用于碳化合物膜沉积的方法和设备与流程

文档序号:31591977发布日期:2022-09-21 03:30阅读:145来源:国知局
用于碳化合物膜沉积的方法和设备与流程

1.本原理的实施方式一般涉及用于半导体处理的电感耦合等离子体(inductively coupled plasma)反应器腔室。


背景技术:

2.例如金刚石和石墨烯的碳基底的(carbon-based)膜的大规模生长由于这些膜的优越的机械和电子特性而引起广泛关注。金钢石膜具有各种杰出的特性,例如极高的硬度、高热传导性、良好的光学穿透性(optical transparency)和高电阻率,而已在光学涂布领域中使用多年。由于金钢石膜相较于通过传统等离子体增强化学气相沉积(pecvd)所沉积的其他非晶碳膜的优越的蚀刻选择性,金钢石膜也可作为半导体工业中的硬模(hard mask)材料使用。由于金钢石膜非常高的sp3碳百分比,金钢石膜的蚀刻选择性可以是其他非晶碳膜的二倍或三倍。石墨烯,由于薄的厚度和高电子迁移率,可用以取代传统金属阻挡层用于下一代半导体装置,因为金属线的电阻随着金属线的厚度和尺寸持续缩小而变得越来越高。石墨烯也具有高的光学穿透性,可在柔性电子应用(flexible electronics)中使用,例如在智能手表应用中使用。然而,发明人已发现生产均匀的碳化合物膜是极度困难且耗时的,这大幅减少了这样的膜的广泛使用。
3.因此,发明人提供了用于在基板上沉积碳化合物膜的改进的方法和设备。


技术实现要素:

4.在此提供用于使用电感耦合等离子体反应器的碳化合物膜的增强沉积的方法和设备。
5.在一些实施方式中,一种用于在半导体处理中的碳化合物沉积的设备可包含:电感耦合等离子体(icp)腔室,具有腔室主体、盖、内部空间、泵设备和气体传输系统;和用于支撑设置于icp腔室的内部空间内的基板的基座,其中该基座具有下部部分和从氮化铝形成的具有上部表面的上部部分,该上部部分被构造成用以支撑基板且以嵌入的加热元件加热基板,该下部部分具有从氮化铝形成的管状结构,该下部部分被构造成用以支撑上部部分且装载用于向上部部分的嵌入的加热元件供应功率的电极,且其中该基座被构造成用以在碳化合物膜的沉积期间加热基板。
6.在一些实施方式中,该设备可进一步包括:其中基座被构造成用以从大约400摄氏度至大约800摄氏度加热基板;其中腔室主体的盖是平坦的,且icp腔室在盖上方具有同轴顶部线圈;其中腔室主体的盖是圆顶的,且icp腔室具有顶部线圈和侧边线圈(side coil);其中泵设备被构造成用以维持大约2mtorr至大约2torr的压力;其中嵌入的加热元件被构造成用以在大约2kw至大约4kw下操作;其中嵌入的加热元件具有内加热区和外加热区而被构造成用以提供碳化合物膜的均匀沉积,且其中供应至内加热区的第一功率小于供应至外加热区的第二功率;其中气体传输系统被构造成具有顶部和侧边喷嘴气体注入器;其中基座被构造成用以旋转或竖直地移动;和/或其中下部部分具有大约0.05英寸至大约0.10英
寸的壁厚度,从而使得热损失减少。
7.在一些实施方式中,一种用于在电感耦合等离子体(icp)腔室中加热基板的设备可包含:基座,被构造成用以设置于icp腔室的内部空间内,且被构造成用以在碳化合物膜的沉积期间加热基板,基座被构造成具有下部部分和从氮化铝形成的具有上部表面的上部部分,该上部部分被构造成用以支撑基板,其中该上部部分具有嵌入的加热元件以加热基板,该下部部分具有从氮化铝形成的管状结构,并且该下部部分被构造成用以支撑上部部分且装载用于向这些嵌入的加热元件供应功率的电极。
8.在一些实施方式中,该设备可进一步包括:其中嵌入的加热元件被构造成用以从大约400摄氏度至大约800摄氏度加热基板;其中嵌入的加热元件被构造成用以在大约2kw至大约4kw下操作;其中嵌入的加热元件具有内加热区和外加热区,而被构造成用以提供碳化合物膜的均匀沉积;其中供应至内加热区的第一功率小于供应至外加热区的第二功率;其中基座被构造成用以当定位于icp腔室中时于碳化合物膜的沉积期间旋转;其中基座被构造成用以当定位于icp腔室中时竖直地移动;和/或其中下部部分具有大约0.05英寸至大约0.10英寸的壁厚度,从而使得热损失减少。
9.在一些实施方式中,一种用于沉积碳化合物膜的方法可包含以下步骤:将基板放置于电感耦合等离子体(icp)腔室中,在具有嵌入的加热元件的从氮化铝形成的基座上;通过以大约2kw至大约4kw的功率供应嵌入的加热元件,将基板加热至大约400摄氏度至大约800摄氏度;并且在icp腔室中形成等离子体,同时将一个或多个气体注入icp腔室的内部处理空间中,以在基板上沉积碳化合物膜。
10.在一些实施方式中,这种方法可进一步包括:在碳化合物膜的沉积期间旋转基座,以增加膜均匀性;和/或使用具有内加热区和外加热区的嵌入的加热元件加热基板,其中内加热区温度小于外加热区温度,以增加膜生长的均匀性。
11.以下公开了其他及进一步的实施方式。
附图说明
12.以上简要概述并且在以下更详细讨论的本原理的实施方式可通过参考在附图中描绘的本原理的图示实施方式而理解。然而,附图仅示出本原理的典型实施方式,因此不应被视为范围的限制,因为本原理认可其他等效的实施方式。
13.图1描绘根据本原理的一些实施方式,用于沉积碳化合物膜的具有平坦盖的电感耦合等离子体腔室的示意性侧视图。
14.图2描绘根据本原理的一些实施方式,用于沉积碳化合物膜的具有圆顶盖的电感耦合等离子体腔室的示意性侧视图。
15.图3描绘根据本原理的一些实施方式,用于电感耦合等离子体腔室具有双区加热的基座的等距视图(isometric view)。
16.图4是根据本原理的一些实施方式,以电感耦合等离子体腔室沉积碳化合物膜的方法。
17.为了便于理解,已尽可能地使用相同的参考标记代表各图共有的相同的元素。附图并非按比例绘制,且为了清楚可简化。一个实施方式的元素和特征可有益地并入其他实施方式中而无须进一步说明。
具体实施方式
18.用于沉积碳化合物膜的方法和设备利用基座形式的基板加热器以在电感耦合等离子体(icp)腔室中促进膜生长。在沉积期间基板加热器也可旋转以增加沉积的膜的均匀性。根据本原理的icp腔室沉积处理适用于碳化合物的低温沉积,因为icp具有高自由基密度且能够在较低温度下在晶片上沉积碳化合物膜。高自由基密度有利于高化学反应性,并且低温可最小化晶片中的装置损伤。具有诸如但不限于碳氢和氢之类的化学物的icp被用来生长金钢石和石墨烯层两者。icp不仅提供高密度的碳氢物种(species)用于快速沉积,也提供高密度的氢自由基,而可在较低处理温度下蚀刻掉非晶碳相,致使在大幅降低的处理温度下快速沉积高品质膜。本原理的方法和设备将icp化学气相沉积(cvd)与创新的原位种晶和界面控制相结合,而在适合用于大批制造的电介质和金属基板两者上生成高品质金钢石和石墨烯膜。
19.目前,高品质金钢石和石墨烯膜必须通过使用高生长温度(通常800摄氏度至1000摄氏度)的cvd生长来沉积。然而,高温与在半导体工业中使用的当前整合处理流程不相容,因为在装置晶片上的金属线和低k膜无法承受这样的高温。此外,通过高温cvd沉积的石墨烯也需要从厚的金属箔转移出,这对于工业应用是不方便且不可行的。本原理的方法和设备提供从大约400摄氏度至大约800摄氏度的低温生长,消除由高温沉积造成的负面影响,同时维持高品质和均匀的碳化合物膜。
20.本原理的方法和设备的另一优点是,平坦盖类型的icp腔室和圆顶盖类型的icp腔室两者均与碳化合物膜沉积处理相容(compatible)。本原理的方法和设备也与单晶片反应器和双晶片反应器一起工作。图1描绘根据一些实施方式,用于沉积碳化合物膜的具有平坦盖112的icp腔室100的示意性侧视图。平坦盖112可从氮化铝或基于氧化铝的材料形成。icp腔室100包括腔室壁102,腔室壁102中包围发生沉积的内部处理空间104。icp腔室100也包括泵系统106,用以控制icp腔室100中的压力并且在处理基板之前、期间或之后排除不需要的气体。在一些实施方式中,icp腔室100的内部处理空间104中的压力可维持在大约2mtorr至大约500mtorr。在一些实施方式中,icp腔室100的内部处理空间104中的压力可维持在大约2mtorr至大约2000mtorr。在一些实施方式中,泵系统106也可包括节流闸阀,以帮助维持icp腔室100中的压力。在一些实施方式中,泵系统106也可包括用于快速抽空(pump down)的粗抽泵(roughing pump)和用于更高真空压力的涡轮分子泵(turbomolecular pump)。
21.气体传输系统108通过喷嘴110提供处理气体至内部处理空间104中。在一些实施方式中,气体传输系统108可包括喷头、气体环和/或喷嘴和类似物。在一些实施方式中,处理气体可包括基于甲烷、乙炔、氢、氧、氩和/或氦气和类似气体的气体。使用顶部线圈在内部处理空间104中感应耦合等离子体,顶部线圈具有包括内线圈114和外线圈116的双螺旋线圈天线。等离子体耦合功率由可以是单一单元或多重单元的等离子体耦合电源118提供。等离子体耦合电源118以大约3kw至大约5kw的功率提供具有大约2mhz至大约60mhz的频率的rf功率。供应的rf功率可以是连续的或脉冲的。等离子体耦合电源118也可包括位于等离子体耦合电源118与顶部线圈之间的一个或多个rf匹配网络,用于调整阻抗。
22.基座120包括上部部分122和下部部分124。上部部分122包括通过例如第一嵌入的加热器136和第二嵌入的加热器138提供的一个或多个加热的区。一个或多个加热的区连接至一个或多个电源。在图1所显示的范例中,第一嵌入的加热器136通过第一电极140连接至
加热器电源144。第二嵌入的加热器138通过第二电极142连接至加热器电源144。在一些实施方式中,加热器电源144可提供大约2kw至大约4kw至第一嵌入的加热器136和至第二嵌入的加热器138每一个。在一些实施方式中,可使用多于一个的加热器电源。在一些实施方式中,上部部分122也可允许升降杆154穿过上部部分,以允许基板被抬升至基座120上和离开基座120(见例如图3)。基座120具有通过升降组件128提供的竖直运动126。波纹管130允许发生竖直运动126而不会破坏内部处理空间104的密封。在一些实施方式中,基座120也可具有可选的旋转组件134,旋转组件134提供对基座120的旋转运动132。旋转运动132在基板的处理期间帮助提供更均匀的膜沉积。
23.icp腔室100也可包括控制器146。控制器146使用直接控制或者通过控制与icp腔室100相关联的计算机(或控制器)来控制icp腔室100的操作。在操作中,控制器146使得能够收集数据和反馈以优化icp腔室100的性能。控制器146一般包括中央处理单元(cpu)148、存储器150和支持电路(support circuit)152。cpu 148可以是可在工业环境中使用的任何形式的通用计算机处理器。支持电路152依传统耦接至cpu 148,且可包含高速缓冲存储器、时钟电路、输入/输出子系统、电源和类似物。诸如以上所述的方法之类的软件例程可储存于存储器150中,且当由cpu 148执行这些软件例程时,将cpu 148转换成专用计算机(控制器146)。这些软件例程也可由距icp腔室100远程定位的第二控制器(未示出)来储存和/或执行。
24.存储器150是含有指令的计算机可读存储介质的形式,当这些指令由cpu148执行时,促进半导体处理和装备的操作。存储器150中的这些指令是程序产品的形式,例如实施本原理的设备的程序。程序代码可符合许多不同编程语言的任何一种语言。在一个范例中,本公开内容可被作为储存于计算机可读存储介质上的程序产品而实施,与计算机系统一起使用。程序产品的(多个)程序定义各方面的功能。图示计算机可读存储介质包括但不限于:不可写入存储介质(例如,在计算机中的只读存储器装置,例如通过cd-rom驱动器可读取的cd-rom盘、闪存、rom芯片或任何类型的固态非易失性(non-volatile)半导体存储器),在这种存储介质上永久储存信息;和可写入存储介质(例如,在软盘驱动器(diskette drive)或硬盘驱动器内的软盘,或任何类型的固态随机存取半导体存储器),在这种存储介质上存取可变信息。当承载指向此处所述的基板加热系统的功能的计算机可读指令时,这样的计算机可读存储介质是本原理的多个方面。
25.图2根据一些实施方式,描绘用于沉积碳化合物膜具有圆顶盖212的icp腔室200的示意性侧视图。圆顶盖212可从氮化铝或基于氧化铝的材料形成。icp腔室200包括腔室壁202,腔室壁202包围发生沉积的内部处理空间204。icp腔室200也包括泵系统206,用以控制icp腔室200内的压力且在处理基板之前、期间或之后排除不需要的气体。在一些实施方式中,icp腔室200的内部处理空间204中的压力可维持在从大约2mtorr至大约500mtorr。在一些实施方式中,icp腔室200的内部处理空间204中的压力可维持在从大约2mtorr至大约2000mtorr。在一些实施方式中,泵系统206也可包括节流闸阀,以帮助维持icp腔室200内的压力。在一些实施方式中,泵系统206也可包括用于快速抽空的粗抽泵和用于更高真空压力的涡轮分子泵。
26.气体传输系统208通过顶部喷嘴210和侧边喷嘴256提供处理气体至内部处理空间204中。顶部喷嘴210和侧边喷嘴256可被调整以促进在基板上提供均匀沉积。喷嘴可从铝、
氧化铝或氮化铝材料形成。在一些实施方式中,气体传输系统208可包括喷头、气体环和/或喷嘴和类似物。在一些实施方式中,处理气体可包括基于甲烷、乙炔、氢、氧、氩和/或氦气和类似气体的气体。使用顶部线圈214和侧边线圈216来感应耦合等离子体。在一些实施方式中,等离子体耦合功率可通过顶部线圈等离子体耦合电源218和侧边线圈等离子体耦合电源258来提供。在一些实施方式中,顶部线圈214和侧边线圈216可由公共等离子体耦合电源(未示出)来供应功率。顶部线圈等离子体耦合电源218和侧边线圈等离子体耦合电源258以大约3kw至大约20kw的功率提供具有大约2mhz至大约60mhz的频率的rf功率。供应的rf功率可以是连续的或脉冲的。顶部线圈等离子体耦合电源218和侧边线圈等离子体耦合电源258也可分别包括位于电源与线圈之间的rf匹配网络,用于调整阻抗。
27.基座220包括上部部分222和下部部分224。上部部分222包括由例如第一嵌入的加热器236和第二嵌入的加热器238提供的一个或多个加热的区。一个或多个加热的区连接至一个或多个电源。在图2所显示的范例中,第一嵌入的加热器236通过第一电极240连接至加热器电源244。第二嵌入的加热器238通过第二电极242连接至加热器电源244。在一些实施方式中,加热器电源244可提供大约2kw至大约4kw至第一嵌入的加热器236和至第二嵌入的加热器238每一个。在一些实施方式中,上部部分222也可允许升降销254穿过上部部分,以允许基板抬升至基座220上和离开基座220(见例如图3)。基座220具有通过升降组件228提供的竖直运动226。波纹管230允许发生竖直运动226而不会破坏内部处理空间204的密封。在一些实施方式中,基座220也可具有可选的旋转组件234,而提供对基座220的旋转运动232。旋转运动232在基板的处理期间帮助提供更均匀的膜沉积。
28.icp腔室200也可包括控制器246。控制器246使用直接控制或者通过控制与icp腔室200相关联的计算机(或控制器)来控制icp腔室200的操作。在操作中,控制器246使得能够收集数据和反馈以优化icp腔室200的性能。控制器246一般包括中央处理单元(cpu)248、存储器250和支持电路252。cpu 248可以是可在工业环境中使用的任何形式的通用计算机处理器。支持电路252依传统耦接至cpu 248,且可包含高速缓冲存储器、时钟电路、输入/输出子系统、电源和类似物。诸如以上所述的方法之类的软件例程可储存于存储器250中,且当由cpu 248执行这些软件例程时,这些软件例程将cpu 248转换成专用计算机(控制器246)。这些软件例程也可由距icp腔室200远程定位的第二控制器(未示出)来储存和/或执行。
29.存储器250为含有指令的计算机可读存储介质的形式,当这些指令由cpu248执行时,促进半导体处理和装备的操作。存储器250中的这些指令为程序产品的形式,例如实施本原理的设备的程序。程序代码可符合许多不同编程语言的任何一种语言。在一个范例中,本公开内容可作为储存于计算机可读存储介质上的程序产品而实施,与计算机系统一起使用。程序产品的(多个)程序定义各方面的功能。图示计算机可读存储介质包括但不限于:不可写入存储介质(例如,在计算机内的只读存储器装置,例如由cd-rom驱动器可读取的cd-rom盘、闪存、rom芯片或任何类型的固态非易失性半导体存储器),在这种存储介质上永久储存信息;和可写入存储介质(例如,在软盘驱动器或硬盘驱动器内的软盘,或任何类型的固态随机存取半导体存储器),在这种存储介质上存取可变信息。当承载指向此处所述的基板加热系统的功能的计算机可读取指令时,这样的计算机可读存储介质是本原理的多个方面。
30.图3描绘根据一些实施方式,用于电感耦合等离子体腔室的具有双区加热的基座300的等距视图。基座300包括上部部分302,上部部分302被构造成用以支撑基板且加热基板。在一些实施方式中,上部部分302包括一个或多个通道308,以允许升降销(未示出,见图1和图2)穿过上部部分302以便随着基座300向下竖直移动而从上部部分302抬升基板。在一些实施方式中,上部部分302包括一个或多个加热区。在图3的范例中,第一加热区由在上部部分302中在中心定位的第一组嵌入的加热元件310界定。第一组嵌入的加热元件310与被构造成用以连接至加热电源(未示出,见图1和图2)的第一电极318电接触。第二加热区由在上部部分302的周边附近定位的第二组嵌入的加热元件312界定。第二组嵌入的加热元件312与被构造成用以连接至加热电源(未示出,见图1和图2)的第二电极320电接触。在一些实施方式中,在膜沉积期间,第二加热区可具有比第一加热区高大约75%至大约125%的施加功率,以补偿在icp腔室中发生的基板的边缘冷却。在一些实施方式中,第二加热区比第一加热区具有更高的温度。
31.上部部分302从氮化铝材料形成,且在一些实施方式中,上部部分302具有大约0.500英寸至大约0.750英寸的厚度306。氮化铝材料具有高的热传导性,且当与双加热区一起使用时,允许上部部分302加热基板至均匀温度,而允许在基板表面上增加的且更均匀地生长膜。氮化铝材料也耐在沉积处理期间使用的化学物。基座300具有下部部分304,下部部分304具有从氮化铝形成的管状结构。下部部分304具有大约0.05英寸至大约0.10英寸的厚度316的壁314。发明人已发现若壁314的厚度316保持最小,经由下部部分304从基座300的热损失将显著减少。下部部分304的管状结构容许第一电极和第二电极在下部部分304内取道至上部部分302,分别与第一组嵌入的加热元件310和第二组嵌入的加热元件312连接。
32.图4是根据一些实施方式,在icp腔室中沉积碳化合物膜的方法400。在方块402中,基板放置于icp腔室中,在具有嵌入的加热元件的从氮化铝形成的基座上。在一些实施方式中,这些嵌入的加热元件可形成一个或多个加热区,且可被构造成用以即使在由例如icp腔室的内部处理空间中气流造成的边缘冷却效应存在的情况下,也能提供基板的均匀加热。一个或多个加热区可包括于基座的上部部分内在中心定位的内加热区,和于基座的上部部分的周边附近定位的外加热区。在一些实施方式中,由于可冷却基板的周边的对icp腔室内部的影响,外加热区可以以比内加热区更高的功率加热。在方块404中,通过以大约2kw至大约4kw的功率供应嵌入的加热元件,由嵌入的加热元件将基板加热至大约400摄氏度至大约800摄氏度。供应的功率可基于不同加热区和/或icp腔室的内部温度而变化。在一些实施方式中,基板被嵌入的加热元件加热至大约400摄氏度至大约750摄氏度。在一些实施方式中,基板被嵌入的加热元件加热至大约400摄氏度至大约700摄氏度。
33.在方块406中,等离子体在icp腔室中被感应耦合,同时将一个或多个气体注入icp腔室的内部处理空间中,以在基板上沉积碳化合物膜。在一些实施方式中,一个或多个气体可以基于甲烷、乙炔、氢、氧、氩和/或氦气和类似气体。在一些实施方式中,等离子体耦合功率可以是rf连续和/或脉冲功率源,以大约3kw至大约20kw的功率从大约2mhz至大约60mhz操作。在使用双顶部线圈的一些实施方式中,等离子体耦合功率可以是rf源,以大约3kw的功率在大约13.56mhz操作。在使用顶部和侧边线圈的一些实施方式中,顶部和侧边线圈可由一个或多个rf源供电,以提供至顶部线圈和至侧边线圈大约10kw的功率在大约2mhz操作。在一些实施方式中,icp腔室在碳化合物膜沉积期间可以大约2mtorr至大约500mtorr的
压力操作。在一些实施方式中,icp腔室在碳化合物膜沉积期间可以大约2mtorr至大约2000mtorr的压力操作。这种基板的加热促进在基板上增加的碳化合物膜生长。这种沉积处理可发生大约60秒至大约30分钟。在一些实施方式中,基座在碳化合物膜沉积处理期间可旋转,使得在基板上发生更均匀的沉积。
34.根据本原理的实施方式可在硬件、固件、软件或它们的任何结合中实施。实施方式也可作为使用一个或多个计算机可读介质储存的指令实施,这些指令可由一个或多个处理器读取和执行。计算机可读介质可包括:用于以由机器(例如,计算平台或运行在一个或多个计算平台上的“虚拟机器”)可读取的形式储存或传送信息的任何机制。举例而言,计算机可读介质可包括易失性或非易失性存储器的任何适当的形式。在一些实施方式中,计算机可读介质可包括非暂时性计算机可读介质。
35.尽管以上针对本原理的实施方式,但在不悖离本原理的基本范围的前提下,可衍生本原理的其他及进一步的实施方式。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1