一种具有多带特征的硅量子点薄膜的制备方法

文档序号:3290761阅读:174来源:国知局
专利名称:一种具有多带特征的硅量子点薄膜的制备方法
技术领域
本发明属于第三代太阳能电池技术领域,特别涉及一种嵌入在非晶碳化硅中具有 多带特征的硅量子点薄膜的制备方法。
背景技术
能源危机成为未来世界各国经济发展将面临的主要制约因素之一。太阳能作为最 清洁的可再生能源无疑成为研究者倍加关注的焦点。第三代太阳能的目标是在第二代薄 膜太阳能电池的基础上缩减成本并显著提高光伏器件的光电转换效率。目前,材料单带隙 S10Ckley-Queisser极限是制约太阳能电池光吸收效率的主要难题,研究具有多带隙特征 的光吸收材料成为当务之急。尽管砷化镓、氮化镓、敏化量子点等能达到这一效果,但是,此 类材料多含有毒性,不利于环境保护。硅无毒无害、储量丰富,不存在资源和环境方面的限制和压力,且得益于成熟的微 电子半导体硅工艺技术,始终被认为是光伏技术发展的主流。硅量子点太阳能电池(QDSC), 属于第三代高效率太阳能电池的典型代表,是目前最新、最尖端的太阳能电池之一。与传统 硅基太阳能电池材料不同,硅量子点的典型尺寸为1 lOnm。其荷电载流子的运动在三维 方向上均受到强烈限制,存在明显的量子尺寸效应,导致半导体硅的电子能带结构变化,特 别是能带间隙随量子点尺寸呈现规律性变化。倘若能实现镶嵌在非晶基体中具有一定尺寸 分布的硅量子点结构,可望有效吸收从紫外到红外较宽波长范围内的太阳光,大大提高光 伏电池光电转化率。如何形成具有一定尺寸分布的硅量子点结构是该领域研究的焦点。

发明内容
本发明的目的是提供一种具有多带隙特征硅量子点光吸收薄膜的制备方法。该方 法制备的薄膜材料为镶嵌在低势垒碳化硅(SiC)基质中具有一定尺寸分布的硅量子点(Si QDs),其光吸收性能优异、载流子迁移率高、结构稳定性良好。本发明的目的是通过下述技术方案来实现的。一种具有多带特征的硅量子点薄膜的制备方法,该方法包括下述步骤1)分别选用单晶硅片和玻璃作为基体,并将该两衬底进行镀膜前预处理;2)以Ar气作为溅射气氛,在对基体施加偏压的条件下,采用射频和直流电源分 别对硅靶和碳靶进行磁控共溅射,沉积碳化硅薄膜;镀膜完成后,采用XPS原位分析薄膜成 分;3)然后在氮气或者氩气氛下进行高温退火处理;即得具有多带特征的硅量子点薄膜。将得到的硅量子点薄膜进行微观结构和性能检测。微观结构表征采用高分辨透射 电镜(HRTEM)、小角度X射线衍射、X射线光电子能谱;光学特性基于拉曼光谱、光致发光光 谱(PL)和吸收光谱进行评价。本发明进一步的特征在于
所述步骤1)中,单晶硅片衬底的厚度为525um,玻璃衬底的厚度为700um,依次经 过去离子水、丙酮和无水乙醇超声清洗15min。所述步骤2)中,Ar气分压为7. 4X 10_3mbar,溅射Ar气流量为^ccm ;Si/C原子 比为2 5. 0,沉积时间为1. 5 3. 5h,膜厚为120 300nm。所述步骤幻中,在单晶硅片或玻璃基体上沉积碳化硅薄膜为1 3层非晶碳化硅 薄膜,或沉积碳化硅薄膜至6层。沉积多层非晶碳化硅薄膜形成成分梯度变化,得到尺寸分 布更均勻、密度更大、量子尺寸效应更显著的的量子点结构。所述步骤幻中,硅靶射频电源功率控制在70 120W,碳靶直流电源控制在90 130W ;基体偏压为80V。所述步骤2)中,XPS仪器采用SPECS HSA!3500。所述步骤幻中,在氮气或氩气气氛下退火,氮或氩分压为0.27 0.32Mpa;高 温退火的温度范围为900 1150°C ;升温速率为25-30°C /min,随炉水冷却;保温时间为 0. 5 2h。所述步骤幻中,在氮气气氛中退火,氮分压为0. 27 0. 30Mpa时,氮原子对硅量 子点表面悬挂键钝化,抑制量子点尺寸。本发明以Ar气作为溅射气体,对硅靶和碳靶进行磁控共溅射,通过调整其溅射功 率改变Si/c成分比,分别在单晶硅片和玻璃基体上制备约120 300nm厚的富Si非晶碳 化硅薄膜;随后,在氮气气氛中经1000 1200°C高温退火处理1 2小时,形成镶嵌在非 晶碳化硅中具有一定尺寸分布的硅量子点结构。本发明的有益效果是SiC的势垒高度为23eV,远低于SiO2 ( 9eV)和Si3N4 ( 5. 3eV),以非晶SiC作为量子点嵌入的基质,有利于载流子输运。在氮气气氛中退火处理, 离化的氮离子易钝化硅量子点表面的悬挂键,起到有效抑制量子点尺寸的作用,即可形成 具有一定尺寸分布的能发生强烈量子效应的硅量子点。此外,利用间歇沉积工艺,制备成分 梯度变化的多层SiC薄膜,可更好地控制量子点的尺寸分布,产生离散的多个“迷你带”,有 效增强250nm 650nm波长范围内的光吸收。实验表明,此多带特征硅量子点薄膜材料可显 著提高硅基太阳能电池的光电转换效率,满足发展第三代全硅堆叠型太阳能电池的要求。
具体实施例方式下面通过具体实施例对本发明作进一步说明。一实施步骤1)分别选用衬底厚度为525um单晶硅片和衬底厚度为700um的玻璃作为衬底,并 将该两衬底依次经过去离子水、丙酮和无水乙醇超声清洗15min,进行镀膜前预处理。2)以Ar气作为溅射气体,在单晶硅片或玻璃基体上沉积1 6层非晶碳化硅薄 膜;薄膜沉积和表征采用德国SPECS公司生产的磁控溅射设备及配套的在线检测装置;硅 靶和碳靶尺寸规格为Φ 50. 4mmX 3mm,纯度为99. 99%。其中,在对基体施加偏压为80V的 条件下,采用射频和直流电源分别溅射硅靶和碳靶;硅靶射频电源功率控制在70 120W, 碳靶直流电源控制在90 130W ;Si/C原子比为2 5. 0 ;Ar气分压为7. 4X 10_3mbar,溅射 Ar气流量为^ccm ;沉积时间为1. 5 3.釙,膜厚为120 300nm。镀膜完成后,采用XPS SPECS HSA3500原位分析薄膜成分。
3)在氮气或者氩气氛下进行高温退火处理;氮或氩气分压为0. 27 0. 32Mpa ;高 温退火的温度范围为900 1150°C;升温速率为25 30°C /min,随炉水冷却;保温时间为 0. 5 池;即得具有多带特征的硅量子点薄膜。其中,在氮气气氛中退火,氮分压为0. 27 0. 30Mpa时,氮原子对硅量子点表面悬挂键的钝化作用,可起到有效抑制量子点尺寸的目 的。然后将上述具有多带特征的硅量子点薄膜进行微观结构和性能检测,微观结构表 征采用高分辨透射电镜(HRTEM)、小角度X射线衍射、X射线光电子能谱;光学特性基于拉曼 光谱、光致发光光谱(PL)和吸收光谱进行评价。二实施案例实施例1分别选用衬底厚度为525um单晶硅片和衬底厚度为700um的玻璃作为基体,并将 该两衬底依次经过去离子水、丙酮和无水乙醇超声清洗15min,进行镀膜前预处理。以氩气作为溅射气体,采用德国SPECS公司生产的磁控溅射设备及配套的在线检 测装置对硅靶和碳靶进行磁控共溅射,在单晶硅片和玻璃基体上沉积非晶碳化硅薄膜。其 中,硅靶使用70W的射频电源,碳靶使用130W的直流电源,基体偏压为80V ;Ar气分压为 7. 4X 10_3mbar,溅射Ar气流量为如ccm ;沉积时间为2小时,膜厚为120nm。镀膜完成后,采 用XPS SPECSHSA3500原位分析薄膜成分,显示Si/C原子比为2. 0。本试样在氮气氛下退火温度为1050°C,本底真空2.4X10_3Pa,氮分压为 0. 27MPa ;升降温速率30°C /min ;保温时间1小时,至此即得具有多带特征的硅量子点薄 膜。本实施例在氮气气氛中退火,氮原子对硅量子点表面悬挂键钝化,抑制量子点尺 寸。将上述硅量子点薄膜进行微观结构和性能检测,微观结构表征采用高分辨透射电 镜(HRTEM)、小角度X射线衍射、X射线光电子能谱;光学特性基于拉曼光谱、光致发光光谱 (PL)和吸收光谱进行评价。本实施例硅量子点的尺寸主要分布在0. 5 Inm和3 4nm ;带隙宽度为2. 5 2. 6eV、3. 15eV 和 3. 35 3. 47eV ;吸收光波长分布位于 270 340nm(72 % )、352 410 (58% )和 570 630nm(52% ) 实施例2分别选用衬底厚度为525um单晶硅片和衬底厚度为700um的玻璃作为基体,并将 该两衬底依次经过去离子水、丙酮和无水乙醇超声清洗15min,进行镀膜前预处理。以氩气作为溅射气体,采用德国SPECS公司生产的磁控溅射设备及配套的在线检 测装置对硅靶和碳靶进行磁控共溅射,在单晶硅片和玻璃基体上沉积非晶碳化硅薄膜。其 中,硅靶使用100W的射频电源,碳靶使用120W的直流电源,基体偏压为80V ;Ar气分压为 7. 4X 10_3mbar,溅射Ar气流量为如ccm ;沉积时间为2小时,膜厚为120nm。镀膜完成后,采 用XPS SPECSHSA3500原位分析薄膜成分,显示Si/C原子比为3. 8。本试样在氮气氛下退火温度为1150°C,本底真空2.4X10_3Pa,氮分压为 0. 30MPa ;升降温速率30°C /min ;保温时间1小时,至此即得具有多带特征的硅量子点薄 膜。
本实施例在氮气气氛中退火,氮原子对硅量子点表面悬挂键钝化,抑制量子点尺 寸。将上述硅量子点薄膜进行微观结构和性能检测,微观结构表征采用高分辨透射电 镜(HRTEM)、小角度X射线衍射、X射线光电子能谱;光学特性基于拉曼光谱、光致发光光谱 (PL)和吸收光谱进行评价。本实施例含有硅量子点的碳化硅薄膜,其硅量子点的尺寸主要分布在0. 5 lnm、 2nm、3 4nm ;带隙宽度为2. 3eV、2. 65 2. 74eV、3. 13eV和3. 36 3. 44eV ;吸收光波长分 别位于 270 349nm(80% )、352 418(78% )和 480 580nm(57% )。实施例3分别选用衬底厚度为525um单晶硅片和衬底厚度为700um的玻璃作为基体,并将 该两衬底依次经过去离子水、丙酮和无水乙醇超声清洗15min,进行镀膜前预处理。以氩气作为溅射气体,采用德国SPECS公司生产的磁控溅射设备及配套的在线检 测装置对硅靶和碳靶进行磁控共溅射,在单晶硅片和玻璃基体上采用间歇工艺沉积双层非 晶碳化硅薄膜。其中,硅靶使用120W的射频电源,碳靶使用120W的直流电源,基体偏压为 80V ;Ar气分压为7. 4X 10_3mbar,溅射Ar气流量为如ccm ;沉积时间为2. 5小时,膜厚为 150nm。镀膜完成后,采用XPS SPECS HSA3500原位分析薄膜成分,显示两层Si/C原子比分 别为4. 3和3. 0。本试样在氮气氛下退火温度为900°C,本底真空2. 4父10-^1,氮分压为0. 30MPa ; 升降温速率25°C /min ;保温时间0. 5小时,至此即得具有多带特征的硅量子点薄膜。本实施例在氮气气氛中退火,氮原子对硅量子点表面悬挂键钝化,抑制量子点尺 寸。将上述硅量子点薄膜进行微观结构和性能检测,微观结构表征采用高分辨透射电 镜(HRTEM)、小角度X射线衍射、X射线光电子能谱;光学特性基于拉曼光谱、光致发光光谱 (PL)和吸收光谱进行评价。本实施例含有硅量子点的碳化硅薄膜,其硅量子点的尺寸主要分布在0.5nm、 1 1. 5nm、2nm、3nm、4nm ;带隙宽度为 2. 36eV、2. 56eV、2. 66eV、2. 74eV、2. 95eV,3. 13eV 和3. 39eV ;吸收光波长分别位于270 415nm(76 % )、420 470 (83 % )和480 6IOnm (68% )。实施例4分别选用衬底厚度为525um单晶硅片和衬底厚度为700um的玻璃作为衬底,并将 该两衬底依次经过去离子水、丙酮和无水乙醇超声清洗15min,进行镀膜前预处理。以氩气作为溅射气体,采用德国SPECS公司生产的磁控溅射设备及配套的在线检 测装置对硅靶和碳靶进行磁控共溅射,在单晶硅片和玻璃基体上沉积非晶碳化硅薄膜。其 中,硅靶使用120W的射频电源,碳靶使用120W的直流电源,基体偏压为80V ;Ar气分压为 7. 4X 10_3mbar,溅射Ar气流量为如ccm ;沉积时间为1. 5小时,膜厚为120nm。镀膜完成后, 采用XPS SPECSHSA3500原位分析薄膜成分,显示Si/C原子比为5. 0。本试样在氩气氛下退火温度为1100 °C,本底真空2.4X10_3Pa,氩分压为 0. 32MPa ;升降温速率25°C /min ;保温时间2小时,至此即得具有多带特征的硅量子点薄 膜。
将上述硅量子点薄膜进行微观结构和性能检测,微观结构表征采用高分辨透射电 镜(HRTEM)、小角度X射线衍射、X射线光电子能谱;光学特性基于拉曼光谱、光致发光光谱 (PL)和吸收光谱进行评价。本实施例含有硅量子点的碳化硅薄膜,其硅量子点的尺寸主要分布在1. 5nm、2 3nm、4nm ;带隙宽度为 2. 38eV、2. 64eV、2. 82eV ;吸收光波长位于 430 440nm(72% )、465 475(80% )和 510 520nm(65% )。实施例5分别选用衬底厚度为525um单晶硅片和衬底厚度为700um的玻璃作为衬底,并将 该两衬底依次经过去离子水、丙酮和无水乙醇超声清洗15min,进行镀膜前预处理;以氩气作为溅射气体,采用德国SPECS公司生产的磁控溅射设备及配套的在线检 测装置对硅靶和碳靶进行磁控共溅射,在单晶硅片和玻璃基体上采用间歇工艺沉积三层非 晶碳化硅薄膜。其中,硅靶使用Iiow的射频电源,碳靶使用90W的直流电源,基体偏压为 80V ;Ar气分压为7. 4X Krtibar,溅射Ar气流量为如ccm ;沉积时间为3. 5小时,膜厚为 300nm。镀膜完成后,采用XPS SPECS HSA3500原位分析薄膜成分,显示三层Si/C原子比分 别为 4. 3,3. 8 和 3. 0。本试样在氮气氛下退火温度为1150°C,本底真空2.4X10_3Pa,氮分压为 0. 30MPa ;升降温速率/min ;保温时间1小时,至此即得具有多带特征的硅量子点薄膜。本实施例在氮气气氛中退火,氮原子对硅量子点表面悬挂键钝化,抑制量子点尺 寸。将上述硅量子点薄膜进行微观结构和性能检测,微观结构表征采用高分辨透射电 镜(HRTEM)、小角度X射线衍射、X射线光电子能谱;光学特性基于拉曼光谱、光致发光光谱 (PL)和吸收光谱进行评价。本实施例制备的含有硅量子点的碳化硅薄膜,其硅量子点的尺寸主要分布在 0. 5 lnm、l. 5nm、2nm、2 3nm 和 3 4nm ;带隙宽度为 2. 3eV,2. 5eV,2. 7eV、2. 9eV、3. 1 3. 2eV、3. 3eV 和 3. 6eV ;吸收光波长位于 270 460nm(94% )和 480 620nm(83% )。本发明不限于上述所给出的实施例,上述仅给出了在单晶硅片和玻璃基体上采用 间歇工艺沉积Si/C原子比为1 3层非晶碳化硅薄膜的实施例,本发明还可以在该单晶硅 片和玻璃基体上采用间歇工艺沉积至6层非晶碳化硅薄膜。沉积多层非晶碳化硅薄膜形成 成分梯度变化,得到尺寸分布更均勻、密度更大、量子尺寸效应更显著的的量子点结构,最 大程度提高光吸收特性和光伏器件的光电转换效率。本发明制备的含有硅量子点的富硅碳化硅薄膜与现有的非晶、多晶硅薄膜材料以 及富硅的氧化硅、氮化硅薄膜材料相比,在同样的实验条件下,因具有更强的量子约束效应 和较低的势垒高度,后者拥有更宽的光吸收范围和吸收特性;同时,因采用氮原子钝化量子 点表面,结构稳定性良好,可避免氢化引起的反解析,保证了光伏电池的稳定使用。
权利要求
1.一种具有多带特征的硅量子点薄膜的制备方法,其特征在于,该方法包括下述步骤1)选用单晶硅片和玻璃作为基体,并进行镀膜前预处理;2)以Ar气作为溅射气体,在对基体施加偏压的条件下,采用射频和直流电源分别对硅 靶和碳靶进行磁控共溅射,沉积碳化硅薄膜;3)然后在氮气或者氩气氛下进行高温退火处理,即得具有多带特征的硅量子点薄膜。
2.根据权利要求1所述的一种具有多带特征的硅量子点薄膜的制备方法,其特征在 于,所述步骤1)中,单晶硅片衬底的厚度为525um,玻璃衬底的厚度为700um,依次经过去离 子水、丙酮和无水乙醇超声清洗15min。
3.根据权利要求1所述的一种具有多带特征的硅量子点薄膜的制备方法,其特征在 于,所述步骤2)中,Ar气分压为7. 4X 10_3mbar,溅射Ar气流量为如ccm ;Si/C原子比为 2 5. 0,沉积时间为1. 5 3. 5h,膜厚为120 300nm。
4.根据权利要求1所述的一种具有多带特征的硅量子点薄膜的制备方法,其特征在 于,所述步骤幻中,在玻璃基体上沉积碳化硅薄膜为1 3层非晶碳化硅薄膜,或沉积碳化 硅薄膜至6层。
5.根据权利要求1所述的一种具有多带特征的硅量子点薄膜的制备方法,其特征在 于,所述步骤幻中,硅靶射频电源功率控制在70 120W,碳靶直流电源控制在90 130W ; 基体偏压为80V。
6.根据权利要求1所述的一种具有多带特征的硅量子点薄膜的制备方法,其特征在 于,所述步骤幻中,在氮气或氩气气氛下退火,氮或氩分压为0. 27 0. 32Mpa ;高温退火的 温度范围为900 1150°C ;升温速率为25-30°C /min,随炉水冷却;保温时间为0. 5 2h。
7.根据权利要求6所述的一种具有多带特征的硅量子点薄膜的制备方法,其特征在 于,所述步骤幻中,在氮气气氛中退火,氮分压为0. 27 0. 30Mpa时,氮原子对硅量子点表 面悬挂键钝化,抑制量子点尺寸。
全文摘要
本发明涉及第三代太阳能电池所用典型材料-量子点薄膜的制备,公开了一种具有多带特征的硅量子点薄膜的制备方法,通过Si/C成分比变化调控硅量子点尺寸分布,进而调整其吸收光谱范围,并显著提高所用材料光电转换效率。该方法包括首先,利用Ar离子对Si靶和C靶进行磁控共溅射,调整Si/C靶的溅射功率,在硅和玻璃基体上沉积成分可控的富硅非晶碳化硅薄膜;然后,在氮气气氛中高温退火数小时,形成镶嵌在非晶SiC内部具有一定尺寸分布的硅量子点薄膜。此类薄膜在1100nm(红外光)至300nm(紫外光)的波长范围具有良好的光吸收特性,有望大幅提高相应光伏器件的光电转换效率。
文档编号C23C14/06GK102134703SQ20101054590
公开日2011年7月27日 申请日期2010年11月16日 优先权日2010年11月16日
发明者徐可为, 畅庚榕, 马飞 申请人:西安交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1