专利名称:超声波振动接合装置的制作方法
技术领域:
本发明涉及通过超声波振动将半导体芯片安装到电路板表面的超声波振动接合装置。
如特开平10-22308号公报所示,本申请人曾提出过适合于用超声波振动将半导体芯片安装到电路板表面的超声波振动接合装置。
上述超声波振动接合装置要在谐振器的最大振动点到最小振动点的范围内形成吸附半导体芯片用的通路,故形成该通路要化费很多劳力和时间。
为此,本发明的目的在于提供一种简化吸附通路结构的超声波振动接合装置。
技术方案1的发明是一种超声波振动接合装置,第1构件放置在安装机构上,第2构件被吸附于谐振器的接合作用部,该接合作用部被双柱支承于在安装机构上方与之隔开的超声波接合机构,以非接触状态插入第1构件与第2构件之间的测量机构对设在第1构件上侧面的金属部和设在第2构件下侧面的金属部的位置进行测量并驱动安装机构,以此来将第1构件的金属部与第2构件的金属部的位置对齐,然后谐振器下降,在加压状态下将第1构件的金属部和第2构件的金属部叠合,并利用从振动器传递到谐振器的超声波振动将第1构件的金属部与第2构件的金属部接合,其特点是,谐振器在设有接合作用部的最大振幅点上设有吸附第2构件用的通路。
技术方案2的发明的特点在于分别构成可离合的方案1的吸附通路和与之连接的吸附用软管。
技术方案3的发明的特点在于方案1的谐振器在最小振幅点上设有加热器。
对附图的简单说明图1是本发明第1实施形态的超声波接合装置的侧视图。
图2是第1实施形态的压接器(ホ-ン)的俯视图。
图3是第1实施形态的吸附吸附功能部的分解立体图。
图4图1的A-A线剖视图。
图5是本发明第2实施形态的超声波接合装置的侧视图。
以下结合
本发明的实施形态。
图1~图3表示第1实施形态,其中图1是超声波接合装置的主视图,图2是压接器24的主视图,图3表示谐振器23的吸附功能部分解后的外观,图4是沿A-A线剖切图1得到的剖面。
第1实施形态如图1所示,是在作为第1构件的电路板92的表面安装作为第2构件的半导体芯片90用的装置。半导体芯片90的一面设有作为连接端子的多个平板状或球状衬垫91。在电路板92一面的芯片安装部位设有作为连接端子的多个平板状或球状的衬垫93。芯片上的衬垫91和电路板上的衬垫93数量相同,位置对应。芯片上的衬垫91和电路板上的衬垫93通过超声波振动接合,这样将半导体芯片90安装到电路板92表面。
超声波振动接合装置在基准台1上设有安装机构2、超声波振动接合机构10、测量机构60及监视器装置80。安装机构2具有设在基准台1上的XYθ驱动部3和安装在XYθ驱动部3之上的安装工作台4。另外,根据测量机构60的输出,XYθ驱动部3使安装工作台4在沿与基准台1平行的平面的纵横方向、即X方向和Y方向移动的同时以上述平面内的1点为中心沿与基准台1平行的平面内的旋转角、即θ方向旋转,并对安装工作台4进行位置控制,以使放置在与基准台1平行的安装工作台4上侧面的装配对象、即电路板92的芯片安装部位到达规定的装配位置。XYθ驱动部3具有针对基准台1的X方向仰角调节部5和针对基准台1的Y方向仰角调节部6。在进行安装准备作业时或更换谐振器23时,或更换安装工作台4时,如果不能确定安装工作台4的上侧面与谐振器23的接合作用部27下侧面之间是否保持平行,就通过人工操作X方向仰角调节部5和Y方向仰角调节部6,来调节XYθ驱动部3针对基准台1的X方向仰角及XYθ驱动部3针对基准台1的Y方向仰角,以确保安装工作台4上侧面与接合作用部27下侧面之间的平行度。
超声波振动接合机构10具有设置在基准台1上的固定基座11、安装在固定基座11上的伺服电动机一类的电动机12、与电动机12的输出轴连接的螺栓·螺帽机构13、构成螺栓螺帽·机构13的螺帽的提升基座14、安装在提升基座14上的气缸15、与气缸15的活塞杆连接的支架16、安装在支架16上的谐振器23、通过未图示的无头螺钉和螺钉孔与谐振器23的一端同轴连接的振动器30。而且,一旦电动机12正转,螺栓·螺帽机构13的螺纹杆即正转,与该螺纹杆螺纹配合的螺帽就使提升基座14下降,而一旦电动机12逆转,螺栓·螺帽机构13的螺纹杆即逆转,提升基座14因螺帽的作用而上升。提升基座14与竖设于固定基座11下方的左右导向柱21滑接配合而被止转并进行升降。可升降地装在各导向柱21内部的导向轴22的下端与支架16连接,通过提升基座14的升降和气缸15的伸缩而升降,将支架16保持在与基准台1平行的状态。
谐振器23具有压接器24和通过未图示的无头螺钉和螺钉孔而同轴连接的2个增压器25、26,各增压器25、26分别支承于从支架16左右两侧向下方延伸的臂部17、18,由此将谐振器23双柱支承在支架16上。振动器30通过未图示的无头螺钉和螺钉孔与一方的增压器25同轴连接。振动器30是从未图示的超声波发生器接受电力供给、发生规定频率的纵波超声波振动并将输出的电能转换成机械能的压电元件或磁应变元件等能量转换器。
在本实施形态中,压接器24具有与来自振动器30的超声波振动谐振的谐振频率的1个波长的长度,增压器25、26具有与来自振动器30的超声波振动谐振的谐振频率的半个波长的长度。增压器25、26为圆柱形状,在中央的最小振幅点具有从外侧面伸出的环状支承部28、29。各支承部28、29收容在支架16的左右臂部17、18上同轴形成的贯通孔19、20中,各臂部17、18的外侧面及贯通孔19、20被切缝50(见图4)分割,通过用螺栓51(见图4)连接被分割的部分,使各臂部17、18夹住支承部28、29。
又如图2所示,压接器24是四边形的板状,在中央的最大振幅点f3具有从上下侧面向外侧伸出的短四边柱状接合作用部27和作为吸附功能部的通路31。下侧的接合作用部27具有平面积大于半导体芯片90的前端面。通路31由设于压接器24的最大振幅点f3、从接合作用部27前端面的中央沿接合作用部27内部延伸到压接器24中心的纵孔33和从压接器背面的中央沿内部延伸、与纵孔32连接的横孔33形成。接合作用部27上的纵孔33的开口部是吸附半导体芯片90的吸附孔。压接器24的横孔33的开口部是连接软管的软管口。在压接器24的两个最小振幅点f2、f4分别设有加热器34。在压接器24的两端部存在最大振幅点f1、f5。
以下结合图3说明软管口、即横孔33的开口部与软管之间的连接结构。在从支架16的左右方向中央向下方延伸的托架部37上装有气缸38和红外线温度计一类非接触式温度计39。气缸38的活塞杆上装着软管连接器40。在软管连接器40的前侧面装着由弹性合成树脂构成的喇叭状吸附垫41。在软管接头40的上侧面外嵌着用橡胶或合成树脂做成的真空用软管43的一端。吸附用软管43的另一端经过未图示的阀与未图示的真空泵一类吸力发生源连接。
通过气缸38的伸长动作,使软管接头40前进,吸附垫41与横孔33开口部周围的压接器24的背面接触,吸附垫41的前端开口部向外侧弹性扩展,通路31和吸附用软管43的内孔部通过软管接头40的内孔和吸附垫41的内孔连接(见图4)。在此状态下,通过将未图示的阀从大气开放状态切换到吸附状态,接合作用部27的开口部就用来自吸力发生源的吸力吸引外气,以吸附半导体芯片90。
相反,由于阀从吸附状态切换到大气开放状态,通路31充满大气,就将半导体芯片90释放。另外,通过气缸38的收缩动作使软管接头40后退,吸附垫41脱离横孔33开口部周围的压接器24的背面,通路31与吸附用软管43的连接被解除。从软管接头40向背面伸出的左右导杆44与在气缸38周围的托架部37上形成的导孔45滑接配合,软管接头40被止转并前进或后退。
又如图4所示,固定在托架部37上的加热器导轨46上安装可横向移动的左右加热器支板47,该加热器支板47上分别装有加热器34。在加热器34插入谐振器23上形成的加热器用孔48的状态下,将螺栓49从加热器支板47一侧拧入加热器导轨46,将加热器支板47固定在加热器导轨46上。
以下再用图1说明,测量机构60用于使吸附在超声波振动接合机构10的接合作用部27上的半导体芯片90的芯片衬垫91与放置在安装工作台4上的电路板92的电路板衬垫93对齐,具有设在基准台1上的转台61、装载在转台61的可动臂62上的上侧及下侧测量用光源63、64、装载在可动臂62上的双视野光学镜头65、以及装载在可动臂62上的CCD摄象机70。双视野光学镜头65的2个直角棱镜66、67各自的斜面隔着光学膜68而相互重叠,在其中1个直角棱镜67的与CCD摄象机70相反方向的一面设有反射膜69。
通过转台61的驱动,可动臂62从实线所示的待机位置移动并停止在虚线所示的测量位置,上侧及下侧的测量用光源63、64和双视野光学镜头65以非接触状态插入设置在上下隔离设置的测量对象、即半导体芯片90和电路板92之间。在此状态下,上侧及下侧测量用光源63、64中的一方、譬如上侧的测量用光源63发光,从该测量用光源63照射到半导体芯片90下侧面的光的反射光被双视野光学镜头65的光学膜68反射到反射膜69上后又被反射膜69反射。该反射光透过光学膜68而到达CCD摄象机70,使CCD摄象机70对半导体芯片90的衬垫91进行摄象,并将转换成电信号的图象信号输出。另外,另一方的下侧测量用光源64发光,从该测量用光源64照射到电路板92上侧面的光的反射光被双视野光学镜头65的光学膜68反射到CCD摄象机70上。该反射光到达CCD摄象机70,使CCD摄象机70对电路板92的衬垫进行摄象,并将转换成电信号的信号输出。
即,测量机构60通过使上侧及下侧测量用光源63、64交替发光,可使CCD摄象机70通过双视野光学镜头65而交替地对芯片衬垫91和电路板衬垫93进行摄象。另外,测量机构60通过使上侧及下侧测量用光源63、64同时发光,可使CCD摄象机70通过双视野光学镜头65而同时对芯片衬垫91和电路板衬垫93进行摄象,不过在这种场合,由于被摄的图象是芯片衬垫91与电路板衬垫93重叠的形态,故操作者要一边看着监视器装置80上显示的2个合成图象一边手动操作XYθ驱动部3,直到监视器装置80上显示的芯片衬垫91的整个图象与电路板衬垫93的整个图象一致,此时表明半导体芯片90与电路板92的芯片安装部位已对齐,这种方法很适用于手动操作。
测量机构60的运算部71根据从CCD摄象机70输入的摄象信号计算芯片衬垫91与电路板衬垫93之间的位置偏差,并向XYθ驱动部3输出控制信号。另外,根据由操作者输入的监视器显示指令,运算部71将由CCD摄象机70输入的摄象信号转换成图象信号后输出到监视器装置80。监视器装置80用2分割画面显示芯片衬垫91的图象和电路板衬垫93的图象以及在XYθ驱动部3的X方向和Y方向及θ方向交叉的中心点P上相交的X-Y基准线L1、L2。在监视器装置80上用2分割画面显示的X-Y基准线L1、L2在2分割画面上下排列时,Y基准线L2成为上下延伸的1条直线,在2分割画面左右排列时,X基准线L1成为左右延伸的1条直线。这样,操作者通过观察监视器装置80上的2分割画面,即很容易判断芯片衬垫91与电路板衬垫93的位置是否对齐,或是向何方向偏移何种程度。
以下说明第1实施形态的动作。超声波接合机构10的压接器24如图1所示,停止在上升极限位置,半导体芯片90被吸附于压接器24的接合作用部27,半导体芯片90的芯片衬垫91向着下侧,电路板92放置在安装机构2的安装工作台4上,电路板92的电路板衬垫93向着上侧。在此状态下,测量机构60从实线位置移动到虚线位置,上侧及下侧测量用光源63、64和双视野光学镜头65以非接触状态进入半导体芯片90与电路板92之间的空间。而且,通过使上侧及下侧的测量用光源63、64交替发光,CCD摄象机70对芯片衬垫91和电路板芯片93进行摄象。然后,运算部71对芯片衬垫91与电路板芯片93之间的位置偏差进行测量运算。根据其测量结果,安装工作台4作XY及θ方向驱动,并以半导体芯片90为基准修正电路板92的位置,以使芯片衬垫91的位置与电路板衬垫93的位置对齐。一旦用该位置修正动作进行的电路板92的安装部位、即电路板衬垫93与芯片衬垫91之间的上下对位完成,测量机构60即从虚线位置移动到实线位置,上侧及下侧的测量用光源63、64、双视野光学镜头65及CCD摄象机70均返回原来位置。
然后,超声波振动接合机构10的谐振器23下降而将芯片衬垫91推压到电路板衬垫93,振动器30作超声波振动。谐振器23与该超声波振动谐振,该谐振产生的超声波振动从半导体芯片90作用到芯片衬垫91和电路板衬垫93之间的接触部分,芯片衬垫91与电路板衬垫93接合,半导体芯片90被安装到电路板92表面的芯片安装部位。关于将半导体芯片90推压到电路板92上的方式,是通过超声波振动接合机构10的气缸15的下降和电动机12的螺栓·螺帽机构13的下降来进行。对其压力则通过气缸15的输出来控制。
关于芯片衬垫91和电路板衬垫93之间的接合时间控制,是由运算部71根据譬如振动器30的超声波振动开始后所经过的时间和从温度计输入的温度信息来决定接合结束时间。而且,一旦到了接合结束时间,运算部71就对振动器30发出停止振动指令,对向气缸15供给压力的阀发出上升指令,对电动机12发出上升指令。由此使谐振器23上升,谐振器23脱离已安装到电路板92表面的半导体芯片90并停止在上升极限位置。
图5表示本发明第2实施形态的超声波振动接合装置。在图5中,基准台1上除了有安装机构2、超声波振动接合机构10、测量机构60、未图示的监视器装置外,还设有与安装机构2并排的芯片供给机构100、预定位机构110、芯片运送机构120。
芯片供给机构100具有设在基准台1上的XY驱动部101、与XY驱动部101连接的随行工作台102,XY驱动部101使随行工作台102沿与基准台1平行的平面纵横方向、即沿X方向及Y方向移动,并对随行工作台102实行位置控制,以使放置在随行工作台102上的托盘103中所装的多个半导体芯片90中作为装配对象的1个半导体芯片90到达指定的吸取位置。
预定位机构110具有预定位工作台111,在该预定位工作台111的上侧面设有将作为装配对象的半导体芯片90大致定位用的未图示的凹凸。
芯片运送机构120具有通过竖设在基准台1上的多根支柱121、122而横跨在芯片供给机构100、预定位机构110和安装机构2上方设置的横架导轨123、以及可沿横架导轨123往返移动的可动工作台124,未图示的电动机等作动器对可动工作台124进行位置控制,以使可动工作台124往返移动到左右的前进极限位置和后退极限位置2个位置上。在可动工作台124上,以规定间隔并排设置吸取机构130和超声波振动接合机构10。
该规定间隔的尺寸符合以下要求,即,当可动工作台124停止在右面的后退极限位置时,吸取机构130的吸取臂132的前端在正上方对着预定位工作台111的预定位位置,谐振器23的接合作用部27在正上方对着安装工作台4的安装位置,而当可动工作台124停止在左面的前进极限位置时,吸取机构130的吸取臂132的前端在正上方对着随行工作台102的吸取位置,接合作用部27在正上方对着预定位工作台111的预定位位置。
吸取机构130具有设置在可动工作台124上的机构基部131和从机构基部向下方延伸的吸取臂132,装在机构基部131中未图示的促动器使吸取臂132在上升极限位置和下降极限位置之间升降。该吸取臂132的下降极限位置被控制在符合以下要求的位置上,即,能使吸取臂132的前端吸附随行工作台102上的半导体芯片90或将吸附在吸取臂132上的半导体芯片90放置于预定位工作台111上。上述促动器可使用电动机或气缸,在使用电动机时,通过螺栓·螺帽机构和导向机构,使吸取臂132不旋转地升降,而在使用气缸时,为了避免碰撞半导体芯片90,最好附设缓冲机构。
本实施形态的吸取臂132具有吸附功能部,即,吸取臂132用管子做成,未图示的真空泵一类吸力发生源通过未图示的阀而与吸取臂132的后端连接。通过将该未图示的阀从大气开放状态切换到吸附状态,使吸取臂132用来自吸力发生源的吸力从其前端的开口吸附外气,由此吸附半导体芯片90,相反,通过将阀从吸附状态切换到大气开放状态,使吸取臂132的内部充满大气,并释放吸附半导体芯片90的吸力。
超声波振动接合机构10除了固定基座11设置在可动工作台124上以外,其余结构均与第1实施形态相同。
以下说明第2实施形态的动作。在第1工序,一旦芯片运送机构120的可动工作台124从后退极限位置向左移动并停止在前进极限位置,吸取臂132就下降并从随行工作台102上吸取作为装配对象的半导体芯片90后上升。
在第2工序,一旦可动工作台124从前进极限位置向右移动并停止在后退极限位置,吸取臂132即下降,利用大气开放将半导体芯片90放置在预定位工作台111上,然后上升。在将该半导体芯片90放置于预定位工作台111上时,利用预定位工作台111的凹凸等将其大致定位。
在第3工序,一旦可动工作台124再次向左移动并停止在前进极限位置上,超声波振动接合机构10的压接器24即下降,用吸力吸附预定位工作台111上的半导体90后上升。在吸附该半导体芯片90的同时,吸取臂132下降,从随行工作台102的上方吸附作为下一个装配对象的半导体芯片90后上升(与第1工序的动作相同)。
在第4工序,一旦可动工作台124再次向右移动并停止在后退极限位置上,测量机构60就对吸附在接合作用部27的半导体芯片90的芯片衬垫91(见图1)和放置在安装机构2的安装工作台4上的电路板92的电路板衬垫93(见图1)进行测量,安装工作台4根据测量结果进行XY及θ驱动,以使芯片衬垫91与电路板衬垫93准确对齐。
在第5工序,超声波振动接合机构10的谐振器23下降,将半导体芯片90推压到电路板92上,同时振动器30作超声波振动。谐振器23与该超声波振动谐振,由该谐振所产生的超声波振动将芯片衬垫91与电路板衬垫93接合,将半导体芯片90安装到电路板92上侧面。在将该半导体芯片90进行表面安装的同时,吸取臂132下降,将作为下一个装配对象的半导体芯片90定位放置在预定位工作台111上后上升(与第2工序动作相同)。
然后,以第3工序到第5工序为1个周期重复进行,由此从随行工作台102上将作为装配对象的半导体芯片90一个一个地经过在预定位工作台111上的大致定位而依次正确地安装到安装工作台4上的电路板92的每次不同的装配位置上。
采用该实施形态的结构,由于吸取机构130和超声波振动接合机构10隔着规定间隔装入芯片运送机构120的可动工作台124中,故能够做到在可动工作台124停止在后退极限位置时,吸取臂132对着预定位工作台111的预定位位置,且接合作用部27在正上方对着安装工作台4的安装位置,而在可动工作台124停止在前进极限位置时,吸取臂132对着随行工作台102的吸取位置,且接合作用部27对着预定位工作台111的预定位位置。
如上所述,技术方案1的发明是,谐振器在设有接合作用部的最大振幅点设有吸附第2构件用的通路,故可以通过连接接合作用部下侧面与谐振器内部的纵孔和连接纵孔与谐振器一个表面的横孔的结合来形成上述通路,可实现结构简单的通路。
技术方案2的发明是,分别构成可离合的吸附通路及与其连接的吸附用软管,故在通过超声波振动将第1构件的金属部与第2构件的金属部进行接合时,可使吸附用软管脱离谐振器,使谐振器处于良好的谐振状态。
技术方案3的发明是,谐振器在最小振幅点上设有加热器,故加热器不会因谐振器的超声波振动而发生谐振动,可延长加热器寿命。
权利要求
1.一种超声波振动接合装置,第1构件放置在安装机构上,第2构件被吸附于谐振器的接合作用部,该接合作用部被双柱支承于处于安装机构上方且与之隔开的超声波接合机构,以非接触状态插入第1构件与第2构件之间的测量机构对设在第1构件上侧面的金属部和设在第2构件下侧面的金属部的位置进行测量并驱动安装机构,以此来将第1构件的金属部与第2构件的金属部的位置对齐,然后谐振器下降,在加压状态下将第1构件的金属部和第2构件的金属部叠合,并利用从振动器传递到谐振器的超声波振动将第1构件的金属部与第2构件的金属部接合,其特征在于,谐振器在设有接合作用部的最大振幅点上设有吸附第2构件用的通路。
2.根据权利1要求所述的超声波振动接合装置,其特征在于,分别构成可离合的吸附通路和与之连接的吸附用软管。
3.根据权利1要求所述的超声波振动接合装置,其特征在于,谐振器在最小振幅点上设有加热器。
全文摘要
一种超声波振动接合装置,谐振器在设有接合作用部的最大振幅点上设置吸附通路,测量机构对放置在安装机构上的电路板的衬垫和被吸附在谐振器的接合作用部上的半导体芯片的衬垫的位置进行测量并驱动安装机构,以将两个衬垫的位置对齐,然后谐振器下降,用压力将两个衬垫叠合,利用从振动器传递到谐振器的超声波振动将两个衬垫接合。本发明可简化吸附通路的结构。
文档编号B23K20/10GK1259417SQ9912746
公开日2000年7月12日 申请日期1999年12月27日 优先权日1999年1月6日
发明者佐藤茂, 中居诚也 申请人:株式会社厄泰克斯