货油舱用耐腐蚀性钢材的制作方法

文档序号:3388926阅读:195来源:国知局
专利名称:货油舱用耐腐蚀性钢材的制作方法
技术领域
本发明涉及一种用于油轮中的原油舱的货油舱用的钢材。
背景技术
油轮的货油舱的腐蚀形态大致分为两种。一种是在顶板部的气相部发生的全面腐蚀,另一种是在底板部引起的局部腐蚀。特别是在装载含有硫化氢(H2S)的原油时,由于原油中所含有的H2S的一部分转移到气相中,因此腐蚀环境极其严酷。也有报告称,在上述那样的腐蚀环境中,在成为货油舱顶棚部的舱板背面容易引起全面腐蚀,腐蚀速度非常大,达到了 O. 3_ /年以上。另外,还存在如下情况在货油舱的 底板容易发生点腐蚀,点腐蚀发展速度高达数mm /年。鉴于这样的情况,对货油舱的钢材的内表面实施涂装,虽然该实施涂装是局部进行的,但初期涂装的成本及大约每10年的重新涂装的成本较大。另外,在舱底板上,即使在实施了涂装的情况下,有时也会自涂膜的缺陷部发生点腐蚀。因此,实际情况是进行考虑了腐蚀余度的板厚设计,作为应对全面腐蚀、局部腐蚀的对策。例如进行对于20年的使用预估2mm的腐蚀余度这样的、考虑了腐蚀余度的板厚设计。并且,在底板上定期地实施检查,对于点腐蚀深度较大的部分利用堆焊进行修补,但因此会产生庞大的维护成本,而成为问题。而且,若进行考虑了腐蚀余度的板厚设计,则由于钢材的厚度相应地增加,不仅油舱的制造成本上升,还会产生原油装载量减少了与考虑了腐蚀余度的板厚相应的量这样的缺点。因而,迫切期望开发出一种能够谋求减少腐蚀余度、而且能够防止成本上升的、耐腐蚀性优良的货油舱用钢材。另外,在造船阶段中为了构筑油舱而进行焊接,从而存在焊接接头部,因此,期望不仅耐腐蚀性良好、并且焊接接头部的强度、韧性、焊接性等也优良的材料。作为货油舱用钢,例如在专利文献I中提出了作为必需成分含有Cu和Mg的钢,另夕卜,在专利文献2中提出了作为必需成分含有Cr和Al的钢。但是,完全没有考虑在原油含有H2S的情况下H2S对腐蚀带来的影响,因此,有可能在搭载于实船的货油舱中无法获得充分的耐腐蚀性。特别是在原油舱底板的环境中H2S的影响极大,因此,必须确保在存在H2S的环境中的耐腐蚀性。另外,专利文献3中公开的、作为必需成分含有Cu和Ni而成的钢材提高了货油舱内的耐全面腐蚀性和耐点腐蚀性。但是,虽然该钢材确实提高了耐腐蚀性,但由于含有Cu和Ni这样的昂贵的合金成分,因此存在钢材的熔炼成本升高这样的问题。特别是近年来这些元素的价格高涨,即使合金成分的含量较低,合金成分的成本也较高,而使得与普通钢材的涂装方法相比成本会大幅度地增加。并且,在专利文献4中公开了一种作为必需成分含有Cu :0. 05% 2%、Ni O. 01% 1%、W :0· 01% 1%、N :0.001% O. 01%、以及 O (氧)0· 0001% O. 005%的钢材,而提高货油舱内的耐全面腐蚀性和耐局部腐蚀性。但是,由于该钢材含有Cu和Ni这样的昂贵的合金成分,因此留有钢材的熔炼成本升高这样的问题。专利文献I :日本特开2000 - 17381号公报专利文献2 :日本特开2001 - 107180号公报专利文献3 :日本特开2003 - 82435号公报专利文献4 :日本特开2005 - 325439号公报

发明内容
本发明即是鉴于上述现状而完成的,其目的在于提供一种对于全面腐蚀、局部腐蚀的抵抗性优良、并且成本性能较高的货油舱用耐腐蚀性钢材。本发明人为了达成上述的课题,模拟实船中原油的腐蚀环境,对于在顶板部的气相部产生的全面腐蚀和在底板部引起的局部腐蚀进行了实验。即,针对气相部,在含有惰性气体和H2S的干湿反复环境中,进行了在装载了含有H2S的原油的实船的舱板背面所看到的腐蚀生成物层的再现试验。而且,针对底板部,进行了模拟在高浓度氯化物溶液中自油涂层缺陷部发生点腐蚀的实验。该实验是利用图I及图2所示的试验装置对在后述的实施例中使用的、具有各种化学组成的钢进行的。另外,图I是气相部的再现试验装置,图2是底板部的再现试验装置。其结果,关于气相部和底板部的耐腐蚀性,得到下述(a) (C)所示的见解。(a)在气相部的再现试验、即关于在油舱顶板部产生的全面腐蚀的试验中可明确无论是否含有合金元素,腐蚀速度基本上都不依赖于时间。因而,在气相环境中,腐蚀生成物的防腐蚀效果较小,需要通过使其含有合金元素来谋求提高母材自身的耐腐蚀性。 在全面腐蚀环境下,使其含有Cu、Ni、W元素的做法是有效的,并且,通过复合地含有这些元素,该效果会进一步增加。特别是通过复合地含有Cu和W,抑制钢材的阳极溶解反应,从而提高母材自身的耐腐蚀性。(b)在底板部的再现试验、即关于在底板部引起的局部腐蚀的试验中可明确腐蚀初期的点腐蚀速度基本上没有钢种的差别,但随着时间经过,根据钢种的不同,点腐蚀速度会下降。因而,在底板环境中,腐蚀生成物的防腐蚀效果是主导的。即,只要能够在腐蚀初期在钢材表面上形成延缓腐蚀发展的腐蚀生成物,就能够谋求提高耐腐蚀性。在将钢材放置于局部腐蚀环境下的情况下,通常在钢材表面会形成铁锈(β -FeOOH)层。但是,若含有Cu、Ni、W,则首先在钢材表面形成硫化物层,之后形成铁锈层。由于该硫化物层会显著抑制阳极溶解反应,因此有助于提高耐腐蚀性。特别是含有W的硫化物或者还含有Mo的硫化物的层会表现出阳离子选择性,具有借助硫化物层抑制Cl —离子透过的效果,因此,在形成含有W的硫化物或者还含有Mo的硫化物的层的情况下,会特别有助于提高耐腐蚀性。(c)由此可见,在全面腐蚀环境下和局部腐蚀环境下的任一种环境下,使其含有Cu、Ni和W都是较为重要的,为了在两种环境下均得到较高的耐腐蚀性,需要使Cu、Ni及W分别为适当的含量。本发明即是基于上述见解而完成的,其发明的主要内容在于以下的(I) (7)所示的货油舱用耐腐蚀性钢材。(I) 一种货油舱用耐腐蚀钢材,其特征在于,按质量%计含有C :0. 01% O. 2%,Si 0. 01% I. 0%,Μη :0. 05% 2· 0%、P :0. 002% O. 1%,S :0. 01% 以下、Cu 0. 01% 2. 0%,Ni :0. 01% 1.0%、1:大于0%且小于0.01%^1 :0. 1%以下,余量由Fe及杂质组成。(2)根据上述(I)的货油舱用耐腐蚀钢材,其特征在于,按质量%计含有以下元素中的一种或者两种以上来替代Fe的一部分Cr :5. O %以下、Mo :1. O %以下、Ti :0. 2%以下、Zr :0. 2%以下、Sb :0. 3%以下以及Sn :0. 3%以下。

(3)根据上述(I)或(2)的货油舱用耐腐蚀钢材,其特征在于,按质量%计含有以下元素中的一种或者两种以上来替代Fe的一部分Nb 0. I %以下、V :0. 2%以下以及B:O. 01%以下。(4)根据上述(I) (3)中任意一个货油舱用耐腐蚀钢材,其特征在于,按质量%计以下元素中的一种或者两种以上来替代Fe的一部分Ca 0. 01%以下、Mg :0. 01%以下以及 REM :0. 01% 以下。(5)根据上述(I) (4)中任意一个的货油舱用耐腐蚀钢材,其特征在于,在表面上具有Cu、Ni及W的硫化物或者还具有Mo的硫化物的层。(6)根据上述(I) (4)中任意一个的货油舱用耐腐蚀钢材,其特征在于,表面由防腐蚀被膜覆盖。(7)根据上述(I) (4)中任意一个的货油舱用耐腐蚀钢材,其特征在于,利用防腐蚀被膜隔着由CiuNi及W的硫化物或者还由Mo的硫化物构成的中间层覆盖表面。采用本发明,能够提供一种对于全面腐蚀、局部腐蚀的抵抗性优良的货油舱用耐腐蚀性钢材。


图I表示气相部的再现试验装置。图2表示底板部的再现试验装置。图3表示酸浸溃试验装置。
具体实施例方式下面,详细说明本发明。另外,各元素的含量的“ % ”表示“质量% ”。(A)化学组成C 0. 01% O. 2%C是为了确保作为材料的强度所必需的元素,需要其含量为O. 01%以上。但是,若其含量超过O. 2%,则焊接性下降。另外,随着C的含量的增加,在酸性环境中成为阴极而促进腐蚀的渗碳体的生成量增加,随此,焊接性恶化。因此,将其上限设为0.2%。优选的上限为O. 15%,优选的下限为O. 04%。Si 0. 01% I. 0%Si是脱氧所必需的元素,为了获得充分的脱氧效果,需要含有O. 01%以上的Si。但是,若其含量超过I %,则损害母材及焊接接头部的韧性。因此,使Si的含量为O. 01 % 1.0%。优选的上限为0.8%,更优选的上限为0.5%。优选的下限为O. 04%,更优选的下限为 O. 10%。Mn :0. 05% 2. 0%Mn是具有以低成本提高钢的强度的作用的元素,为了获得该效果,需要其含量为O. 05%以上。但是,若其含量超过2.0%,则焊接性变差,并且接头韧性也变差。因此,使Mn的含量为O. 05% 2.0%。优选的上限为1.8%,更优选的上限为1.6%。优选的下限为O. 3%,更优选的下限为O. 5%。P :0. 002% O. 1%P具有提高耐全面腐蚀性和耐点腐蚀性的作用。另外,通常P的含量越多,耐酸性越差,但在含有Cu的钢中,通过含有P会提高耐酸性。通过含有O. 002 %以上的P会发挥上 述这样的提高耐全面腐蚀性及耐点腐蚀性中的耐酸性的效果及提高含有Cu的钢中的耐酸性的效果。但是,若其含量超过0.1%,则焊接性显著下降。因此,使P的含量为O. 002% 0.1%。优选的上限为O. 08%,更优选的上限为0.06%。优选的下限为O. 003%,更优选的下限为O. 004% οS :0. 01% 以下S作为杂质不可避免地存在于钢中。但是,若其含量超过O. 01 %,则在钢中大量生成MnS,MnS会成为腐蚀的起点而发生全面腐蚀及点腐蚀。因此,使S的含量为O. 01%以下。优选的上限为O. 008%,更优选的上限为O. 005%。另外,S的含量越低越好。Cu :0. 01% 2. 0%Cu不仅是提高耐全面腐蚀性的元素,而且还是在货油舱中的底板环境下(局部腐蚀环境下)与S —同形成硫化物层来提高耐点腐蚀性的元素。通过含有O. 01%以上的Cu会发挥上述效果,但即使Cu的含量超过2. 0%,不仅上述效果会饱和,而且为了防止热轧时的裂纹而含有的Ni的含量也增加,因此会导致成本增加。因此,使C u的含量为O. 01% 2.0%。优选的上限为1.8%,更优选的上限为1.5%。优选的下限为O. 05%,更优选的下限为O. 10%。另外,后述将对硫化物层进行详细说明。Ni :0. 01% I. 0%Ni与Cu相同,也不仅是提高耐全面腐蚀性的元素,而且还是在货油舱中的底板环境下(局部腐蚀环境下)与S—同形成硫化物层来提高耐点腐蚀性的元素。通过含有O. 01%以上的Ni会发挥上述效果,但即使Ni的含量超过1.0%,不仅上述效果会饱和,而且会导致成本增加。因此,使Ni的含量为0.01% 1.0%。优选的上限为0.9%,更优选的上限为0.8%。优选的下限为O. 05%,更优选的下限为0.1%。另外,后述将对硫化物层进行详细说明。W:大于 0% 目.小于 O. 01%W是提高耐酸性的元素,会提高耐全面腐蚀性。另外,W也存在与其他元素复合来提高耐全面腐蚀性、在湿润硫化氢环境中与S —同形成防腐蚀性的硫化物层来提高耐点腐蚀性的效果。通过含有微量的W会获得上述效果。但是,若含有O. 01%以上的W,则无法获得与成本相称的效果,而且也有可能导致焊接性的恶化。因而,使W的含量大于0%、小于0.01%。另外,后述将对硫化物层进行详细说明。Al :0. 1% 以下
Al是对钢的脱氧有效的元素,但由于在本发明中含有Si,因此利用Si进行脱氧。因而,未必必须利用Al进行脱氧处理,因此也可以不含有Al。但是,也可以除了含有Si之夕卜,还含有Al来进行复合脱氧。在这种情况下,若含有O. 005%以上的Al,则能够有效地脱氧。另一方面,若Al的含量超过O. I %,则不仅耐全面腐蚀性显著恶化,而且由于氮化物粗大化会引起韧性下降。因而,将含有Al的情况下的Al的含量的上限设为O. 1%以下。优选的上限为O. 05%。本发明的货油舱用耐腐蚀性钢材具有上述的元素,余量由Fe及杂质组成。另外,杂质是指在工业上制造钢材时,由于制造工序的各种原因而主要从矿石、废料等这样的原料混入的成分,在不对本发明产生不良影响的范围内是被容许的。根据需要,本发明的货油舱用耐腐蚀性钢材可以含有Cr、Mo、Ti、Zr、Sb、Sn、Nb、V、B、Ca、Mg、REM中的一种或者两种以上的元素来替代Fe的一部分。

这些元素可以分为如下3组。(i)第I组为以下元素中的一种或者两种以上Cr 5. 0%以下、Mo :1. 0%以下、Ti O. 2%以下、Zr :0. 2%以下、Sb :0. 3%以下以及Sn :0. 3%以下。(ii)第2组为以下元素中的一种或者两种以上Nb 0. 1%以下、V :0. 2%以下以及B :0. 01% 以下。(iii)第3组为以下元素中的一种或者两种以上Ca :0. 01%以下、Mg :0. 01%以下以及REM :0. 01%以下。下面,针对每组说明上述各元素。⑴第 I 组Cr、Mo、Ti、Zr、Sb 及 SnCr :5. 0% 以下根据需要可以含有Cr。若单独含有Cr,则会降低酸环境中的耐腐蚀性,但若其与Cu复合地含有,则会形成在干湿反复的环境中保护性较高的锈层,从而提高耐全面腐蚀性。但是,若Cr的含量超过5. 0%,则不仅上述效果饱和,而且会导致焊接性下降、成本增加。因而,将Cr的含量的上限设为5.0%。优选的上限为4.5%,更优选的上限为4.0%。另外,为了稳定地获得通过含有Cr而产生的效果,优选使Cr的含量为O. 5%以上。更优选为I. 0%以上。Mo :10% 以下根据需要可以含有Mo。Mo是提高耐酸性的元素,具有提高酸性水的干湿反复的环境中的耐全面腐蚀性的效果。另外,也具有在湿润硫化氢环境中与S—同形成防腐蚀性的硫化物层来提高耐点腐蚀性的效果。但是,即使Mo的含量超过I. 0%,不仅效果会饱和,而且会损害焊接性,成本也会增加。因而,将含有Mo时的Mo的含量的上限设为1.0%。优选的上限为O. 5%,更优选的上限为O. 4%。另外,为了稳定地获得通过含有Mo而产生的效果,优选含有O. 01%以上的Mo。更优选为O. I %以上,进一步优选为O. 2%以上。Ti :0. 2% 以下根据需要可以含有Ti。Ti具有提高钢的强度的作用。Ti也具有提高钢的韧性、通过形成TiS来抑制成为腐蚀的起点的MnS生成、提高耐全面腐蚀性及耐点腐蚀性的作用。并且,利用TiN的分散来抑制晶粒粗大化,因此,大热量输入的焊接部的韧性提高。但是,即使Ti的含量超过0.2%,不仅上述效果会饱和,而且成本也会上涨。因而,将含有Ti时的Ti的含量的上限设为0.2%。优选的上限为O. 15%,更优选的上限为0.1%。另外,为了稳定地获得通过含有Ti而产生的效果,优选含有O. 005%以上的Ti。更优选为O. 01 %以上,进一步优选为O. 015%以上。Zr :0. 2% 以下根据需要可以含有Zr。Zr与Ti相同,具有优先形成硫化物来抑制MnS生成的效果。另外,Zr与Ti相比为不易形成氮化物的元素,并且还具有更高效地形成硫化物这样的特征。但是,若Zr的含量超过0.2%,则会导致韧性下降。因而,将含有Zr时的Zr的含量的上限设为0.2%。优选的上限为O. 15%,更优选的上限为0.1%。另外,为了稳定地获得通过含有Zr而产生的效果,优选含有O. 005%以上的Zr。更优选为O. 01 %以上,进一步优选为O. 02%以上。
Sb :0. 3% 以下根据需要可以含有Sb。Sb具有提高在干湿反复环境下的耐全面腐蚀性的作用,并且具有提高耐酸性的作用。并且,还具有通过提高点腐蚀部在PH较低的环境下的耐腐蚀性来提高耐点腐蚀性的作用。但是,即使Sb的含量超过0.3%,上述的效果也会饱和。因而,将含有Sb时的Sb的含量的上限设为O. 3%。优选的上限为O. 25%,更优选的上限为O. 2%。另外,为了稳定地获得通过含有Sb而产生的效果,优选含有O. 03%以上的Sb。更优选为O. 05%以上。Sn :0. 3% 以下根据需要可以含有Sn。Sn是提高酸环境中的耐腐蚀性的元素,具有提高在酸性水的干湿反复环境下的耐全面腐蚀性的作用。而且,还具有通过提高点腐蚀部在pH较低的环境下的耐腐蚀性来提高耐点腐蚀性的作用。但是,即使Sn的含量超过O. 3%,不仅上述的效果会饱和,母材及大热量输入的焊接接头的韧性也会显著变差。因而,将含有Sn时的Sn的含量的上限设为0.3%。优选的上限为O. 25%,更优选的上限为0.2%。另外,为了稳定地获得通过含有Sn而产生的效果,优选含有O. 01 %以上的Sn。更优选为O. 02%以上,进一步优选为O. 03%以上。(ii)第 2 组Nb、V 及 BNb :0. 1% 以下根据需要可以含有Nb。Nb是具有提高钢的强度的作用的元素。但是,若Nb的含量超过O. 1%,则韧性变差。因而,将含有Nb时的Nb的含量的上限设为O. 1%。优选的上限为O. 08%,更优选的上限为O. 05%。另外,为了稳定地获得通过含有Nb而产生的效果,优选含有O. 001%以上的Nb。更优选为O. 005%以上,进一步优选为O. 01%以上。V :0. 2% 以下根据需要可以含有V。V是具有提高钢的强度的作用的元素。但是,若V的含量超过0.2%,则韧性及焊接性变差。因而,将含有V时的V的含量的上限设为0.2%。优选的上限为O. 15%。另外,为了稳定地获得通过含有V而产生的效果,优选含有O. 005%以上的V。更优选为O. 01%以上。B :0. 01% 以下根据需要可以含有B。B是具有提高钢的强度的作用的元素。但是,若B的含量超过O. 01%,则韧性变差。因而,将含有B时的B的含量的上限设为O. 01%。优选的上限为O. 008%,更优选的上限为O. 005%。另外,为了稳定地获得通过含有B而产生的效果,优选含有O. 0002%以上的B。更优选为O. 0005%以上,进一步优选为O. 0008%以上。(iii)第 3 鉬Ca、Mg 及 REMCa :0. 01% 以下根据需要可以含有Ca。Ca具有如下作用在腐蚀反应时溶解于水而呈碱性,从而抑制钢材界面的PH下降的作用。因此,裸钢及涂装部的耐腐蚀性提高。但是,即使Ca的含量超过O. 01%,上述效果也会饱和。因而,将含有Ca时的Ca的含量的上限设为O. 01%。优选的上限为O. 008%,更优选的上限为O. 005%。另外,为了稳定地获得通过含有Ca而产生的效果,优选含有O. 0002%以上的Ca。更优选为O. 0005%以上,进一步优选为O. 001%以上。Mg :001% 以下 根据需要可以含有Mg。Mg与Ca相同,也具有通过抑制腐蚀反应时的钢材界面的PH下降来提高耐腐蚀性的作用。但是,即使Mg的含量超过0.01%,其效果也会饱和。因而,将含有Mg时的Mg的含量的上限设为O. 01%。优选的上限为O. 008%,更优选的上限为O. 005%。另外,为了稳定地获得通过含有Mg而产生的效果,优选含有O. 0002%以上的Mg。更优选为O. 0005%以上,进一步优选为O. 001%以上。REM :0. 01% 以下根据需要可以含有REM。REM具有提高钢的焊接性的效果。但是,即使REM的含量超过O. 01%,不仅上述效果会饱和,而且钢材的成本也会上涨。因而,将含有REM时的REM的含量的上限设为0.01%。优选的上限为O. 008%,更优选的上限为0.005%。另外,为了稳定地获得通过含有REM而产生的效果,优选含有O. 0001%以上的REM。更优选为O. 0005%以上,进一步优选为O. 001%以上。在此,REM是指镧系元素的15个元素加上Y及Sc而得的17个元素的总称,可以含有这些元素中的一种或者两种以上。另外,REM的含量是指这些元素的合计含量。(B)硫化物层硫化物层是通过在钢材中含有Cu、W、Ni或者Mo,并在货油舱的底板环境下使用而形成的。因而,在钢材出厂时不必预先形成硫化物层。通过用作货油舱用的底板钢材,虽然在使用初期受到H2S及Cl —的攻击会发生一定的点腐蚀,但在经过一定期间之后便会形成硫化物层。硫化物层会降低在钢材界面上的H2S浓度,抑制钢的阳极溶解,其中,特别是具有阳离子选择性的W硫化物或者还有Mo硫化物会抑制Cl—透过。由此,点腐蚀的发展放缓,耐腐蚀性提高。在利用EPMA (电子探针显微分析仪)进行的分析中,可明确硫化物层自内侧(钢材侦D按照Mo硫化物、Cu硫化物、W硫化物、Ni硫化物的顺序形成。一般认为硫化物层按照上述这样的顺序生成的原因如下若根据各硫化物的溶解度和由点腐蚀发展速度估计出来的Cu、W、Ni、Mo离子浓度计算用于形成硫化物的临界S2_浓度,则该浓度为Mo、Cu、W、Ni的顺序。一旦形成了硫化物层,也可以在该硫化物层上形成有通常形成在钢材表面的铁锈(β — FeOOH)层。铁锈层没有降低H2S浓度的效果、抑制Cl—透过的效果,但由于利用硫化物层阻断透过铁锈层后的H2S和Cl—,因此会发挥优良的耐腐蚀性。
硫化物层有时也会因清扫货油舱等而局部受到损伤。即使在这种情况下,也会通过使用而再次形成硫化物层,因此,耐腐蚀性不会下降。以上说明了硫化物层,但本发明的钢材也能够用作未形成硫化物层的油舱顶板部,在全面腐蚀环境下使用的情况下,能够利用母材自身的耐腐蚀性抑制腐蚀发展。(C)防腐蚀被膜对于以上说明的本发明的钢材,即使直接使用也能够表现出良好的耐腐蚀性,能够减少腐蚀余度。不过,在利用由有机树脂、金属形成的防腐蚀被膜覆盖其表面的情况下,防腐蚀被膜的耐久性提高,耐腐蚀性进一步提高,更加适合用作货油舱用耐腐蚀钢材。在此,作为由有机树脂形成的防腐蚀被膜,可以举出乙烯丁缩醛系、环氧系、聚氨酯系、邻苯二甲酸系等的树脂被膜,作为由金属形成的防腐蚀被膜,可以举出Zn、Al等的电 镀被膜、喷镀被膜。另外,一般认为防腐蚀被膜的耐久性提高的原因如下作为显著抑制作为基底的本发明钢材的腐蚀的结果,能够抑制自防腐蚀被膜缺陷部的基底钢材腐蚀引起的防腐蚀被膜的鼓起、剥离。可以利用通常的方法进行上述的利用防腐蚀被膜覆盖钢材表面的处理。另外,未必必须对钢材的整个面实施覆盖防腐蚀被膜,也可以仅对作为暴露在腐蚀环境中的面的钢材的单面进行防腐蚀处理。或者,也可以仅对作为暴露在腐蚀环境中的部分的钢材的一部分进行防腐蚀处理。(D)制诰方法本发明的钢材能够如下地制造。但是,本发明的钢材制造方法并不限定于该制造方法。制作将S的含有量抑制得较低、并且实施了制钢阶段中的RH、DH、电磁搅拌等的、具有本发明中规定的组成的板坯。在加热温度为1100°C 1200°C左右、每一道轧制的压下率为3%以上、精轧温度为700°C 900°C左右的条件下,对该板坯进行热轧。在轧制结束之后,在大气中自然冷却,或者以冷却速度5°C / s以上在从Ar3点以上的温度到至少570°C左右的温度区内进行冷却,之后在大气中自然冷却。通过以上工序,能够制造本发明的钢材。另外,上述的温度全部是钢材的表面部分的温度。实施例I使用真空熔化炉熔炼具有表I所示的化学组成的23种钢,制成150kg的钢块之后,利用通常的方法进行热锻造,制作成厚度为60mm的块。
权利要求
1.一种货油舱用耐腐蚀钢材,其特征在于, 按质量 % 计含有 C :0. Ol % O. 2%、Si :0. Ol % I. 0%、Mn :0· 05% 2. 0%、P :O. 002% O. 1%、S 0. 01% 以下、Cu 0. 01% 2. 0%、Ni :0· 01% I. 0%、W :大于 0%且小于O. 01%、Al :0. 1%以下,余量由Fe及杂质组成。
2.根据权利要求I所述的货油舱用耐腐蚀钢材,其特征在于, 按质量%计含有以下元素中的一种或者两种以上来替代Fe的一部分Cr :5.0%以下、Mo :1. 0% 以下、Ti :0. 2% 以下、Zr :0. 2% 以下、Sb :0. 3% 以下以及 Sn :0. 3% 以下。
3.根据权利要求I或2所述的货油舱用耐腐蚀钢材,其特征在于, 按质量%计含有以下元素中的一种或者两种以上来替代Fe的一部分Nb 0. 1%以下、V :0. 2%以下以及B :0. 01%以下。
4.根据权利要求I 3中任一项所述的货油舱用耐腐蚀钢材,其特征在于, 按质量%计含有以下元素中的一种或者两种以上来替代Fe的一部分Ca:0.01%以下、Mg :0. 01%以下以及REM :0. 01%以下。
5.根据权利要求I 4中任一项所述的货油舱用耐腐蚀钢材,其特征在于, 在表面具有Cu、Ni及W的硫化物或者还具有Mo的硫化物的层。
6.根据权利要求I 4中任一项所述的货油舱用耐腐蚀钢材,其特征在于, 表面由防腐蚀被膜覆盖。
7.根据权利要求I 4中任一项所述的货油舱用耐腐蚀钢材,其特征在于, 利用防腐蚀被膜隔着由Cu、Ni及W的硫化物或者还由Mo的硫化物构成的中间层覆盖表面。
全文摘要
本发明提供一种货油舱用耐腐蚀钢材。该货油舱用耐腐蚀钢材的特征在于,按质量%计含有C0.01%~0.2%、Si0.01%~1.0%、Mn0.05%~2.0%、P0.002%~0.1%、S0.01%以下、Cu0.01%~2.0%、Ni0.01%~1.0%、W大于0%且小于0.01%、Al0.1%以下,余量由Fe及杂质组成,其对于全面腐蚀、局部腐蚀的抵抗性优良。并且,也可以含有Cr、Mo、Ti、Zr、Sb、Sn、Nb、V、B、Ca、Mg及REM中的一种以上。另外,表面也可以由硫化物层或者防腐蚀被膜覆盖。
文档编号C22C38/00GK102686760SQ201180005143
公开日2012年9月19日 申请日期2011年7月7日 优先权日2010年7月9日
发明者幸英昭, 鹿岛和幸 申请人:住友金属工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1