一种在钢液中形成Al<sub>2</sub>O<sub>3</sub>纳米颗粒的制备方法

文档序号:3265142阅读:289来源:国知局
专利名称:一种在钢液中形成Al<sub>2</sub>O<sub>3</sub>纳米颗粒的制备方法
技术领域
本发明属于钢铁材料领域,涉及一种在钢液中形成纳米八1203颗粒的制备方法。 与纳米块状金属材料相比,纳米颗粒弥散强化金属材料可保持合金延伸率,同时 将合金的强度大幅度提高,且强化效果优于传统的钢铁工业上所使用的微米级和亚微米级 的第二相粒子弥散强化,纳米弥散相强化钢铁的研究成为近年来的热点。纳米强化不但可 大幅度提高结构钢的强度,还可以提高合金的高温蠕变性能。纳米强化技术对于汽车行业、 船舶行业、电力行业等广泛领域用钢具有重要的应用价值。 在钢铁中形成纳米强化,近年来报道的方法主要有MA/0DS或MA/CDS法、变形 热处理法。MA/0DS或MA/CDS法是将数种金属粉末在高能球磨机中混合,反复进行压合 和破碎,应用机械合金化等过程实现合金化和氧化物或碳化物颗粒的均匀弥散分布。该 方法是自上个世纪60年代首次推出,由于这种方法生产的材料具有很好的高温性能,目 前仍是研究的热点。利用MA/ODS或MA/CDS制备,普遍认为过程复杂、成本高。另一种方 法是变形热处理,对含N钢或低碳钢进行热变形、冷变形加工,然后进行热处理,可获得高 分布密度纳米级富含V、 Nb的氮化物或碳氮化物或碳化物弥散析出。例如成份为Fe-9. OCr-l. OMo-0. 20V-0. 08Nb-0. 05N-0. IOC含N钢[R L Klueh, N Hashimoto, P JMaziasz.
New nano-particle-strengthened ferritic/martensitic steels byconventional thermo—mechanical treatment,Journal of NuclearMaterials,2007,367—370 :48—53]通
过下述步骤加工可形成V、 Nb的氮化物或碳氮化物弥散析出相将钢加热到1050-1300°C, 保温,使铁素体向奥氏体转变并且析出相弥散分布;然后冷却到700-100(TC进行形变热 轧,为形成最佳强化尺寸粒子在热轧温度下退火,最后空冷到室温。变形加工在合金中形成 了大量的位错和空位,在后续的热处理过程中,有利于纳米弥散相的析出。
关于Al在钢中形成纳米弥散化合物报道比较少,Al更多是作为炼钢时脱氧剂 使用。北京科技大学的傅杰、刘阳春和吴华杰[中国科学E辑技术科学,2008,38(5): 797-806]研究了薄板坯连铸连轧钢中纳米氮化物的析出,研究表明在热轧板巻曲缓慢空冷 时产生铝的氮化物,其尺寸在10-20nm之间,析出相具有一定的沉淀强化作用,同时具有一 定的晶粒细化作用,在提高强度的同时,使延伸率变化很小。 应用合金熔炼的方法在钢中获得Al的纳米级强化相主要是氮化物, 一般需对凝 固合金进行变形热处理才能获得;而直接通过合金熔炼凝固办法,在钢铁中获得纳米强化 相八1203颗粒还鲜见报道。

发明内容
本发明目的是在合金熔炼时加入纳米强化相A1203的形成元素Al、 0,在钢液中形
成稳定的纳米A1203颗粒,在凝固后获得纳米颗粒A1203弥散强化的钢合金。 发明人近些年来,对合金凝固过程中纳米相的析出,进行了深入的基础研究,部分
背景技术
石开究结果见[Zidong Wang,Xuewen Wang, QiangsongWang, I Shih and J J Xu. Fabrication of a nanocomposite from in situ iro皿anoparticle reinforced copper alloy, Nanotechnology, 2009, 20 :075605]。我们得到的初步结论是1)高熔点析出相原子溶解 在低熔点金属中形成的合金熔体,其溶解度随着温度降低而降低,在从浇注温度到凝固温 度,相对析出相的熔点,析出相获得了很大过冷度,形核半径极小,可以形成纳米级的析出 颗粒;2)熔体中的高熔点析出相原子浓度不能过高,避免纳米颗粒长大。这两条是获得纳 米八1203颗粒弥散强化钢合金的理论基础;3)凝固过程中,较大流速的熔体流场作用下,有 利于获得稳定的纳米析出相,减少和避免合金组织中粗大析出相的形成。
—种在钢液中形成纳米A1203颗粒的制备方法,首先是制备含纳米析出相元素Al、 0的钢合金熔体,其特征是在含0浓度为5 lOOPPm的钢液中加入0O.5 3mm的Fe (0. 5 3)wt. % Al合金丝,然后以较快的冷却速度凝固(大于500K/min)。凝固过程中,熔 体中含有高于基体合金熔点的析出相A1203的元素Al、 0,随着温度下降Al、 0溶解度下降, 形成纳米A1203析出相的铸造合金。 合金化学成份(质量百分比)0. 01 0. 25wt. % C、0 0. 55wt. % Si,O. 2
lwt. % Mn、0 0. 04wt. % P、0 0. 05wt. % S、0 5wt. % Cr、0 5wt. % Ni、0 lwt. %
Mo、0. 01 0. 3wt. % A1、0. 0005 0. Olwt. % (相当于5 lOOPPm) 0、余量Fe。 本发明的工艺过程 1)合金在大气气氛下熔炼; 2)钢全部熔化后,再过热50 10(TC,待液面稳定后,经测量钢液中氧含量达5 lOOPPm后,以Fe-Al合金丝的形式加入Al,经测算Al加入量应为0. 01 0. 3wt. % Al ;
3)待Fe-Al合金溶解,保温l_2min后铸造; 4)采用离心浇注、或在电磁搅拌情况下进行浇铸,在浇注凝固过程中金属液流动 的线速度不低于1. 7/s ; 5)控制凝固过程中的冷却速度不低于500°C /min ;
6)对凝固合金的微观组织结构进行分析。
本发明优点是 获得纳米A1203颗粒弥散强化的凝固钢合金组织,有利于在保持合金塑性和韧性 基本不变的前提下,提高合金的强度。
具体实施方式

实施例1 在氩气保护气氛下进行熔炼,钢全部熔化后,再过热ieo(TC,合金钢的化学成分和
质量百分比为:C为0. 08%,Si为0. 36%,Mn为0. 9%,P为0. 0078%,S为0. 0004%,余量 为Fe ;待合金液面稳定后,经测量钢液中氧含量达20PPm,选取Al含量以质量百分比计为 0. 5%的Fe-Al合金丝,用喂丝机将直径为3mm的Fe-Al合金丝加入到钢液中使钢液中Al 的质量百分比达到0.06%。待Fe-Al合金溶解后,在160(TC下保温l-2min后,采用内涂陶 瓷涂料的铸铁钢锭模铸、离心浇注,离心转速为250转/min,金属液流流动线速度约为3m/ s 8m/s ;在凝固过程中,在铸铁模具外表面喷水,确保钢液由液态变成固态过程中的冷却 速度不低于50(TC /min。待冷却到开箱温度,打开金属模,取出铸件,得到纳米A1203颗粒强
4化的凝固合金。应用透射电镜技术和场发射显微分析技术,对凝固合金的显微组织进行质 量分析,可以发现大量10 500纳米八1203颗粒弥散分布在合金基体上。
实施例2 在氩气保护气氛下进行熔炼,钢全部熔化后,再过热160(TC,合金钢的化学成分 和质量百分比为:C :0. 01%、 Si :0. 16%, Mn :0. 47%、P :0. 01%、 S :0. 01%、Cr :0. 5%、Ni : 0. 5%、Mo :0.6X、余量Fe ;待合金液面稳定后,经测量钢液中氧含量达80PPm,选取Al含量 以质量百分比计为3%的Fe-Al合金丝,用喂丝机将直径为2mm的Fe-Al合金丝加入到钢液 中使钢液中A1的质量百分比达到O. 15%。待Fe-Al合金溶解后,160(TC下保温l-2min后, 采用内涂陶瓷涂料的铸铁钢锭模铸开始离心浇注,离心转速为1000转/min,金属液流流动 线速度约为10m/s 30m/s ;在凝固过程中,在铸铁模具外表面喷水,确保钢液由液态变成 固态过程中的冷却速度不低于50(TC /min。待冷却到开箱温度,打开金属模,取出铸件,得 到纳米八1203颗粒强化的凝固合金。应用透射电镜技术和场发射显微分析技术,对凝固合金 的显微组织进行质量分析,可以发现大量10 500纳米八1203颗粒弥散分布在合金基体上。
权利要求
一种在钢液中形成纳米Al2O3颗粒的制备方法,其特征是在含氧浓度不超过100PPm的低碳钢或低碳合金钢的钢液中,加入Fe-0.5-3wt.%Al合金丝,获得含O、Al的钢液,以不低于500℃/min的冷却速度由液态变成固态;并且浇铸过程中,熔体形成流动,熔体的线流动速度不低于1.7m/s;形成纳米Al2O3颗粒弥散强化的钢合金。
2. 如权利要求1所述的一种在钢液中形成纳米八1203颗粒的制备方法,其特征是低碳 钢或低碳合金钢化学成份为0. 01 0. 25wt. % C、0 0. 55wt. % Si,O. 2 lwt. % Mn、 0 0. 04wt. % P、0 0. 05wt. % S、0 5wt. % Cr、0 5wt. % Ni、0 lwt. % Mo、0. 01 0. 3wt. % A1、0. 0005 0. Olwt. % 0、余量Fe。
全文摘要
本发明属于钢铁材料领域,涉及一种在钢液中形成纳米Al2O3颗粒的制备方法。其特征是在含氧浓度不超过100PPm的低碳钢或低碳合金钢的钢液中,加入Fe-Al合金丝,获得含O、Al的钢液,由于含有高于基体合金熔点的析出相Al2O3的合金元素Al、O,随着温度下降Al、O溶解度下降以及较快的冷却速度形成的较大过冷度,同时凝固过程中使熔体形成较大的流动线速度,获得纳米Al2O3弥散析出强化的凝固合金。本发明优点是可以直接在凝固合金中形成纳米Al2O3弥散相,有利于在保持合金塑性和韧性基本不变的前提下,提高合金的强度。
文档编号C22C33/04GK101748323SQ20101003418
公开日2010年6月23日 申请日期2010年1月15日 优先权日2010年1月15日
发明者吴兰鹰, 林国标, 王自东 申请人:北京科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1