本发明涉及的是热处理工艺技术领域,具体涉及一种mim铁基零件专用渗碳淬火炉工艺。
背景技术:
目前,精密电子产品零部件加工很多采用粉末冶金注射成型工艺,但是直接烧结成型的产品在性能上无法满足客户要求,传统热处理工艺主要是预热直接淬火、一次加热淬火加上低温回火,这些工艺不能满足mim铁基零件表面高硬度、心部高韧性的耐磨抗冲击性能。
mim,即金属粉末注射成型,是近年来国际上迅速发展的一种新的成型技术,其优势在于能够成形复杂形状的零部件,且制品各个部位密度均匀,无明显性能差异,其通用的工艺流程为将细微的金属粉末与有机黏结剂均匀混合成为具有流变性能的物质,然后采用先进的注射机注入具有零件形状的模具型腔形成坯件,随后通过脱出黏结剂并经烧结,使其高度致密,成为金属制品。
为了解决传统热处理工艺存在的不足,设计一种mim铁基零件专用渗碳淬火炉工艺尤为必要。
技术实现要素:
针对现有技术上存在的不足,本发明目的是在于提供一种mim铁基零件专用渗碳淬火炉工艺,有效提高产品性能,针对不同的产品性能要求可做出调整,以满足客户的需求。
为了实现上述目的,本发明是通过如下的技术方案来实现:mim铁基零件专用渗碳淬火炉工艺,其流程为:将工件置入具有活性渗碳介质中,采用气体渗碳,在加热炉本体中加热到860-900℃的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分,渗碳后热处理,在淬火油槽淬火后,配合150-200℃低温回火,从而得到表面高硬度、心部高韧性的耐磨抗冲击零件。
作为优选,所述的渗碳深度取决于保温时间,按每小时0.2-0.25毫米,表面碳含量达0.85%-1.05%。
作为优选,所述的加热炉本体呈直角“¬”形结构,所述加热炉本体的末端设置有淬火油槽,淬火油槽内为油淬区,所述淬火油槽包含有提升机构,提升机构末端为取件区。
本发明的有益效果:采用mim铁基零件渗碳淬火工艺,先高温渗碳再淬火,然后低温回火,使mim这项新型成型技术制成的铁基类零件具有稳定的表面高硬度、心部高韧性的耐磨抗冲击性能,通过提高产品耐磨性和韧性,使其实现性能稳定批量化生产。
附图说明
下面结合附图和具体实施方式来详细说明本发明;
图1为本发明的设备结构示意图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
参照图1,本具体实施方式采用以下技术方案:mim铁基零件专用渗碳淬火炉工艺,其流程为:将工件置入具有活性渗碳介质中,采用气体渗碳,在加热炉本体1中加热到860-900℃的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分,它可以使渗过碳的工件表面经淬火后获得很高的硬度,提高其零件强度﹑冲击韧性和耐磨性,借以延长零件的使用寿命。
值得注意的是,所述的渗碳深度取决于保温时间,按每小时0.2-0.25毫米,表面碳含量达0.85%-1.05%;工件渗碳后需进行热处理,在淬火油槽2淬火后,配合150-200℃低温回火,从而得到表面高硬度、心部高韧性的耐磨抗冲击零件
本工艺使用渗碳淬火炉,渗碳淬火炉包括有加热炉本体1、淬火油槽2和mim铁基零件,其中加热炉本体1呈直角“¬”形结构,所述加热炉本体1的末端设置有淬火油槽2,淬火油槽2内为油淬区,所述淬火油槽2包含有提升机构3,提升机构3末端为取件区,mim成型原料包括粘结剂和金属粉末。
本具体实施方式渗碳淬火工艺的作用是提高mim铁基零件的淬透性、细化晶粒、强化固溶体,影响渗层中的含碳量、渗层厚度及组织,mim铁基零件渗碳淬火工艺后实际上应看作是由一种表面与中心碳含量相差悬殊的铁基合金材料,渗碳只能改变工件表面的含碳量,而其表面以及心部的最终强化则必须经过适当的热处理才能实现,渗碳后的mim铁基零件经过淬火后表面可形成高碳马氏体或高碳马氏体和细粒状碳化物组织,再配合低温回火从而得到表面高硬度、心部高韧性的耐磨抗冲击零件。
本具体实施方式采用渗碳淬火的热处理工艺,针对材质及性能要求的不同,可调整所需的加热温度和网带速度和碳浓度数据。具体如下:
①fe8ni类产品:fe8ni产品因材质特性,产品烧结后硬度较高,在对产品各项性能要求下,只需调整产品的耐磨性,故在热处理环节选择的工艺为渗碳淬火,整个热处理环节完成需60-90min,温度在860℃-890℃,表面渗碳层深度大约在0.2-0.4mm,增加表面硬度。
②fe2ni类产品:fe2ni产品因材质特性,产品烧结后硬度较低,在对产品各项性能要求下,需调整产品的硬度,故在热处理环节选择的工艺为渗碳淬火,整个热处理环节完成需90-120min,温度在860℃-890℃,表面渗碳层深度大约在0.2-0.4mm,增加表面硬度。
本具体实施方式在一定程度上稳定实现了铁基类产品表面高硬度、心部高韧性、耐磨抗冲击的力学性能,零件内部组织均匀,密度可达到理论密度的98-99.5%,强度、硬度、耐磨性能都能满足要求,且成本低,操作简单,能耗低,周期短,可大批量、持续生产,该工艺可针对不同的产品性能要求做出调整,硬度均匀性好,硬度高低容易调节、控制,该工艺适用于粉末冶金注射成型生产的铁基类零部件,应用前景广阔。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。