徽波增强式化学汽相淀积法及设备的制作方法

文档序号:2523阅读:282来源:国知局
专利名称:徽波增强式化学汽相淀积法及设备的制作方法
本发明是关于微波增强式的方法及有关设备。
最近电子回旋共振化学汽相淀积法(ECR CVD)作为制造薄膜,特别是非晶薄膜的新方法已引起研究人员们的兴趣。例如,松雄等人在美国专利4,401,054中就公开了一种这类ECR CVD设备。这种新技术应用微波借助于在激发区间中对等离子气体起箍缩作用的磁场将反应气体激发成等离子状态。利用这种组态,反应气体能吸收微波的能量。待涂敷的衬底安置在远离激发区间(共振区间)的地方以防衬底受到溅射。受激后的气体从共振区簇射到衬底上。为产生电子回旋共振,将共振区间中的压强维持在1×10-3至1×10-5托,在此压强下,可以把电子视为独立的粒子,且以在磁场强度取电子回旋共振所需的磁场强度的表面上,这些电子以电子回旋共振的方式与微波产生共振。用发散磁场将激发过的等离子气体从共振区间引出到远离共振区配置有待涂敷的衬底的淀积区间。
要利用这类现有技术的方法制取多晶或单晶结构的薄膜是非常困难的,因此目前现有的方法几乎只局限于非晶薄膜的制造。此外按照这种现有技术是难以产生高能化学汽相反应的,因而不能在具有凹口和孔穴的均匀表面上形成金刚石薄膜或其它高熔点薄膜或均质薄膜。
因此本发明的一个目的是提供一种能制造现有技术所不能制造的薄膜(例如金刚石薄膜、或高熔点材料制成的薄膜)的微波增强式化学汽相淀积法及其有关设备。
根据本发明的一个方面,待涂敷物体的表面系安置在微波电场处于最大值的共振区间的一个区域。在这种布局的情况下就可以边淀积边对淀积出来的薄膜进行部分溅射,因而,举例说,可以制适金刚石薄膜。刚石根据本发明的另一个方面,一种新的化学汽相淀积法达到了登峰造极的水平。新方法应用了由本发明同人第一个获取的混合回旋共振。在这种新型的激发过程中,反应气体本身的相互作用应视为除磁场和微波之外还应加以考虑的不可忽视的干扰,因而能在较宽广的共振区间内吸收反应气体的带电粒子。对于该混合共振来说,反应室的压强高达现有技术压强的102-105倍。
图1是本发明化学汽相淀积设备的横剖面视图。
图2(A)是磁场等势表面的横剖面的曲线图。
图2(B)是电场强度曲线图。
图3(A)和3(B)分别为磁场和电场等势表面的曲线图。
图4是本发明另一个实施例的横剖面视图。
参看图1,这是本发明微波增强式化学汽相淀积设备的示意图。图中,该设备包括一其中界定有等离子体发生区间1和辅助区间2且能维持在适当压力的反应室、一微波发生器4、围绕区间1周围取螺线管形式的电磁铁5和5′、一供电给电磁铁5和5′的电源25和一水冷却系统18。等离子体发生区间1的横截面是圆的。在等离子体发生区间1中设有氮铝化之类的高导热陶瓷制成的衬底夹具10′,衬底10即装在夹具10′中。衬底夹具10′系用红外光24照射和加热到150-1000℃,红外光24则由红外加热器20发射,从红外反射抛物面镜21反射回来,再通过透镜22聚焦到夹具10′的背面上。编号23表示红外加热器20的电源。抽真空系统是为将反应室抽成真空而设的,它包括涡轮分子泵8和旋转泵14,两者都通过控制阀11、12和13与反应室相连。衬底温度只能与反应室中所产生的等离子气体一起达到足够的温度值。在这种情况下,可以不用加热器。此外,视乎等离子体的情况而定,衬底的温度可能会高得不适宜进行反应。在这种情况下就要配备冷却装置。本设备的操作过程如下。
将衬底10装到衬底夹具10′上并用红外光24加热到500℃。然后从气体引入系统6以10SCCM(标准状况下每分钟流过的立方厘米)的流率引入氢气,微波发生器通过微波引出窗口15将等于或高于1千高斯(例如2.45千兆赫)的微波发射到承受磁铁5和5′感应出来的约2千高斯磁场的等离子体发生区间1中。微波能在区间1将氢气激发成高密度的等离子体状态。高能电子和氢原子净化衬底表面。除引入氢气外,还通过引入系统7输入C2H2和CH4,并按前述激发氢气的同一个方式在1-800托下用微波能进行激发。化学汽相反应的结果使碳以金刚石薄膜或i-碳(绝缘碳)的形式淀积下来。i-碳由金刚石与非晶碳的混合物组成。
图2(A)是磁场在图1区域30的分布曲线图。图2(A)的曲线系沿等势表面绘制的,其上标有磁力为2000高斯的磁铁5所感应的磁场强度值。调节磁铁5和5′的磁力就可以控制磁场强度,使得磁场在磁场(875±185高斯)和电场相互作用的区域100中待涂敷的整个表面上基本上均匀分布。图中,编号26表示满足磁场与微波频率之间的ECR(电子回旋共振)条件的875高斯等势表面。当然,根据本发明,由于反应室的压力高(1-800托),因而不能产生ECR,而是在包括ECR情况的等势表面在内的广大区域内产生混合回旋共振(MCR)。图2(B)是对应于图2(A)的曲线图,表示等离子体发生区间1中微波的电场强度。电场强度在区域100′和10′中取最大值。但在区域100′中要加热衬底10′而不干扰微波的传播是有困难的。在其它区域中,薄膜淀积得不均匀,淀积出来的薄膜呈环形。因此将衬底放置在区域100中。等离子体横向流动。根据实验,可以在直径小于100毫米的圆形衬底上形成均匀的薄膜。薄膜最好是在反应室内在直径小于50毫米、厚度和质量均匀的圆形衬底上形成。要涂敷更大的衬底时,微波频率可采用1.225千兆赫以使区间1的直径加倍。图3(A)和3(B)是表示等离子体发生区间1横剖面上磁场和电场分布情况的曲线图。图中圆圈中绘制的曲线相应于各等势表面。如图3(B)所示,电场达到的最大值是25千伏/米。
我们绘制了根据本发明制造的薄膜的衍射图象。从得出的结果可以看到带有表示有金刚石存在的斑点的晕圈图形。晕圈图形(这对应于非晶态)在衬底温度上升时逐步消失,当温度升到650℃以上时薄膜变成金刚石。低于150℃时,i碳薄膜形成不起来。为对比起见,我们按上述方式但不采用磁场制造薄膜。结果淀积出石墨薄膜。
以同样的方式,利用甲基硅烷,和铝化合物气体和氨气分别作为反应气体,可以制取多晶碳化硅薄膜和氮化铝薄膜。此外,以类似方式还可以制取钨、钛、钼或它们的硅化合物等其它高熔点薄膜。
参看图4。这是本发明另一个实施例的示意图。图中,该设备包括一其中界定有等离子体发生区间1和辅助区间2且能维持在适当压强的反应室、一微波发生器4、由电源25供电的电磁铁5和5′和一水冷却系统18。等离子体发生区间的横剖面是圆的。在等离子体发生区间1中,具有内弯边缘的空心圆筒10′可转动地支撑在区间中,因而从微波发生器4发射出来的微波沿圆筒轴线通过圆筒。圆筒10′由不锈钢或石英制成,并由电动机16通过一齿轮传动装置使其转动。抽真空系统是为将了反应室抽成真空而设的,它包括涡轮分子泵8和旋转泵14,两者都通过控制阀11、12和13与反应室相连。本设备的操作过程如下将待涂敷的物体10,例如金属、塑料、陶瓷部件(象齿轮、螺钉、装饰品模板或碾磨用的微粒等)放入圆筒10′中,并在操作过程中以0.1-10转/分的转速使之转动。以100赫至10千赫的频率使圆筒10′微振(微振装置在图中没有示出)。这一转动和振动过程使暴露在周围环境的物体表面在操作过程中一直在转换。反应室用涡轮分子泵8和旋转泵14抽成1×10-6托或更高的真空度。然后从气体引入系统6以30SCCM的流率将氩、氦或氢气作为非生产性气体引入到反应室中1,再由500瓦的微波发生器通过微波引入窗口15将2.45千兆赫的微波发射到承受磁铁5和5′感应出来的约2千高斯磁场的等离子体发生区间1中。非生产性气体的压强为1×10-4托。微波能在区间1中产生高密度的等离子体。用高能电子和非生产性原子净化物体10的表面。除引入非生产性气体外,还通过引入系统7引入1~800托,最好是3~30托,例如10托的C2H4、C2H4和/或CH4,并用微波能以上述用非生产性气体进行激发的方式进行激发。混合共振的结果使碳以金刚石薄膜或i碳薄膜的形式淀积在物体10上。在本实施例中,可以象图1那样采用图1所示的加热装置。
磁场和电场的分布情况与结合前一个实施例说明的图2(A)、2(B)、3(A)和3(B)的情况一样,因此这里不再赘述。
我们绘制了根据本发明制成的薄膜的衍射图象。从得出的结果可以看到带有表示有金刚石存在的斑点的晕圈图形。晕圈图形在衬底温度升高时逐渐消失,当温度超过650℃时,薄膜变为金刚石。低于150℃时,i碳薄膜形成不起来。为对比起见,我们按上述方式但不采用磁场制造薄膜。结果淀积出石墨薄膜。
以同样方式,利用甲基硅烷,和铝化合物气体和氨气分别作为反应气体,可以制取多晶碳化硅薄膜和氮化铝薄膜。此外,以类似方法还可以制取钨、钛、钼或它们的硅化合物等其它高熔点薄膜。举例说,按照本发明可以制取BN或BP薄膜。
反应室的压强选取ECR情况所需用的压强,以便产生初级等离子体放电。在放电持续进行的同时,将压强调到1托至3×103托,在这种场合下产生混合共振,等离子体的粒子平均自由路径为0.05毫米至若干毫米,通常不超出1毫米。
本发明提出的方法适宜制造包括一个或多个稀土元素、一个或多个碱土元素(包括Be和Mg)和Cu的超导电陶瓷。在这种情况下,生产气体是用氧气在诸元素化合物的溶液中吹泡制备的。例如,Y(OC2H5)3、Ba(OC2H5)3和CuBr3的烯属烃或卤化物的有机溶液(苯或醇溶液)或水溶液,使Y、Ba和Cu之间的化学当量比为1∶2∶3。淀积物的化学计算式为YBa2Cu3O6-8。可以用所谓喷涂法代替吹泡法,具体作法是将诸元素的化合物以细粉末的形式与高压氧气吹入反应室中。
本发明不应局限于上述个别实施例,熟悉本专业的人士都可对上述实施例进行多种修改或更改。举例说,可以采用具有多角形横剖面的任何空心构件代替空心圆筒。虽然上述诸实施例只在磁场存在的情况下使用微波能,但也可在远离混合共振的位置往混合共振所激发的反应气体上施加光子能量。
权利要求
1.一种微波增强式化学汽相淀积设备,其特征在于,该设备包括-反应室;-供气装置,用以将反应气体输入所述反应室中;-微波发生器,与所述反应室连通,用以将微波发射入界定在所述反应室中的一共振区间内;-磁铁,用以在所述共振区间内感应出磁场;和夹持装置,用以将待涂敷的物体夹持在所述共振区间的一个区域中,所述微波的电场的近似最大值就在所述区域中。
2.根据权利要求
1所述的设备,其特征在于,该设备还包括温度控制装置,用以控制所述物体的温度。
3.根据权利要求
2所述的设备,其特征在于,所述控制装置是个红外加热器。
4.根据权利要求
3所述的设备,其特征在于,所述加热器用红外光照射所述夹持装置。
5.根据权利要求
4所述的设备,其特征在于,所述红外光聚焦到所述夹持装置上。
6.根据权利要求
5所述的设备,其特征在于,所述共振区间为圆筒形壁所包围。
7.根据权利要求
6所述的设备,其特征在于,所述磁铁是一个环包所述筒形壁外侧的螺线管。
8.一种微波增强式化学汽相反应设备,该设备包括-反应室,配备有将所述反应室抽成负压的装置;微波发生装置,用以在所述反应室中产生微波;和磁场感应装置,用以在所述反应室中感应出磁场;所述设备的特征在于,在所述微波取最大值的电场的一个区域中在磁场与微波之间建立起电子回旋共振状态。
9.根据权利要求
8所述的设备,其特征在于,所述化学汽相反应是在所述区域中进行。
10.一种微波增强式化学汽相淀积设备,其特征在于,所述设备具有一反应气体引入系统和一淀积区间,在该区间中用磁波和磁场建立起一电子回旋共振状态。
11.一种微波增强式化学汽相淀积法,该方法包括下列步骤往一反应室中引入反应气体;在所述反应室中感应出一磁场;往所述反应室中输入微波;在所述磁场情况下用所述微波激发所述反应气体;和藉化学汽相反应在待涂敷的平面上淀积上一层薄膜;所述方法的特征在于,所述淀积区域系限定在激发区域中的,在该激发区域中,所述磁场和微波彼此相互配合激发着所述反应气体。
12.一种化学汽相淀积法,包括下列步骤往一反应室中引入反应气体;在所述反应室中感应出一磁场;往所述反应室中输入微波;在所述磁场情况下用所述微波能激发所述反应气体;和藉化学汽相反应在待涂敷的表面上淀积上制品;所述方法的特征在于,在操作过程中将反应气体的压力保持在1托和100托之间。
13.根据权利要求
12所述的方法,其特征在于,选取所述压力在3托和30托之间。
14.根据权利要求
12所述的方法,其特征在于,所述反应气体起码是个烃类。
15.根据权利要求
14所述的方法,其特征在于,所述淀积制品是金刚石。
16.根据权利要求
14所述的方法,其特征在于,所述淀积制品是绝缘碳。
17.根据权利要求
12所述的方法,其特征在于,所述反应气体为C2H6、C2H4和/或C2H2。
18.一种化学汽相淀积法,包括下列步骤将待处理的物体安置在一反应室中;往所述反应室中输入反应气体;借助于与磁场相互配合的微波激发所述反应气体;在所述待处理的物体上进行化学汽相反应;所述方法的特征在于,所述反应气体的压强是这样选取的,以便产生混合共振。
19.根据权利要求
18所述的方法,其特征在于,所述磁场的强度等于或高于1千高斯。
20.如权利要求
18所述的方法,其特征在于,所述磁场的频率为2.45千兆赫。
21.根据权利要求
18所述的方法,其特征在于,所述反应气体是CH4。
22.根据权利要求
21所述的方法,其特征在于,所述反应气体是用氧气在组成超导电材料的组分溶液中吹泡制备的。
23.根据权利要求
22所述的方法,其特征在于,所述溶液是Y(OC2H5)3、Ba(OC2H5)3和CuBr3的有机溶液。
专利摘要
本说明书叙述了一种新型的化学汽相淀积法。这里化学汽相反应的主要的激发动力不是电子回旋共振(这时的电子作为独立粒子能够运动而不相互作用)而是混合回旋共振。在这种新提出的共振中,共振空间较大,因而用此新方法可将金刚石之类的高熔点物质淀积成薄膜状。
文档编号H05H1/02GK87107779SQ87107779
公开日1988年5月25日 申请日期1987年11月9日
发明者犬岛乔, 广濑直树, 山崎舜平, 田代卫 申请人:株式会社半导体能源研究所导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1