一种焙烧-浸出处玀褐铁矿型氧化镍矿的方法

文档序号:3268492阅读:271来源:国知局
专利名称:一种焙烧-浸出处玀 褐铁矿型氧化镍矿的方法
技术领域
本发明属于矿物加工技术领域,具体涉及褐铁矿型氧化镍矿的加工技术。
背景技术
目前,用于大规模冶炼提取镍的矿物主要包括两种硫化镍矿和氧化镍矿。全球至 今约探获的镍(金属)量约7000万吨,其中硫化镍矿约占42%,其余均为氧化镍矿。随着 硫化镍矿储量的日益减少,氧化镍矿已经成为重要的镍资源。氧化镍矿是由含镍的岩石风 化、浸淋、蚀变、富集而成。氧化镍矿主要有两种类型一种是褐铁矿型,一般含铁40衬%以 上,含镍0. 8 1. 另一种是硅酸盐型,即硅镁镍矿,含铁较低,含镍约2. 0wt%。由于 氧化镍矿中镍呈化学浸染状态,镍品位较低,很难通过选矿获得较高品位的镍精矿。工业上,处理氧化镍矿的方法主要包括三种(1)熔炼工艺生产镍铁或镍锍,适用 于含镍量较高的硅酸盐型氧化镍矿;(2)高压酸浸工艺,适用于含镁较低的褐铁矿型氧化 镍矿;(3)还原焙烧-氨浸工艺,适用于褐铁矿型氧化镍矿。随着氧化镍矿的不断开采和利 用,可采用火法熔炼工艺处理的含镍量较高的硅酸盐型氧化镍矿将日益减少。而对于储量 较大的褐铁矿型氧化镍矿,从经济和技术的角度考虑,通常采用湿法处理。其湿法处理主要 包括直接浸出和焙烧_浸出两类方法。直接浸出主要有常压酸浸法(CW552922A)、常压和中压结合的酸浸法 (CN101001964)和高压酸浸等。在前两种浸出工艺中,浸出速率较慢,矿石中的铁氧化物和 其它脉石溶出率高,酸耗过高。直接浸出法中,高压酸浸可以有效地将铁抑制在浸渣中,因 而降低酸耗,每吨矿耗硫酸250 400kg,镍钴的浸出率较高,但工艺设备投资巨大,且由于 在240 270°C的水热条件下,溶出的铝也发生水解,并容易在反应釜和管道中形成结垢, 需要频繁清洗,且浸出渣中部分铁是以不稳定的黄钠铁矾形式存在,含有硫酸根,尚无合适 的处理技术,对环境影响较大。焙烧-浸出工艺可更为有效地回收镍、钴,提高经济效益。其主要包括还原焙 烧_氨浸、硫酸化焙烧_水浸和还原焙烧_酸浸等。如专利US2006/0263282A提出了一种还原焙烧-氨浸处理低品位氧化镍矿的方 法。该工艺利用回转窑进行选择性还原氧化镍矿,接着在含游离氨的碳酸铵溶液中进行浸 出。还原焙砂中的镍和钴被还原至金属态,以铁合金的形式存在,在氨浸过程中,在含氧的 条件下,铁合金被浸出,接着溶液中的二价铁被氧化生成氢氧化铁沉淀,实现镍和钴的回 收。但由于氢氧化铁沉淀吸附有价金属等原因,镍钴的回收率较低(镍80 90%,钴小于 80%)。此外,为了实现氨的循环利用,需要进行蒸氨等复杂操作,试剂消耗大,流程长,且氨 氮废水处理问题突出。又如专利CN101078061A提出了一种硫酸化焙烧-水浸处理低品位氧化镍矿的方 法。其过程是将矿物和浓硫酸混捏后,在450°C下焙烧,矿物被硫酸化后,在700°C左右进行 第二段焙烧,铁的硫酸盐分解生成的氧化物,而镍、钴的硫酸盐稳定,在水浸过程中镍、钴以 硫酸盐的形式进入溶液。但是由于矿物中的钙、镁、铝等也被硫酸化,引起酸耗,加上硫酸的利用效率的问题,该工艺的硫酸消耗为每吨矿耗酸200 450kg,且浸出渣中含硫酸根,不 利于综合处理和环境保护。专利CN101323909A和CN101392320A提出采用微波加热还原焙烧-酸浸处理氧化 镍矿的方法。利用微波快速加热和选择性加热的特点,实现氧化镍矿的快速选择性还原,接 着在稀硫酸体系中浸出,浸出液中的二价铁采用针铁矿沉淀法除去,可实现镍和钴的选择 性浸出,镍和钴的回收率高于还原焙烧_氨浸工艺。然而,为了获得较高的浸出以及除铁效 率,最好在密闭高压容器中进行浸出。此外,原矿中钙、镁、铝等也将部分浸出,从而引起酸耗。

发明内容
针对以上现有的技术问题,本发明提供一种焙烧_浸出处理褐铁矿型氧化镍矿的 方法,达到简化工艺流程、提高镍浸出率的目的。本发明方法工艺步骤如下。(1)将褐铁矿型氧化镍矿破碎、磨细,磨细后粒度< 0. 15mm的矿粉占全部矿粉的 质量百分比 ≥70%。(2)将磨细后的矿粉与含碳还原剂混合,制成直径为5 10mm的球团;在150 300°C温度下干燥至含水量≤10% (质量百分比)。含碳还原剂为活性炭或焦炭,粒度彡0. 15mm的还原剂占全部还原剂的质量百分 比≤50 % ;按质量比,还原剂用量为矿粉的6 12 %。(3)将上述干燥后的球团放入焙烧炉中,在680 920°C的温度下进行还原焙烧, 时间为60 180min,将氧化镍矿中的镍、钴和少量的铁还原至金属态形成铁合金,其余的 铁主要以氧化亚铁和四氧化三铁的形式存在。(4)然后,将还原焙烧后的物料冷却至300 500°C,装入氯化焙烧炉中,在300 500°C的焙烧温度下,向还原焙砂中加入氯化剂,在弱氧化性气氛下进行氯化焙烧,镁、铝、 硅等杂质不被氯化,铁最终生成三氧化二铁或四氧化三铁,实现镍钴选择性氯化;时间为 30 180min。弱氧化性气氛是指焙烧气氛中氧气的体积分数为1 15% ;氯化焙烧使用的氯化 剂为结晶氯化铝、六水氯化镁、六水三氯化铁或四水氯化亚铁,氯化剂的用量根据含C1量 确定,以质量比计,含C1量为原矿矿粉的4 12%。(5)经自然冷却或强制冷却后,将氯化焙砂加入到水中制成质量浓度为15 35% 的矿浆,将镍、钴氯化物浸出;矿浆温度为30 80°C,浸出时间20 120min。本发明方法与现有的焙烧-浸出工艺相比,流程短,试剂消耗少,可有效地回收氧 化镍矿中的镍和钴,浸出渣易于综合利用,提高了环保效益和经济效益。本方法的优点在于1、氯化焙烧的温度为300 500°C,低于还原焙烧的温度680 920°C,还原焙砂 的余热可用于氯化焙烧过程,提高能源利用效率;2、氯化焙烧过程中,还原焙砂中少量的低价铁、镍和钴被氯化剂高温水解产生氯 化氢所氯化,生成的镍、钴氯化物稳定,而生成的氯化亚铁将发生氧化水解生成稳定的四氧 化三铁或三氧化二铁释放出氯化氢,从而又起到氯化剂的作用;如此反复,便可实现镍、钴的选择性氯化;3、氯化焙砂中镁、铝、硅等杂质处于氧化态,不消耗氯化剂,这与其它酸处理过程 相比,有效地降低了试剂消耗;4、采用水浸工序,便可有效地选择性地浸出氯化焙砂中的镍和钴,浸出液的处理 过程无须大量酸碱中和操作或蒸氨操作,简化湿法处理工序,提高了处理效率;5、浸出渣中主要含三氧化二铁、四氧化三铁和少量的钙、镁、铝、硅等元素的氧化 物,浸渣性质较稳定,渣中氯、硫等含量较低,对环境无害,经处理后可作为炼铁原料。
具体实施例方式以下通过实施例进一步说明本发明。实施例中的氧化镍矿为典型的褐铁矿型氧化镍矿,经过破碎、磨细,取样,在105 °C 下烘干4. 0h,分析其化学组成,按质量百分比结果为Nil. 19%,Co 0. 11%, Fe 46.21%, Mg 2. 43%, Ca 0. 025%, A1 0. 13%, Si 2. 45%,余量为其它杂质元素。实施例1焙烧-浸出处理褐铁矿型氧化镍矿方法工艺步骤如下。(1)将褐铁矿型氧化镍矿破碎、磨细,磨细后粒度< 0. 15mm的矿粉占全部矿粉的 质量百分比为71%。(2)将磨细后的矿粉与含碳还原剂混合,制成直径为8mm的球团;在220°C温度下 干燥至含水量为10% (质量百分比)。含碳还原剂为活性炭,粒度彡0. 15mm的还原剂占全部还原剂的质量百分比为 52% ;按质量比,还原剂用量为矿粉的6%。(3)将上述干燥后的球团放入焙烧炉中,在920°C的温度下进行还原焙烧,时间为 60min,将氧化镍矿中的镍、钴和少量的铁还原至金属态形成铁合金,其余的铁主要以氧化 亚铁和四氧化三铁的形式存在。(4)然后,将还原焙烧后的物料冷却至300°C,装入氯化焙烧炉中,在300°C的焙 烧温度下,向还原焙砂中加入氯化剂,在弱氧化性气氛下进行氯化焙烧,实现镍钴选择性氯 化;时间为30min。焙烧气氛中氧气的体积分数为4士0. 5% ;氯化焙烧使用的氯化剂为结晶氯化铝, 氯化剂的用量根据含C1量确定,以质量比计,含C1量为原矿矿粉的4%。(5)经自然冷却冷却后,将氯化焙砂加入到水中制成质量浓度为15%的矿浆,将 镍、钴氯化物浸出;矿浆温度为30°C,浸出时间20min。镍和钴的浸出率分别为86. 21%和76. 37%,铁的浸出率仅为1. 21%。实施例2焙烧-浸出处理褐铁矿型氧化镍矿方法工艺步骤如下。(1)将褐铁矿型氧化镍矿破碎、磨细,磨细后粒度< 0. 15mm的矿粉占全部矿粉的 质量百分比为75%。(2)将磨细后的矿粉与含碳还原剂混合,制成直径为10mm的球团;在300°C温度下 干燥至含水量为8% (质量百分比)。含碳还原剂为活性炭,粒度彡0. 15mm的还原剂占全部还原剂的质量百分比为70% ;按质量比,还原剂用量为矿粉的8%。(3)将上述干燥后的球团放入焙烧炉中,在680°C的温度下进行还原焙烧,时间为 lOOmin,将氧化镍矿中的镍、钴和少量的铁还原至金属态形成铁合金,其余的铁主要以氧化 亚铁和四氧化三铁的形式存在。(4)然后,将还原焙烧后的物料冷却至350°C,装入氯化焙烧炉中,在350°C的焙 烧温度下,向还原焙砂中加入氯化剂,在弱氧化性气氛下进行氯化焙烧,实现镍钴选择性氯 化;时间为60min。焙烧气氛中氧气的体积分数为2士0. 5% ;氯化焙烧使用的氯化剂为六水氯化镁, 氯化剂的用量根据含C1量确定,以质量比计,含C1量为原矿矿粉的12%。(5)经强制冷却后,将氯化焙砂加入到水中制成质量浓度为20%的矿浆,将镍、钴 氯化物浸出;矿浆温度为40°C,浸出时间40min。镍和钴的浸出率分别为94. 33%和91. 21%,铁的浸出率仅为2. 43%。实施例3焙烧-浸出处理褐铁矿型氧化镍矿方法工艺步骤如下。(1)将褐铁矿型氧化镍矿破碎、磨细,磨细后粒度< 0. 15mm的矿粉占全部矿粉的 质量百分比为80%。(2)将磨细后的矿粉与含碳还原剂混合,制成直径为5mm的球团;在150°C温度下 干燥至含水量为5% (质量百分比)。含碳还原剂为焦炭,粒度彡0. 15mm的还原剂占全部还原剂的质量百分比为82% ; 按质量比,还原剂用量为矿粉的10%。(3)将上述干燥后的球团放入焙烧炉中,在700°C的温度下进行还原焙烧,时间为 150min,将氧化镍矿中的镍、钴和少量的铁还原至金属态形成铁合金,其余的铁主要以氧化 亚铁和四氧化三铁的形式存在。(4)然后,将还原焙烧后的物料冷却至500°C,装入氯化焙烧炉中,在500°C的焙 烧温度下,向还原焙砂中加入氯化剂,在弱氧化性气氛下进行氯化焙烧,实现镍钴选择性氯 化;时间为90min。弱氧化性气氛是指焙烧气氛中氧气的体积分数为5士0. 5% ;氯化焙烧使用的氯 化剂为六水三氯化铁,氯化剂的用量根据含C1量确定,以质量比计,含C1量为原矿矿粉的 8%。(5)经自然冷却后,将氯化焙砂加入到水中制成质量浓度为25%的矿浆,将镍、钴 氯化物浸出;矿浆温度为50°C,浸出时间80min。镍和钴的浸出率分别为92. 23%和90. 01%,铁的浸出率仅为2. 32%。实施例4焙烧-浸出处理褐铁矿型氧化镍矿方法工艺步骤如下。(1)将褐铁矿型氧化镍矿破碎、磨细,磨细后粒度< 0. 15mm的矿粉占全部矿粉的 质量百分比为91%。(2)将磨细后的矿粉与含碳还原剂混合,制成直径为6mm的球团;在200°C温度下 干燥至含水量为4% (质量百分比)。含碳还原剂为焦炭,粒度彡0. 15mm的还原剂占全部还原剂的质量百分比为78% ;按质量比,还原剂用量为矿粉的12%。(3)将上述干燥后的球团放入焙烧炉中,在750°C的温度下进行还原焙烧,时间为 180min,将氧化镍矿中的镍、钴和少量的铁还原至金属态形成铁合金,其余的铁主要以氧化 亚铁和四氧化三铁的形式存在。(4)然后,将还原焙烧后的物料冷却至450°C,装入氯化焙烧炉中,在450°C的焙 烧温度下,向还原焙砂中加入氯化剂,在弱氧化性气氛下进行氯化焙烧,实现镍钴选择性氯 化;时间为120min。焙烧气氛中氧气的体积分数为14. 5士0. 5% ;氯化焙烧使用的氯化剂为四水氯化 亚铁,氯化剂的用量根据含C1量确定,以质量比计,含C1量为原矿矿粉的6%。(5)经自然冷却或强制冷却后,将氯化焙砂加入到水中制成质量浓度为30%的矿 浆,将镍、钴氯化物浸出;矿浆温度为70°C,浸出时间lOOmin。镍和钴的浸出率分别为89. 32%和81. 27%,铁的浸出率仅为1. 98%。实施例5焙烧-浸出处理褐铁矿型氧化镍矿方法工艺步骤如下。(1)将褐铁矿型氧化镍矿破碎、磨细,磨细后粒度< 0. 15mm的矿粉占全部矿粉的 质量百分比为93%。(2)将磨细后的矿粉与含碳还原剂混合,制成直径为6mm的球团;在200°C温度下 干燥至含水量为3% (质量百分比)。含碳还原剂为焦炭,粒度彡0. 15mm的还原剂占全部还原剂的质量百分比为92% ; 按质量比,还原剂用量为矿粉的8%。(3)将上述干燥后的球团放入焙烧炉中,在850°C的温度下进行还原焙烧,时间为 90min,将氧化镍矿中的镍、钴和少量的铁还原至金属态形成铁合金,其余的铁主要以氧化 亚铁和四氧化三铁的形式存在。(4)然后,将还原焙烧后的物料冷却至400°C,装入氯化焙烧炉中,在400°C的焙 烧温度下,向还原焙砂中加入氯化剂,在弱氧化性气氛下进行氯化焙烧,实现镍钴选择性氯 化;时间为180min。焙烧气氛中氧气的体积分数为1. 5士0. 5% ;氯化焙烧使用的氯化剂为结晶氯化 铝,氯化剂的用量根据含C1量确定,以质量比计,含C1量为原矿矿粉的10%。(5)经自然冷却或强制冷却后,将氯化焙砂加入到水中制成质量浓度为35%的矿 浆,将镍、钴氯化物浸出;矿浆温度为80°C,浸出时间120min。镍和钴的浸出率分别为92. 41%和90. 04%,铁的浸出率仅为2. 13%。
权利要求
一种焙烧-浸出处理褐铁矿型氧化镍矿的方法,其特征在于步骤如下(1)将褐铁矿型氧化镍矿破碎、磨细,与含碳还原剂混合,制成球团、干燥,进行还原焙烧;(2)然后,将还原焙烧后的物料冷却至300~500℃,装入氯化焙烧炉中,在300~500℃的焙烧温度下,向还原焙砂中加入氯化剂,在弱氧化性气氛下进行氯化焙烧,时间为30~180min;(3)经自然冷却或强制冷却后,将氯化焙砂加入到水中制成矿浆,将镍、钴氯化物浸出。
2.按照权利要求1所述的焙烧-浸出处理褐铁矿型氧化镍矿的方法,其特征在于步骤 (2)中,弱氧化性气氛是指焙烧气氛中氧气的体积分数为1 15%。
3.按照权利要求1所述的焙烧-浸出处理褐铁矿型氧化镍矿的方法,其特征在于步骤(2)中,氯化焙烧使用的氯化剂为结晶氯化铝、六水氯化镁、六水三氯化铁或四水氯化亚铁, 氯化剂的用量根据含Cl量确定,以质量比计,含Cl量为原矿矿粉的4 12%。
4.按照权利要求1所述的焙烧-浸出处理褐铁矿型氧化镍矿的方法,其特征在于步骤(3)中,矿浆质量浓度为15 35%,浸出温度为30 80°C,浸出时间20 120min。
全文摘要
一种焙烧-浸出处理褐铁矿型氧化镍矿的方法,将褐铁矿型氧化镍矿破碎、磨细,与含碳还原剂混合,制成球团、干燥后,进行还原焙烧,然后,在300~500℃的焙烧温度下,向还原焙砂中加入氯化剂,进行选择性氯化焙烧,经冷却后,将氯化焙砂加入到水中制成矿浆,将镍、钴氯化物浸出。本发明方法与现有的焙烧-浸出工艺相比,流程短,试剂消耗少,可有效地回收氧化镍矿中的镍和钴,浸出渣易于综合利用。
文档编号C22B23/00GK101798633SQ201010131130
公开日2010年8月11日 申请日期2010年3月24日 优先权日2010年3月24日
发明者畅永锋, 符岩, 翟秀静, 范川林 申请人:东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1