半导体器件和衬底中的至少一个,使半导体器件和衬底相对振动;时间测量部件,测量从开始施加超声波振动时的时间到按压半导体器件达预定距离时的时间所需的时间段;以及控制部件,基于由时间测量部件测量到的时间段,在随后的键合过程中控制超声波振动的输出。本发明的半导体器件的键合方法是一种重复进行键合半导体器件和衬底操作的半导体器件的键合方法,该方法包括在将凸起设置在半导体器件和衬底之间的状态下,通过将超声波振动施加到半导体器件和衬底中的至少一个来使半导体器件和衬底相对振动,同时将半导体器件压向衬底一侧;测量从开始施加超声波振动时的时间到按压半导体器件达预定距离时的时间所需的时间段;以及基于所测量到的时间段,在随后的键合过程中控制超声波振动的输出。图1是示出在键合过程中凸起的高度随时间变化的曲线图;图2是示出按压速度与剪切强度之间的关系的曲线图3是示出根据本发明实施例的半导体器件键合装置结构的示意图;图4是示出根据本发明实施例的半导体器件的键合方法的流程图。具体实施方式本发明的半导体器件键合装置用作重复进行键合半导体器件和衬底操作的半导体器件键合装置。对半导体器件没有特别的限制,并且例如可以使用通过切割半导体晶片等获得的半导体芯片(所谓的裸芯片)。而且,本发明的半导体器件键合装置包括施压部件,在将凸起设置在半导体器件和衬底之间的状态下,将半导体器件压向衬底一侧;以及超声波振动施加部件,通过将超声波振动施加到半导体器件和衬底中的至少一个使半导体器件和衬底相对振动。例如,在键合之前,预先将凸起设置在形成在半导体器件中的电极上或者设置在形成在衬底上的电极上。对凸起的形状没有特别的限制,只要凸起在键合之前的高度例如在大约20um到大约30"m的范围内,凸起在键合之前的体积例如在大约7X10、mS到大约10X104ix1113的范围内,并且凸起在键合之前的键合部分的面积例如在大约3X103"m2到大约5X103un^的范围内即可。此外,对凸起的材料也没有特别的限制,并且例如可以使用诸如金的金属材料。对施压部件没有特别的限制,并且例如可以使用诸如音圈电机(以下简称为"VCM")等动力。为按压半导体器件而由施压部件施加的负载例如在每一凸起大约500mN到大约1000mN的范围内。在以下说明中,为按压半导体器件施加的负载值表示每一凸起的负载值。对超声波振动施加部件也没有特别的限制,并且例如可以使用常规的超声波振动产生装置。由超声波振动施加部件施加的超声波振动的频率例如可以在大约60kHz到大约120kHz的范围内,并且其输出例如可以在大约0.25W到大约2.5W的范围内。对超声波振动的振动方向没有特别的限制,只要其与衬底表面平行即可。此外,施加超声波振动例如可以通过在固定衬底的状态下将超声波振动施加到半导体器件,或者通过在固定半导体器件的状态下将超声波振动施加到衬底来进行,只要可以使半导体器件和衬底相对振动即可。或者,可以将具有不同相位的超声波振动分别施加到衬底和半导体器件。当通过超声波振动施加部件将超声波振动施加到半导体器件和衬底中的至少一个,同时通过施压部件按压半导体器件时,凸起的变形距离(压縮距离)明显增加。由此,半导体器件压向衬底一侧的按压距离明显增加。图1示出在键合过程中凸起的高度随时间的变化。在图1所示的实例中,使用金凸起作为凸起,凸起在键合之前的高度和体积分别为26um和8X104"m3,并且凸起在键合之前的键合部分的面积为3.8X103Um2。此外,为按压半导体器件施加的负载为2300mN,并且所施加的超声波振动的频率和输出分别为63.5kHz和1.5W。如图1所示,从开始施加超声波振动时的时间X到按压半导体器件达预定距离时的时间Y,凸起的高度明显降低。即,在施加超声波振动的初始阶段中,半导体器件朝向衬底一侧的按压速度增加。本发明的发明人已经发现在施加超声波振动的初始阶段中半导体器件朝向衬底一侧的按压速度(以下简称为"按压速度")与作为键合强度标志的剪切强度之间的相关性,由此实现了本发明。将参考图2对上述相关性进行说明。图2是示出按压速度和每一凸起的剪切强度(以下,剪切强度值表示每一凸起的剪切强度值)之间的关系的曲线图。这里,在这种情况下的按压速度表示从开始施加超声波振动时的时间到按压半导体器件达m时的时间的平均速度。即,按压速度表示通过计算7/T获得的速度,其中T(表达为"ms")表示按压半导体器件达7um所需的时间段。而且,所使用的凸起与在图1所示的实例中使用的凸起相似,并且通过使用由Rhesca有限责任公司制造的PTR-3000进行焊盘拉伸剪切测试(landpulsheartest)来测量剪切强度。如图2所示,按压速度和剪切强度具有有利的相关性。由此,可以发现,例如需要按压速度为0.78um/ms或以上,以在图2所示的系统中获得2000mN或以上的剪切强度。考虑到上述结果,除了上述部件之外,本发明的半导体器件键合装置还包括时间测量部件,测量从开始施加超声波振动时的时间到按压半导体器件达预定距离时的时间所需的时间段;以及控制部件,基于由时间测量部件测量到的时间段在随后的键合过程中控制超声波振动的输出,以便使随后的键合中的时间段处在预定的范围内。这里,上述"预定距离"是在施加超声波振动的初始阶段中增加按压速度时的按压距离,并且其值根据所使用的凸起等而不同,并且例如可以在大约5wm到大约7ym的范围内。由于上述部件,本发明的半导体器件键合装置可以使剪切强度保持在预定值或以上。例如,在作为通过使用本发明的半导体器件键合装置进行n次键合操作的结果(n是自然数),按压半导体器件达预定距离所需的时间段增加的情况下(即,在半导体器件的按压速度降低的情况下),经由使用控制部件,通过使超声波振动在第(n+l)次键合操作中的输出比其在第n次键合操作中的输出增加预定距离,可以使按压速度保持在预定值或以上。由此,可以使剪切强度保持在预定值或以上。这里,超声波振动的输出所增加的距离根据所需的剪切强度、所使用的凸起等而不同,并且将在下面对其优选实例进行说明。对时间测量部件没有特别的限定,并且优选能测量例如在大约3ms到大约10ms的范围内的时间段的计数器等。控制部件例如可以包括在计算机中使用的中央处理单元(CUP)等。接下来,将对本发明的半导体器件的键合方法进行说明。这里,本发明的半导体器件的键合方法是使用本发明的上述半导体器件键合装置键合半导体器件的方法。因此,在以下说明中,会省略对与以上说明相重叠的内容进行的说明。本发明的半导体器件的键合方法是重复进行键合半导体器件和衬底操作的半导体器件的键合方法,该方法包括在将凸起设置在半导体器件和衬底之间的状态下,通过将超声波振动施加到半导体器件和衬底中的至少一个使半导体器件和衬底相对振动,同时将半导体器件压向衬底一侧;测量从幵始施加超声波振动时的时间到按压半导体器件达预定距离时的时间所需的时间段;以及基于所测量到的时间段,在随后的键合过程中控制超声波振动的输出。由此,如上所述,可以使半导体器件的按压速度保持在预定值或以上,并且因此可以使剪切强度保持在预定值或以上。以下将详细说明本发明的实施例。首先,将参考附图对根据本发明实施例的半导体器件键合装置进行说明。将参考的图3是示出根据本发明实施例的半导体器件键合装置结构的示意图。如图3所示,根据本发明实施例的半导体器件键合装置1是重复进行键合半导体器件IO和衬底11的操作的半导体器件键合装置,该装置包括其上安装了衬底11的平台12;保持半导体器件10的保持部件13;在将凸起14设置在半导体器件IO和衬底11之间的状态下将半导体器件io压向衬底11一侧的VCM15;通过经由保持部件13将超声波振动施加到半导体器件IO来使半导体器件IO和衬底11相对振动的超声波振动施加部件16;检测施加到半导体器件IO的负载的负载单元17;以及控制半导体器件键合装置1的各个部件的控制部件18。在键合之前预先将凸起14设置在形成在半导体器件10上的电极19a上。并且,当通过VCM15将负载施加到半导体器件10上时,在与形成在衬底11上的电极19b接触的状态下压縮凸起14。由此,将半导体器件IO压向衬底11一侧。而且,通过使用超声波振动施加部件16将超声波振动施加到半导体器件10,使半导体器件IO和衬底11相对振动。由此,使凸起14软化,并且经由凸起14键合半导体器件IO和衬底11。负载单元17也可以用作测量从开始将超声波振动施加到半导体器件10时的时间到按压半导体器件IO达预定距离时的时间所需的时间段的时间测量部件。例如,为了使负载单元17开始时间测量,负载单元17检测在开始施加超声波振动的时刻的半导体器件10的按压距离的显著变化,并且在该时刻开始时间测量。或者,也可以在开始将超声波振动施加到半导体器件10的时刻,控制部件18将用于幵始时间测量的信号传送到负载单元17。同样地,在使得负载单元17终止时间测量的情况下,例如,在通过VCM15将半导体器件IO按压达预定距离时,控制部件18可以将用于终止时间测量的信号传送到负载单元17。并且,基于由负载单元17测量到的时间段,控制部件18在随后的键合过程中控制超声波振动的输出。由此,可以使半导体器件10的按压速度保持在预定值或以上,并且由此可以使剪切强度保持在预定值或以上。以上对根据本发明实施例的半导体器件键合装置进行了说明,但是本发明不限于此。例如,负载单元17在上述实施例中用作时间测量部件,但是时间测量部件不限于此,并且例如控制部件18也可以用作时间测量部件。接下来,将参考图3和4说明根据本发明实施例的半导体器件的键合方法。图4是示出根据本发明实施例的半导体器件的键合方法的流程图。以述半导体器件的键合方法是使用根据本发明上述实施例的半导体器件键合装置1键合半导体器件的方法。在以下说明中,利用与图3相同的参考标记表示与图3相同的部件,并且省略对其的说明。首先,将半导体器件10固定到保持部件13(步骤Sl)。接着,在将凸起14设置在半导体器件10和衬底11之间的状态下,通过VCM15将半导体器件10压向衬底11一侧(步骤S2)。随后,当负载单元17检测到预定负载(例如在大约50mN到大约500mN的范围内)时,超声波振动施加部件16将超声波振动施加到半导体器件10,并且负载单元17开始按压时间(T)的测量(步骤S3)。该按压时间(T)是从开始施加超声波振动时的时间到例如按压半导体器件10达5iim至7Pm时的时间的时间段。然后,从负载单元17检测到预定负载时的时间到例如按压半导体器件io达10um至15um时的时间,保持部件13释放半导体器件10以便终止键合操作(步骤S4)。然后,控制部件18判断按压时间(T)是否小于10ms(步骤S5),并且在按压时间小于10ms(在步骤S5中为"是")的情况下,进行随后的键合操作而不改变超声波振动的输出设置。另一方面,在按压时间为10ms或以上(在步骤S5中为"否")的情况下,通过控制部件18改变超声波振动的输出设置(步骤S16),并且之后,进行随后的键合操作。由此,可以使半导体器件10的按压速度保持在预定值或以上,并且由此可以使剪切强度保持在预定值或以上。以上对根据本发明实施例的半导体器件的键合方法进行了说明,但是本发明不限于此。例如,在上述的实施例中,在按压时间(T)为10ms或以上的情况下,改变超声波振动的输出,但是在本发明中该设置值不限于此,并且可以根据所需的剪切强度对其进行适当的确定。实例以下将对本发明的实例进行说明。本发明不限于该实例。表1示出在通过使用上述半导体器件键合装置1重复进行键合操作时的相应条件的转换。这里,表l中的按压时间表示从开始施加超声波振动时的时间到按压半导体器件10达6lim时的时间的时间段。此外,在表1所示的实例中,当按压时间变为10ms或以上时,可以设置控制部件18以将超声波振动的输出设置增加0.5W。另外,在表1所示的实例中,使用金凸起作为凸起14,凸起14在键合之前的高度和体积分别为26iim和8X104Pm3,并且凸起14在键合之前的键合部分的面积为3.8X103um2。而且,为按压半导体器件10施加的负载为2500mN,并且所施加的超声波振动的频率为63.5kHz。表1<table>tableseeoriginaldocumentpage12</column></row><table>如表1所示,在开始键合之后即刻的按压时间(从第一次键合操作到第四次键合操作)为3ms,但是其随着重复进行键合操作越多而逐渐变大(在表1中未示出),并且在第600次键合操作中达到10ms。据此,在第600次键合操作中的剪切强度为1300mN,其从开始之后即刻的剪切强度降低了900mN。并且,由于按压时间在第600次键合操作中达到10ms,因此在第601次键合操作之前控制部件18将超声波振动的输出从1.5W增加到2.0W。结果,按压时间在第601次键合操作中变为4ms,并且将剪切强度存储为2100mN。在上述实例中,将超声波振动的输出设置成当按压时间变为10ms或以上时增加0.5W,并且由此,例如在所需的剪切强度的下限值为1200mN的情况下,剪切强度通常会保持在该下限值或以上。在上述实例中,将超声波振动的输出设置成当按压时间变为10ms或以上时增加0.5W,但是在本发明中该设置值不限于此,并且可以根据所需剪切强度对其进行适当的确定。工业实用性本发明通常应用于半导体器件键合装置以及可以精确控制剪切强度的半导体器件的键合方法。权利要求1、一种半导体器件键合装置,其重复进行键合半导体器件和衬底的操作,该半导体器件键合装置包括施压部件,在将凸起设置在所述半导体器件和所述衬底之间的状态下,将所述半导体器件压向所述衬底一侧;超声波振动施加部件,通过将超声波振动施加到所述半导体器件和所述衬底中的至少一个,使所述半导体器件和所述衬底相对振动;时间测量部件,测量从开始施加所述超声波振动时的时间到按压所述半导体器件达预定距离时的时间所需的时间段;以及控制部件,基于由所述时间测量部件测量到的所述时间段,在随后的键合过程中控制超声波振动的输出。2、一种半导体器件的键合方法,其中重复进行键合半导体器件和衬底的操作,该方法包括在将凸起设置在所述半导体器件和所述衬底之间的状态下,通过将超声波振动施加到所述半导体器件和所述衬底中的至少一个来使所述半导体器件和所述衬底相对振动,同时将所述半导体器件压向所述衬底一侧;测量从开始施加所述超声波振动时的时间到按压所述半导体器件达预定距离时的时间所需的时间段;以及基于所测量到的时间段,在随后的键合过程中控制超声波振动的输出。全文摘要本发明的半导体器件键合装置1包括施压部件15,在将凸起14设置在半导体器件10和衬底11之间的状态下,将半导体器件10压向衬底11一侧;超声波振动施加部件16,通过将超声波振动施加到半导体器件10和衬底11中的至少一个,使半导体器件10和衬底11相对振动;时间测量部件17,测量从开始施加超声波振动时的时间到按压半导体器件达预定距离时的时间所需的时间段;以及控制部件18,基于由时间测量部件17测量到的时间段,在随后的键合过程中控制超声波振动的输出。文档编号B23K20/10GK101128914SQ20068000604公开日2008年2月20日申请日期2006年6月7日优先权日2005年6月13日发明者上野康晴,仕田智,内藤浩幸,森川诚申请人:松下电器产业株式会社