专利名称:Pvd涂布的刀具的制作方法
技术领域:
本发明涉及一种包括主体和涂布在主体上的多层涂层的切削刀具。
背景技术:
用于加工硬质材料例如钢的切削刀具通常包括主体和涂布在主体上的用以提高使用寿命或同时改善切削特性的单层涂层或多层涂层。用于主体的材料例如是金属碳化物、金属陶瓷、钢或高速钢。涂层通常包括氮化物,而且还包括硬质金属材料层、氧化物层等。各种工艺被用于涂布涂层。这些工艺包括CVD工艺(化学气相沉积)和PVD工艺(物理气相沉积)。由于工件的材料特性,对于特定应用诸如例如铣削曲轴或凸轮轴,对于刀具有特别高的要求。在曲轴或凸轮轴的生产中,铸造或锻造的轴通常还要进一步进行铣削加工。在这种情况下,曲轴铣刀或凸轮轴铣刀要经受高的热的和机械的周期性负载。这样,刀具的寿命主要受梳状裂纹与随后开始于梳状裂纹的坑蚀磨损(crater erosion wear)的的综合限制。在现有技术中,CVD涂布的工具钢已知被用于经受上述高的热的和机械的周期性负载的刀具,但因为高的涂布温度,这种刀具的抗梳状裂纹性能不佳。结果,由于开始于梳状裂纹的坑蚀磨损,CVD涂层工具钢的本身对于坑蚀磨损的高抵抗性是相对的。当使用氮化物用于已知工具钢的PVD涂层,由于摩擦化学磨损,会出现坑蚀形成。 摩擦化学磨损是指在加工过程中,刀具与加工材料之间接触部分处发生摩擦,导致发生化学反应,结果使加工材料和工具钢发生化学变化和结构变化,由此发生刀具磨损。
发明内容
目的本发明的目的是提供一种比现有技术更优良的切削刀具,该刀具对于梳状裂纹、 摩擦化学磨损和随之产生的坑蚀具有增强的抵抗性。根据本发明,所述目的通过一种包括主体和涂布在主体上的多层涂层的刀具来实现,其中所述主体包括硬质金属,该硬质金属包括-5-8wt % 的 Co、0_2wt % 的 TaC、Ο-lwt % 的 NbC 和平均粒径为 1 μ m 至 5 μ m 的 89-95wt%& WC,以及所述涂层具有-第一TiAlN层,层厚为Ιμ 至5μ ,以及-第二氧化铝层,层厚为Iym至4μπι,并且所述涂层在第二氧化铝层上另外包括-η个交替地相互叠加地涂布的TiAlN层和氧化铝层,它们各自具有0. 1 μ m至 0. 5 μ m的层厚,其中η涉及每个单独的层,并且是0-10的偶数,并且所述涂层进一步可选地具有
-外层的ZrN层,层厚为0.Ιμπι至Ιμπι,其中所述涂层的总厚度为2 μ m至16 μ m,并且所述涂层通过PVD工艺生产。规定的平均粒径涉及的时碳化钨(WC)。令人惊奇地发现,将具有根据本发明的Co、TaC和NbC的含量的硬质金属与包括至少TiAlN层和氧化铝(Al2O3)层的相应层组合,其中可选地涂布也由TiAlN层和氧化铝层交替地组成的另外的层,对于因为高的热的和机械的周期性负载产生的梳状裂纹和坑蚀磨损具有特别的抵抗性。在根据本发明的根据权利要求1的主体和涂层的组合中,发现主体中较大比例的钴会导致切削刀具过软。而钴的含量小于5wt%会导致切削刀具仅能承受较小的机械载荷。NbC和TaC的比例用以调节结构及所期望的硬度与韧性的比率。关于所述另外的层,可以理解为是涂布到第二氧化铝层上的该层包括TiAlN层。 这样,交替地涂布偶数个另外的层意味着最后涂布的另外的层由氧化铝构成。外层的层的优点在于该层与主体和由TiAlN和氧化铝构成的涂层相比具有不同的色调。当使用切削表面时,由于外层的ZrN层的部分磨损,从排屑面可以发现磨损痕迹。这样,可以通过肉眼判断切削刃是否用过。在一个特别优选的实施方式中,主体包括硬质金属,该硬质金属具有6-8wt%的 CO、l-2Wt%mTaC、0. 2-0. 3wt%的NbC和余量的WC。该组分与本发明的涂层相结合特别适于高的热的和机械的周期性负载。它不含任何其它的硬质物质。进一步优选地,根据本发明的切削刀具中的碳化钨(WC)的平均粒径为2μπι至 3μπι。WC的平均粒径影响硬度与韧性的比率。众所周知,较大的平均粒径产生较高的硬度, 但同时会导致韧性严重下降。另外,众所周知,较小的粒径使得韧性提高,但同时也会导致硬度出现轻微程度的损失。在另一个优选实施例中,第一 TiAlN层的层厚为2 μ m至4 μ m,和/或第二氧化铝层的层厚为1 μ m至2 μ m。通过具有特定层厚的TiAlN层,设定所期望的硬度与韧性的比率。具有特定层厚的氧化铝层带来抗高温和抗氧化能力,并且由此形成抗摩擦化学磨损的能力。在另一个优选方案中,切削刀具包括涂层,其中交替地包括TiAlN层和氧化铝层的可选的所述另外的层具有0. 1 μ m至0. 3 μ m的层厚,和/或可选的所述外层的ZrN层具有O.lym至0.6μπι的层厚。由于所述另外的层的存在,使得涂层存在更多的边界面,从而导致韧性的提高,但未导致硬度的提高。对于所述另外的交替的TiAlN层和氧化铝层,进一步优选地,η < 6。特别优选地, η = 2或η = 4。众所周知,层数越多,则韧性越高。另一方面,这些层通常具有压应力。因此,较多的层数可能会导致不稳定的、剥离的涂层。另外,在工艺工程方面,在PVD工艺中分别涂布较大数量的TiAlN层或氧化铝层的交替层是十分复杂和昂贵的,这也给大规模技术应用带来了限制。特别优选的,总的涂层厚度为2 μ m至8 μ m,并且特别优选地为3 μ m至6 μ m。较薄的涂层不具有足够数量的原子层用以表现出良好的磨损保护性。由于每一层的压应力, 较厚的涂层会较不稳定,并可能特别地在边缘处出现剥离。优选的,涂层在外层的ZrN层之下具有亚化学计量的层,其中χ为0. 01到0. 1,该层的层厚在0. 001 μ m至0. 1 μ m之间。亚化学计量的Zrf^x层与顶层的氧化铝层的结合不如层,使得将层和位于其下的—起移除十分简单。结果,切削刀具在第一次使用后就已经出现磨损痕迹,表明该刀具不是未使用刀具。切削刀具具有前刀面(rake surfaces)、切削刃和排屑面(relief surfaces)。根据本发明,优选地仅在排屑面处涂层具有外层的ZrN层和位于外层ZrN层之下的可选的亚化学计量^^彳层。不同的涂层可通过下面工艺生产,首先用ZrN涂布切削刀具整体,然后通过刷洗和/或(清洁)喷射将层从前刀面且通常也从切削刃处完全除去。如果层仍然存在于切削刀具的前刀面和切削刃,则将不利地影响被带走的切屑。通过在外层ZrN层之下涂布亚化学计量的ZrNh层也可以简化去除过程,这是因为亚化学计量的ZrNh与氧化铝层的结合弱于外层ZrN层。切削刀具进一步优选的是,其中,包括TiAlN的层中的Al与Ti的比率为60 40 到70 30之间,优选地为67 33。该比率涉及原子比率(原子百分比%)。该比率使得氧化铝层特别好地结合到TiAlN层,并由此延长刀具使用寿命。进一步的,本发明的目的通过具有上述特性的切削刀具用于曲轴铣刀或凸轮轴铣刀中的刀片或特殊的可转位刀片的使用来实现。当铣削曲轴时,由于机械载荷非常高,所以切削刀具经受高温和高速。这就要求切削刀具对于刀具的温度的突然的周期性变化具有特别高的耐受性,从而对于梳状裂纹具有良好的抵抗性。令人惊奇地发现,如下的主体与如下的涂层的根据本发明的组合对于铣削曲轴和凸轮轴时产生的热的和机械的周期性负载具有良好的抵抗性,所述主体包括硬质金属,该硬质金属具有Co、0-2wt%& TaC、0-lwt%& NbC 和 89_95wt% 的 WC,其中 WC 的平均粒径为1 μ m至5 μ m,所述涂层至少具有层厚1 μ m至5 μ m的第一 TiAlN层和层厚1 μ m 至4 μ m的第二氧化铝层,其中所述涂层另外还包括在第二氧化铝层上的、各自具有0. 1 μ m 至0. 5 μ m的层厚的、η层交替地相互叠加地涂布的TiAlN层和氧化铝层,其中η涉及每个单独的层,并且是0到10的偶数,其中所述涂层的总厚度为2 μ m至16 μ m并且所述涂层通过PVD工艺制备。本发明的进一步的优点、特征和实施例在下面的示例中描述。
具体实施例方式示例 1 在PVD 涂覆装置 Hauzer HTC 1000 中,包括Co、l.TaC、0. 27wt% 的NbC和90. 58wt%的WC的切削刀具被设置7层涂层1.通过电弧沉积的具有3μπι的层厚的TiAlN层(Ti Al的原子百分比比率为 33 67)2.在反应性磁控管中沉积的具有0. 6 μ m的层厚的氧化铝层3.通过电弧沉积的具有0. 3μπι的层厚的TiAlN层(Ti Al的原子百分比比率为 33 67)4.在反应性磁控管中沉积的具有0. 1 μ m的层厚的氧化铝层
5.通过电弧沉积的具有0.3μπι的层厚的TiAlN层(Ti Al的原子百分比比率 33 67)6.在反应性磁控管中沉积的具有0. 1 μ m的层厚的氧化铝层7.通过电弧沉积的具有0. 2 μ m的层厚的ZrN层。在涂覆操作之前,在真空室中在沉积涂层之前,用酒精清洁基底,并且另外通过氩离子轰击对基底进行清洁[11] [12]。层的沉积第一层,第三层和第五层通过电弧沉积实现TiAlN层的沉积,其中采用每个源65A的蒸发器电流,在3 的氮气压力下,并采用40V的DC模式下的偏压和约550°C的温度。第二层、第四层和第六层在反应性磁控管中实现氧化铝层的沉积,其中采用150V的双极脉冲偏压(70kHz) 和约550°C的温度,在0. 5Pa的氩气压力下,具有约7W/cm2的特定阴极功率,并以氧气作为反应气体(约80SSCm流量)。第七层通过电弧沉积实现ZrN层的沉积,其中采用每个源65A的蒸发器电流,在3 的氮气压力下,并采用40V的DC模式下的偏压和约550°C的温度。示例2-比较例传统的CVD涂层被涂布于根据示例1的基底,用于对比的目的。涂层由以下的层构成1.具有5 μ m的层厚的TiCN层,该层通过mtCVD工艺涂布2.具有4μ m的层厚的α -Al2O3层,该层在高于1000°C的温度下通过高温CVD工艺涂布。根据热CVD工艺的标准流程实现上述涂布。这涉及用于曲轴和凸轮轴铣削的切削刀具,如目前市场上可买到的。测试设备 在制造曲轴时用的包括25MnCrSi VB6钢的工件上进行铣削实验,对示例1中的切削刀具和示例2中的切削刀具进行比较。在146米/分钟的切削速度Vc下进行铣削,其中具有在0. 12mm到0. 18mm之间的齿进给量(tooth advance) fz0所述铣削加工为干铣。使用寿命当达到使用寿命时,根据本发明示例1的切削刀具能够比对照切削刀具铣削更多的曲轴。这里基于保持部件的尺寸精度和切屑形成来定义使用寿命的终止。在相对于组件的要求尺寸出现预定偏差时达到使用寿命的终止。
权利要求
1.一种切削刀具,包括主体和涂布在所述主体上的多层涂层,其特征在于,所述主体包括硬质金属,所述硬质金属包括-5-8wt %的Co、0-2wt %的TaC、O-Iwt %的NbC和具有1 μ m至5 μ m的平均粒径的 89-95wt%W WC,并且所述涂层具有-层厚为Iym至5μπι的第一 TiAlN层,和-层厚为1 μ m至4 μ m的第二氧化铝层,并且在所述第二氧化铝层上,所述涂层进一步另外包括-η个交替地相互叠加地涂布的TiAlN层和氧化铝层,其分别具有0. 1 μ m至0. 5 μ m的层厚,其中η涉及每个单独的层且为0-10的偶数,并且所述涂层进一步可选地具有-外层的ZrN层,具有0. Iym至Iym的层厚,其中所述涂层的总厚度为2 μ m至16 μ m,并且所述涂层通过PVD工艺生产。
2.根据权利要求1所述的切削刀具,其特征在于,所述主体包括如下的硬质金属,所述硬质金属具有Co、l-2wt%& TaC、0. 2-0. 3wt%&NbC 和余量的 WC。
3.根据权利要求1和2中任一项所述的切削刀具,其特征在于,所述主体包括具有平均粒径为2 μ m至3 μ m的WC0
4.根据前述权利要求中任一项所述的切削刀具,其特征在于,所述第一TiAlN层具有 2 μ m至4 μ m的层厚和/或所述第二氧化铝层具有1 μ m至2 μ m的层厚。
5.根据前述权利要求中任一项所述的切削刀具,其特征在于,所述另外的交替地相互叠加地涂布的所述TiAlN层和所述氧化铝层具有0. 1 μ m至0. 3 μ m的层厚和/或所述可选的外层的ZrN层具有0. 1 μ m至0. 6 μ m的层厚。
6.根据前述权利要求中任一项所述的切削刀具,其特征在于η< 6,优选地η = 2或η =4。
7.根据前述权利要求中任一项所述的切削刀具,其特征在于,所述涂层的总厚度为 2 μ m至8 μ m,优选地为3 μ m至6 μ m。
8.根据前述权利要求中任一项所述的切削刀具,其特征在于,所述涂层在所述外层的ZrN层之下包括亚化学计量的ZrNh层,其中χ为0. 01至0. 1,并且其中该层的层厚为 0. OOlym至 0. Ιμ ο
9.根据前述权利要求中任一项所述的切削刀具,其特征在于,所述刀具具有前刀面、切削刃和排屑面,并且只有所述排屑面处的涂层具有外层层和可选地位于所述外层的 ZrN层之下的亚化学计量层。
10.根据前述权利要求中任一项所述的切削刀具,其特征在于,包括TiAlN的层中的Al 与Ti的比率为从60 40到70 30,优选地为67 33。
11.根据权利要求1至10中任一项所述的切削刀具用于曲轴铣刀或凸轮轴铣刀中的切削刀片或特殊的可转位的切削刀片的用途。
全文摘要
本发明涉及一种包括主体和涂布在主体上的多层涂层的刀具。为提供对于梳状裂纹、摩擦化学磨损和因此产生的坑蚀表现出较高的抵抗能力的改进刀具,所述主体由如下的硬质金属制成,所述硬质金属包括5-8重量%的Co、0-2重量%的TaC、0-1重量%的NbC、和89-95重量%的且平均粒径为1μm至5μm的WC,所述涂层包括层厚为1μm至5μm的由TiAlN制成的第一层和层厚为1μm至4μm的由氧化铝制成的第二层,其中在氧化铝制成的第二层上,所述涂层另外包括n个交替的TiAlN层和氧化铝层,其涂布在彼此之上且均具有0.1μm至0.5μm的层厚,其中n涉及每个单独的层且为从0到10的偶数,并且其中所述涂层的总厚度为2μm至16μm,且所述涂层通过PVD方法制备。
文档编号C23C30/00GK102292467SQ201080005499
公开日2011年12月21日 申请日期2010年3月22日 优先权日2009年3月23日
发明者法伊特·席尔, 约尔格·德罗布涅沃斯基 申请人:瓦尔特公开股份有限公司