具有复杂内部形态的复合制品的制造方法

文档序号:3266221阅读:180来源:国知局
专利名称:具有复杂内部形态的复合制品的制造方法
技术领域
本发明涉及致密的复合制品,如陶瓷-金属复合制品,及其制造该制品的方法。更其体地说,本发明涉及具有孔或腔等复杂形态的复合制品,及其无需进行内表面加工的制造方法。
陶瓷-金属、金属-金属或陶瓷-玻璃材料的复合制品的制造方法通常是先形成这些材料的多孔坯块,然后进行致密化处理,如烧结或热等静压。一般致密化处理会导致多孔坯块明显收缩,其密度从真密度或理论密度的50-60%(体积)增加到80-100%(体积)。这种致密化处理还会导至制品变形,造成许多废品,这些废品达不到成品的要求,或最终形状。
要制得预定尺寸和所需最终形状的已精加工的合格复合制品是非常困难的,因为这些制品必须具有内表面或内腔或中空部分,尤其是当内腔的内部形态复杂时。这类制品包括,如管,内径可变的管材或空心球。
过去,复合制品中的内腔通常是在烧结的制品上钻毛细管或通道而制成的,然后需用机械方法对变化的直径或其它复杂表面进行加工。具有全封闭内腔或孔的制品一般制造方法包括先分段制成该制品,然后把各段连接或焊接起来形成完整的制品。
这些先有技术成本高,而且往往有技术困难,尤其是当内部操作空间有限时。由于制成这些制品的材料很硬,如许多陶瓷,即使是简单的钻孔也极其困难和昂贵。
另一种方法是使金属渗入多孔陶瓷坯块中,经烧结或热压形成致密的陶瓷-金属复合物。例如Stibbs等人在US3749571中叙述了将硅渗入碳化硼坯块中,达到理论密度的99%,但必不可少的烧结步骤仍会导致该制品收缩。Gazza等人在US3864154中叙述了各种陶瓷-金属材料的实芯复合物,如一个简单的圆片的制造,该方法是用金属粉末包裹陶瓷坯块,然后加热直到熔融金属浸渍该陶瓷骨架。Landingham在US3718441中通过减少存在于金属粉末中的氧化物膜(该氧化物膜在烧结过程中防碍了金属对陶瓷的润湿),使简单的圆柱形氧化铍坯块致密化。然后必须用机械方法除去剩余的金属。
早期工作的重点只是实现致密化。所研究的制品不是具有内腔的形状复杂的制品。因此,内部收缩或内部加工与最终的形状无多大关系。
研究的重点放在多种反应结合材料上,如B4C和Al,因为在应用渗透方法时,往往必须对潜在的化学反应动力学与渗透方法加以平衡考虑,因为所形成的陶瓷相封闭多孔坯块的渗透通道会影响致密化。为了在实现渗透的同时实现所需的致密化,Pyzik等人在US4702770中提及在金属渗入多孔坯块之前,先在约180℃对B4C进行热处理以降低B4C-Al系统的反应速率。Halverson等人在US4718941中采用延长化学处理时间的方法达到渗透的目的。当然,这些材料处理工艺会增加该复合制品的成本。多数这些致密化方法还涉及后面的烧结步骤,而该烧结步骤会使成品明显收缩。因此,至今在制造这种最终形态复合物时,渗透与热压比较没有什么优越性。
由于制造几乎完全致密化和无孔的制品的能力的提高,这些复合物的特性有所改进。现在已有可能把多种材料的特性结合起来,如陶瓷和金属。人们现在把重点放在制造致密的形态复杂的复合制品上,以满足某些用途的功能要求,这些复合制品显然要由改进了性能的复合材料制成。其中有一种需要就是制造尺寸精确并且具有复杂形态,如内腔和类似形态的复合制品。最好制造的这些制品完全致密,具有最终形态,即没有明显的收缩,所以是十分完美的,不必进一步加工成形(如机加工)。
本发明实质上是用一种不收缩的工艺方法制造陶瓷-金属、金属-金属,陶瓷-玻璃材料或类似物的一种复合制品,该制品具有复杂的内表面,如孔,部分封闭的腔,甚至完全封闭的腔。该方法采用一种渗透技术,令人惊奇地是无需对可反应的陶瓷-金属材料如B4C-Al进行热处理或化学预处理,就能使其密度达到理论密度的99%以上。在低于烧结温度下,对已渗透的制品进行热处理,这样可基本上消除制品的收缩。在制造具有最终形态的致密陶瓷-金属和类似的复合制品工艺中实质上已消除了典型现有技术中的内部形态变形和内部机加工。另外,本方法是一种渗透方法,该方法无需为实现成功的渗透而对材料进行预处理。
该方法需要形成一种插入体,该插入体具有一个与该制品内表面或内腔相对应的外表面。该插入体由润湿温度比成品低的一种材料组成。该方法还需要形成一种多孔坯块,它位于插入体周围,实质上该坯块构成了制品的最终形态。该坯块由可被插入材料润湿的一种材料制成,该材料的烧结温度高于插入材料的润湿温度。然后,该方法需将已组合的多孔坯块和插入体加热到插入材料的润湿温度,使该插入体基本熔化,让该插入体材料渗入多孔坯块形成最终的致密制品。
本发明包括用上述方法制成的制品,尤其是内表面基本封闭的那些制品以及中空的制品。例如,这种制品是一种陶瓷-金属的复合制品,该制品是一个空心球或类似物。
本发明的一种优选方法中,插入体材料是一种金属或玻璃,多孔坯块材料是一种陶瓷或金属。该坯块一插入体材料可以是,如AlB12-Al、B4C-Si、SiC-Si、SiB6-Al、SiB4-Al、B4C-Mg、TiB2-Ni、Al2O3-Al-Mg、和TiB2-Al。陶瓷-玻璃系统包括,如,Al2O3-(SiO2-B2O3玻璃)、Si3N4-(SiO2-MgO玻璃)、Si3N4-(SiO2-MgO-Y2O3-CaO玻璃)、Si3N4-(SiO2-Y2O3玻璃)和Si3N4-(SiO2-Al2O3-Y2O3玻璃)。金属-金属系统包括,如Ti-Mg或W-Cu。
在本发明的一种最佳实施方案中,该方法包括一种插入体材料是一种金属;一种多孔坯块材料是一种陶瓷。最好是能进行化学反应的系统,如B4C-Al或B4C-Al合金,它们在高温发生反应。在这些化学反应系统中,金属组分在渗透后消失,形成陶瓷相,该陶瓷相能改变制品的特性,如硬度和耐磨性。
本发明的方法用于制造这样的制品,即该制品中的插入材料能渗透和填充多孔坯块的所有孔隙,或者填充多孔坯块的部分孔隙,或者只填充与该坯块内表面相邻接的孔隙。因此,本发明方法能使制得的复合制品的性能适合于某些恶劣的使用条件,如腐蚀,磨损或类似情况。
本发明方法特别适用于制造内部形态复杂,如具有部分或全封闭腔或表面的复合制品。例如,用本发明方法可制成具有交错形通道或毛细管或中空部分或空心球制品。该方法可以在一个试块中形成具有中空最终形态的制品,不会象现有技术一样在烧结过程中陶瓷-金属复合物发生明显的收缩。
本发明的复合制品包括二个或多个陶瓷或金属固相。该方法特别适用于制造陶瓷-金属复合物。由不同金属制成的一种金属-金属复合物以及陶瓷-玻璃系统也可以用来制造本发明的复合制品。
原则上,本发明方法需要用熔点比较低的材料制作一种插入体,该插入体具有的外表面是所制复合制品的内腔的最终形态。然后在插入体周围成形多孔坯块。将已组合的坯块和插入体加热至该插入体材料的熔点使该低熔点材料渗入多孔坯块中。一旦该插入体材料完全耗尽或被吸入坯块,该制品就获得完美的,具有所需最终形态的内腔。
适用于本发明方法的材料的选择标准,除了该制品或该系统(复合物起作用的系统)的功能要求外,首先要求该材料具有不同的熔融温度。第二项标准是熔融温度较低的固相必须“润湿”其它材料,而且其润湿温度要低于熔融温度较高的其它材料的烧结温度。该润湿温度实质上等于熔融温度较低的材料的熔点。也就是说,当熔融温度较低的材料变成液态时,其特征在于与剩余固相的接触角小于约45°,最好小于约10℃(参见Halverson等人的US4615440和Pyzik等人的US4702770关于润湿的论述)。其主要目的是当这些材料彼此接触,并被加热达到熔融温度较低的组分的润湿温度时,该组分在熔融温度较高的组分开始收缩和封闭孔道之前润湿并渗入由高熔点材料制成的多孔坯块中。
对于陶瓷-金属系统来说,可选择的第三条标准是该系统具有化学活性。这样的系统特别容易变化,因为渗透后金属相可以耗尽而生成各种陶瓷相。适当地选择生成某种陶瓷相的条件,可获得满足特定用途需要的物理特性。例如,通过在适当的温度连续加热该复合制品产生所要的反应,生成陶瓷相,改进制品性能,如硬度或耐磨性。
插入体是由金属或玻璃构成的,其目的是为使该插入材料渗入陶瓷或金属的多孔坯块。该插入体可用任何简便的普通方法制作,如对一种金属,可采用浇铸或机加工方法制作。该插入体可以是一种实心体或空心体,但必须具有一外表面,该外表面对应于(或是)最终复合制品所需的内腔或内表面的镜象。例如,一种合适的金属插入体可以是一种圆柱形实心体,其外表面被加工成所需成品的内腔形状和尺寸。
制成插入体的材料量限定为所要吸入多孔坯块中的材料量。若该插入体太小,则不能提供足够量的材料,在渗透过程中可将一组管道或类似物插入内腔中,添加材料。
同样可用普通方法在插入体周围成形陶瓷或金属材料的多孔坯块。一般使陶瓷材料适当上胶,并与一种粘结剂形成均匀的混合物。然后用某种简便的方法使该材料固结,例如在一个形状合适的模具中使插入体和陶瓷材料组合在一起,并对该组合件进行冷静压或类似加工。
所制的多孔坯块的密度取决于陶瓷颗粒的堆积能力,通常该密度相当于理论总密度的50-70%(体积)左右。陶瓷颗粒的粒径和形状将影响多孔坯块或坯体的性能,以及制品的质量。例如,若陶瓷组分呈须状,可得到的密度为40-50%。最终复合物将含有大量的须晶,这是用其它方法难以达到的。为获得所需的特定结果,可选用其它物理形状的陶瓷材料,如细颗粒,小片状体,纤维,短的纤维或类似物。
将由外包多孔陶瓷或金属坯块的金属或玻璃插入体组成的组合件加热到其润湿温度,在该温度下该插入材料基本熔融并渗入多孔坯块。对该系统的要求是多孔坯块的烧结温度应高于该插入体的润湿温度或熔融温度。最好在低于多孔坯体的孔隙明显封闭的温度下完成本发明。其目的是使多孔坯块的所有孔隙及其连接通道在渗透过程中留有开口以便填入金属,从而形成所需的最终形态。该制品在烧结温度下不发生收缩。当达到润湿温度时,该插入材料熔化,并通过坯孔孔隙的毛细管作用吸入该多孔体内。连续渗透,直到所有的插入体材料全部被吸收,留下的内腔具有所需的最终形态。如果该系统需要,加热和渗透可在真空下,惰性气体或空气中进行。
填入多孔坯体的所有孔的液相材料添加量取决于制品的几何构造和插入体的量。如果必要,可用任何简单方法从外部来源引入添加的液体。或者,可限制该插入体的量使最终复合制品的性质从与插入体接触的表面开始径向变化。限制渗透材料量,可使制品结构中的某些感兴趣的性能随制品的形态而逐渐变化。
一旦渗透结束,可将该复合制品冷却到室温。成品的尺寸与渗透前的多孔坯块相比基本没有变化。因此一般无需进一步加工。一般成品与坯块的尺寸相差不大于0.002英寸(50.8微米)或更小。
对反应系统中已制成的复合制品进一步进行热处理,使其中的金属相反应生成新的陶瓷相。这种热处理方法往往能增加制品表面的硬度和耐磨性。例如,采用附加热处理的方法,可以容易地改变用本发明渗透法制得的复合B4C-Al金属-陶瓷系统的显微结构。
如上所述,本发明的方法制成的复合制品其性能可以在表面与表面间变化,以适合特定环境或用途对各种表面的要求。例如,在诸如碳化硼和铝或铝合金的一种反应系统中,可以制成十分致密的多陶瓷相制品,该制品具有这类可变的性能。这样的制品可以包括如下特征具有形态复杂的外表面及复杂的内表面或内腔,各表面经金属渗透或后序热处理获得所需的表面特性。
例如,将一个铝或铝合金圆柱体包括外表面加工成所需复合制品的内表面或内腔的最终形态,以制成该制品的内表面。然后对该圆柱体钻孔或用其它方法加工以限定用于渗透的金属量,使其正好生成与最终复合制品内表面或内腔相邻接的陶瓷-金属薄层。将细颗粒B4C与粘结剂混合,并在模具中于该插入体周围进行冷压制,该模具具有复杂的表面,该表面构成了该复合制品的外表面。使多孔坯块一插入体组合件的温度升至铝或铝合金插入体的润湿温度,保持该温度直至该插入体材料熔化并渗透该多孔坯块的内表面。这时,部分渗入金属的碳化硼坯块的温度可升至700-1200℃,金属铝与碳化硼陶瓷反应生成新的陶瓷相,该陶瓷相构成复合制品内表面所需的高硬度。
然后让部分渗透的坯块的外表面与另一种金属在该金属的润湿温度下相接触,处理后可改变该制品的外部性能。经第二次渗透后,该复合制品的特征为具有坚硬内表面和不易磨损的陶瓷-金属外表面。当然,每次渗透所用的金属可各不相同,这取决于所需的成品性能。也可在第二次渗透后再进行热处理,因为外表面中也需要新的陶瓷相。
本发明的方法可能制成多种独特形状的材料,如上所述,可制成空心球或其它空心形状材料。最好孔内所含的材料或物体在渗透后仍留在孔或腔内。例如,该材料包括内腔的骨架支承材料或包裹金属陶瓷所需的一种材料。这些框架被包裹在预定形状的插入体内,作为插入体组成部分。
渗透后留在腔内的材料必须在渗透温度下不被插入体材料润湿。留在腔内的材料需经化学表面处理或类似的处理才具有这种不润湿特性。
如上所述,先前的工作者已发现陶瓷相经热处理或化学处理后能明显改进某些陶瓷-金属系统如B4C-Al的渗透作用。US5781941中提及的问题是渗透前需从B4C粉末中除去氧化物膜。该方法所用的处理时间极长,约10天左右。现在,用本发明方法不必象现有技术那样进行处理就能够解决干扰渗透的氧化物污染问题。
从金属表面除去氧化物似乎比从陶瓷材料中除去氧化物要求更高。例如,在所研究的B4C-Al系统中,从Al中除去氧化物比从B4C中除去氧化物更困难。由本发明的渗透方法所用的金属相呈较大的插入体形式,使上述问题变得不重要。该Al相可为棒形,块形片形,或类似形状,而不是颗粒状。由于金属的表面积减少,必然会使该系统中的氧化物含量减少,所以不会干扰渗透。
用下列实施例说明本发明。
实施例1制成的铝插入体由一根棒组成,该棒的圆柱形表面带有加工的螺纹线。将碳化硼粉末(ESK1500,由ElektroschemeltzwerkKemptenofMunich,WestGermany制造)与3%(重量)的石蜡粘结剂混合3小时,形成一种陶瓷相混合物。然后使该混合物通过220微米的筛子。将陶瓷粉末混合物放在一个橡胶模具中,让该粉末包裹金属插入体在45千磅/英寸2(310兆帕)的压力下等静压压制1分钟。然后卸压,从橡胶模具中取出多孔坯块一插入体的组合件,放入一个石墨炉中。在室温下施加1-100毫升的真空。以10℃/分钟的速率升温至1170℃并保温1小时。然后在氩气流中使该制品冷至室温。所制的复合制品的性能包括,抗裂强度81千磅/英寸2(558兆帕),抗裂韧度KIc7.9兆帕·米12]]>,硬度695千克/毫米2。最终的复合制品的特征为其尺寸与多孔坯块的尺寸相比仅相差0.001英寸(25.4微米)。该制品十分致密,不含有可探测出的气孔。
按上述方法制造第二个制品。对该制品进行热处理,在处理时要把该复合制品降温至800℃并保温10小时。热处理后该复合制品的性能包括,抗裂强度77千磅/英寸2(530兆帕),KIc5.8兆帕·米12]]>,硬度1295千克/毫米2。
在温度接近渗透温度时,仔细地控制加热制度能够促进本发明的渗透过程。对所研究的B4C-Al体系来说,特别适用的加热速率如下从1000℃至1100℃,升温速率低于约10℃/分钟;从1100℃至最高温度,升温速率低于约5℃/分钟。一般在最高温度需加热15分钟,液相每渗入1厘米需增加10分钟(渗入的距离不超过约10厘米)。在这些条件下制造的材料十分致密,并具有良好的机械性能。
按上述方法制成一系列复合制品,其性能范围如下表所示。
表B4C-Al复合制品的性能范围渗透后的抗裂强度千磅/英寸2抗裂韧度硬度热处理 (兆帕) (兆帕·米12]]>) (4克/毫米2)无70-90(480-620)6-9500-700800℃下10小时60-80(414-550)5-71100-1400实施例2选用长8.00英寸,直径0.50英寸(即长20.32厘米,直径1.27厘米)的一根圆柱形铝棒作插入体,制备TiB2-Al管。用滚筒搅拌机将TiB2粉末(平均粒径为7微米,由Union Carbide提供)与一种石蜡粘结剂混合,并在铝棒插入体周围进行冷等静压压制,压力为60千磅/英寸2(420兆帕)。然后将TiB2多孔坯块-Al插入体组合件加热到1250℃,在该温度下保温1小时。冷却后,最终的复合制品的密度为理论密度的99%,无需进行机加工,其直径符合要求,即0.50±0.002英寸(1.270±0.005厘米)。
权利要求
1.具有内表面或内腔的复合制品的制造方法,其中包括(a)形成一个插入体,该插入体具有一个与所说制品的内表面相对应的外表面,该插入体由润湿温度比所说制品低的一种材料组成。(b)在该插入体四周形成多孔坯块,实质上该坯块构成了所说制品的最终形状,该坯块由被插入材料润湿的一种材料制成,其烧结温度高于插入材料的润湿温度;和(c)将所说的制品加热到润湿温度,使该插入材料基本熔化并渗透该多孔坯块,形成实质上具有该坯块最终形状的复合制品。
2.按权利要求1的方法,其特征为所说的插入体材料是一种金属或玻璃,所说的多孔坯块的材料是一种陶瓷或金属。
3.按权利要求2的方法,其特征为所说的坯块一插入体材料是陶瓷-金属材料,即B4C-Al、B4C-Si、TiB2、Al TiB2-Ni、B4C-Mg、AlB12-Al、SiB6-Al、SiB4-Al或SiC-Si。
4.按权利要求2的方法,其特征为所说的坯块一插入体的陶瓷-玻璃材料是Al2O3-(SiO2-B2O3玻璃)、Si3N4-(SiO2-MgO玻璃)、Si3N4-(SiO2-Y2O3玻璃)、Si3N4-(MgO-Y2O3CaO-SiO2玻璃)、或Si3N4-(Al2O3-Y2O3-SiO2玻璃)。
5.按权利要求2的方法,其特征为所说的坯块一插入体的金属-金属材料明Ti-Mg或W-Cu。
6.按权利要求1的方法制造的一种制品,其特征为该制品是空心的,其内表面实质上是完全封闭的。
7.按权利要求6的制品,其特征为该制品是一个空心球。
8.按权利要求1的方法,其特征为所说的插入体材料是一种金属,所说的坯块材料是一种陶瓷,该金属和陶瓷在高温下反应。
9.按权利要求8的方法,其特征为所说的陶瓷金属材料是B4C-Al或B4C-Al合金。
10.按权利要求8或9的方法,其特征为在插入材料渗入坯块后,调节该制品的温度使金属和陶瓷反应形成金属-陶瓷相。
11.按权利要求1的方法,其特征为在加热时所说的插入材料渗入并填充在多孔坯块的所有孔内。
12.按权利要求1的方法,其特征为在加热时所说的插入材料渗入并填充在多孔坯块的部分孔内。
13.按权利要求12的方法,其特征为在加热时对插入材料的用量进行限定,使其能填充该坯块的所有孔隙但在该插入材料耗尽前只与坯块的内表面相邻接。
14.按权利要求1的方法,其特征为进行加热步骤时,升温至所说的润湿温度,并保持该温度直到渗透完全。
15.按权利要求14的方法,其特征为所说的陶瓷-金属材料是B4C-Al或B4C-Al合金,并以大约10℃/分钟的升温速率以1000℃加热到1100℃,再以5℃/分钟的升温速率从1100℃加热到所需的1200℃最高温度。
16.用权利要求1的方法制造的B4C-Al或B4C-Al合金制品,其特征为该制品是一种十分致密的材料,所说的B4C在渗透前即不需要热处理也不需要化学处理。
全文摘要
本发明是具复杂内表面空腔的陶瓷-金属复合制品制造方法。该方法具有与该制品的内腔相对应外表面的插入体,它的熔融温度比该制品低,还需要一个多孔坯块,使之位于插入体周围,由该坯块构成制品的形状。坯块由可熔化的插入材料润湿且烧结温度高于插入材料润湿温度的材料制成。该方法还需要将该制品加热,使插入材料熔化并渗透多孔坯块以形成复合制品。产品具有复杂内表面,生产成本低,免去内加工操作。
文档编号B22F5/00GK1039406SQ89103909
公开日1990年2月7日 申请日期1989年4月24日 优先权日1988年4月25日
发明者阿历山大·派齐克, 杰克·J·奥特, 斯科特·J·简考斯基 申请人:唐化学原料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1