专利名称:不锈钢防氚渗透材料的制作工艺的制作方法
技术领域:
本发明涉及一种防氚渗透复合材料的制作工艺,具体说是一种不锈钢防氚渗透材料的制作工艺。
不锈钢因其具有良好的抗辐照性能和可焊性好,因此它是未来聚变堆的一种重要工艺材料。然而,氚对所有金属材料都有很高的渗透率,对不锈钢也不例外。目前,金属结构材料的防氚渗透性能的研究不是研究金属结构材料本身的防氚渗透性能,而是研究金属结构材料表面涂层材料的防氚渗透性能。在现有技术中涂层可分两类一类是利用金属结构材料自身元素氧化生成致密的氧化膜。例如Tritium Proceeding.April29-Mayl(1980)98~101介绍的用控制氧化的方法在铝金属表面生成致密的Al2O3膜,氚在这种膜中扩散渗透过程中生成OT-离子防氚渗透阻挡层,可以降低氚在铝中的渗透率。另一类是在金属结构材料表面,用化学蒸发沉积、离子溅射或离子注入方法镀膜,形成防氚渗透阻挡层。例如,Acc-NO DOE/ET/52022(1979).Tritium Diffusion in Nonmetallic Solide of Interest for Fusion.Final Report中所介绍的固态非金属Al2O3、BeO、Y2O3、SiC、B4C、Si3N4都可作为防氚渗透材料。但是对不锈钢而言,利用其自身元素氧化生成的Cr2O3膜或在其表面镀膜,形成的上述固态非金属涂层,虽然都具有一定的防氚渗透效果,但是这两类涂层因其防氚性能差、稳定性差、与基体相容性差,抗热冲性能差而不适作特定工艺材料。
本发明目的是提供一种防氚渗透性好,涂层稳定、与基体相容性好,抗热冲的不锈钢防氚渗透材料的制作工艺。
本发明是这样实现的一种不锈钢防氚渗透材料的制作工艺,包括用化学蒸发沉积法在不锈钢表面镀钛膜;随后在400°~600℃温度下通入C2H2气体,在不锈钢表面生成TiC膜,或者先通入N2气,在不锈钢表面生成后TiN膜,再通入C2H2气体,在不锈钢表面生成TiN+TiC的复合膜;将镀有TiC膜或TiN+TiC复合膜的不锈钢在氩气气氛中通氢,并在300°~450℃温度下保温退火处理,则在TiC表面生成CH-4离子防氚阻挡层。不锈钢及其表面的TiC膜或TiN+TiC复合膜在氩气保护气氛下通氢,并保温退火处理形成不锈钢防氚渗透材料。
本发明的显著优点在于氚在TiC膜或TiN+TiC复合膜中的扩散渗透率比其在基体材料不锈钢中的扩散渗透率降低几个数量级,而且这两种膜本身性能稳定,与基体材料结合强度高,抗热冲击能力强,尤其采用复合膜时,因TiN比TiC与基体材料有更好的相容性,且TiC和TiN之间相容性又很好,所以TiN+TiC复合膜比TiC膜与基体材料有更好的相容性。因此用本发明制作的不锈钢防氚渗透材料是一种良好的防氚渗透工艺材料,具有广泛的用途,它可作为聚变堆的第一壁材料,氚增殖剂辐照罐中氚增殖剂的包壳材料或其他含氚容器的结构材料。
现结合附图和实施例对本发明做进一步详细描述
图1为316L不锈钢表面镀TiC膜,在不同温度下保温退火时间与氚渗透率对数关系曲线;
图2为316L不锈钢表面镀TiN+TiC膜,在不同温度下保温退火时间与氚渗透率对数关系曲线。
图1和图2中纵坐标为渗透率对数,横坐标为保温退火时间(小时)。
将一双杯形316L不锈钢样品经表面抛光和清洗后置于真空镀膜机内,镀膜机内设有Ti电弧电极,用化学蒸发沉积法在样品表面沉积200
左右的Ti,随后在400°~600℃温度下通入C2H2气生成约2.5μm的TiC膜,或先通入N2气,生成1μm左右的TiN膜,再通入C2H2气,生成2.5μm左右的TiN+TiC复合膜;将镀有TiC膜或TiN+TiC复合膜的样品在普通氩气(含有10ppm氧、5ppm氢)气氛中,并在300℃温度下保温退火20天,则在TiC表面生成CH-4离子防氚渗透阻挡层。
利用公知的渗透率的测量方法和装置测得氚在上述的316L不锈钢表面镀TiC膜或TiN+TiC复合膜中的扩散渗透率如表1和表2所示。
表1
表2
表1和表2中φA、φB和φC分别表示测量值、经验公式计算值和清洁表面316L不锈钢测量值,单位为Mol[NPJ]/M·S·MPa1/2;T(°K)为测量时温度。
由表1和表2可见,氚在316L不锈钢表面镀TiC和镀TiN+TiC膜中的扩散渗透率比基体材料分别低4~6量级和5~6量级,而且在200°~450℃范围内氚的扩散渗透率随温度变化不大,500℃起氚的扩散渗透率明显上升,到600℃左右氚的扩散渗透率上升最为明显。
将镀有TiC或TiN+TiC膜的316L不锈钢样品分别在336℃和611℃普通氩气(含10ppm氧,5ppm氢)气氛中保温25天和1天及未经普通氩气气氛中保温处理的样品分别用二次离子质谱仪进行膜的表面成分分析,发现在336℃的氩气气氛保温处理后TiC膜表面含有大量CH-4离子,而在611℃的氩气气氛中TiC膜表面CH-4离子的含量仅为336℃时万分之一,未经处理的TiC膜表面CH-4离子含量很少。
实验结果表明在300℃以下保温处理这两种膜时,因膜中还未形成大量CH-4离子防氚阻挡层,氚在TiC或TiN+TiC膜中的扩散是分子扩散,而在300°~450℃下保温退火处理TiC膜或TiN+TiC膜后,在膜的表面生成大量的CH-4离子,CH-4离子在TiC膜的晶格中处于静止状态,氚在这种膜中的主要迁移方式是T+在基本晶格中从某一个碳的位置移动到邻近碳的位置,氚在膜中迁移后在膜表面上生成T2或HT离开膜表面,所以TiC膜表面的CH-4离子形成了防氚渗透阻挡层。在450°~600℃范围内由于膜被氧化,使CH-4逐渐被氧化生成碳和水,破坏了防氚渗透阻挡层,使氚在TiC膜中的扩散又变成分子(T2或HT)扩散。如果将镀有TiC膜或TiN+TiC复合膜的316L不锈钢样品在纯氩气(不含氧)的气氛中通氢,并在300°~450℃温度下保温退火处理,可期望这两种膜的防氚渗透使用温度超过600℃。
实验还表明本实施例生成的不锈钢防氚渗透材料在200°~450℃温度下经90天试验期间,氚在TiC或TiN+TiC膜中扩散渗透率稳定,未发现有任何变化。90天以后将样品在室温下放置90天。再重新进行同样试验,氚的扩散渗透率依然稳定不变。
将上述样品在膜剥离机上进行剥离时发现,两种膜与基体材料结合强度大于基体材料本身的结合强度;将样品在电子探针下观察,膜与基体材料扩散结合得很好,没有发现膜与基体材料之间有缝隙现象,说明TiC或TiN+TiC膜与316L不锈钢相容性很好。将上述样品在氩气气氛中加热到611℃,保温21小时,再迅速冷却到室温,进行上述检验时没有发现膜的结构、膜与基体材料的结合强度有任何变化,因此TiC膜或TiN+TiC复合膜具有良好的抗热冲击性能。将样品分别加热到200℃、400℃和600℃,放在百万分之一的天平上称重,发现在200°~600℃之间膜的质量损失均小于百万分之五,所以TiC或TiN+TiC复合膜稳定性好。
图1和图2还分别给出316L不锈钢镀TiC膜或TiN+TiC复合膜后在不同温度下保温退火时间与氚渗透率对数关系曲线,由图1和图2可见,在400℃温度下保温退火12~20天,则在TiC表面也能生成CH-4离子防氚渗透阻挡层。
勘误表
权利要求
1.一种不锈钢防氚渗透材料的制作工艺,包括用化学蒸发沉积法在不锈钢表面镀钛膜,其特征在于随后在400℃~600℃温度下通入C2H2气体,在不锈钢表面生成TiC膜,将镀有TiC膜的不锈钢在氩气气氛中通氢,并在300℃~450℃温度下保温退火。
2.根据权利要求1所说的一种不锈钢防氚渗透材料的制作工艺,其特征在于在400°~600℃温度下先通入N2气,在不锈钢表面生成TiN膜,然后再通入C2H2气体,在不锈钢表面生成TiN+TiC复合膜,将镀有TiN+TiC复合膜的不锈钢在氩气气氛中通氢,并在300°~450℃温度下保温退火。
3.根据权利要求1或2所说的一种不锈钢防氚渗透材料的制作工艺,其特征在于镀有TiC膜或TiN+TiC膜的不锈钢在含有10ppm氧,5ppm氢的氩气气氛中在300℃温度下保温退火20天。
全文摘要
本发明公开一种不锈钢防氚渗透材料的制作工艺,包括用化学蒸发沉积法在不锈钢表面镀钛,在400°~600℃通入C
文档编号C23C28/00GK1083128SQ9210952
公开日1994年3月2日 申请日期1992年8月20日 优先权日1992年8月20日
发明者山常起, 吴艾菊, 陈庆旺, 戴少侠, 赵子强, 李永静, 黄秋荣, 施所朗 申请人:中国原子能科学研究院