纤维增强的铝基质复合材料的制作方法

文档序号:3394936阅读:343来源:国知局
专利名称:纤维增强的铝基质复合材料的制作方法
技术领域
本发明涉及在铝基质中含有陶瓷纤维的复合材料。这些材料适用于各种需要强度高重量轻的材料的应用领域。
背景技术
与普通的合金和颗粒增强的金属基质复合材料相比,连续纤维增强的铝基质复合材料(CF-AMCs)提供了优越的特定性能。这些复合材料的纵向刚性通常是普通合金的三倍,这些复合材料的比强度通常是高强度钢或铝合金的两倍。而且,对于许多应用领域,与石墨-聚合物复合材料相比,由于CF-AMCs具有一些性能上更为适度的各向异性,特别是在不同于纤维轴的方向上具有高的强度,因而是特别令人感兴趣的。而且,CF-AMCs可使用的温度范围明显较高,并且不会发生聚合物基质复合材料经常遇到的由于环境带来的不利影响。这些不利影响包括在热而湿的环境中,特别是在紫外线(UV)照射下会发生的分层和降解现象。
虽然已知的CF-AMCs有很多优点,但它们仍有一些阻碍其在许多工程中应用的缺点。CF-AMCs通常具有高模量或高强度的特点,但很少同时具有这两种特点。在R.K.Everett和R.J.Arsenault Eds.的Metal Matrix CompositesProcessingand Interface,Acdemic Press,1991,pp.43-82,“Casting Fiber-Reinforced MetalMatrix Composites”,R.B.Bhahat的表V中提到了这个情况。在该文献中,所列的浇铸CF-AMC的性能中,只有高强度碳增强的铝同时具有超过1GPa的强度和超过160GPa的模量,但该复合材料的横向强度低,抗压强度低,且耐腐蚀性差。目前,最令人满意的生产在所有方向上均具有高强度同时在所有方向上均具有高模量的CF-AMCs的途径,是用化学气相淀积生产的纤维来制造CF-AMCs。该方法的纤维(通常为硼)是非常昂贵的,而且太粗以致不能卷绕成曲率半径小的预制件,而且在熔融的铝中具有化学活性。这些因素都使纤维的加工性能降低,以致在工业上难以采用。
另外,诸如在铝合金基质中含氧化铝纤维的这些复合材料在制备时还有一些缺点。具体是在制备这些复合材料时,发现很难使基质材料完全渗入纤维束。而且,现有技术中已知的许多复合金属材料会由于纤维与周围的基质发生化学反应,因此其长期稳定性不够,纤维在以后会发生性能劣化。还有一些情况下,发现很难使基质金属完全湿润纤维。虽然为了克服这些问题已作出了许多努力,值得注意的是在纤维上覆以化学涂层提高其润湿性和限制其发生化学反应,并使用压力差促使基质渗入,但是这些努力获得的成功有限。例如,在某些情况下所得到的基质的物理性能下降。而且,在纤维上涂层方法的使用通常需要在制备过程中增加若干复杂的操作步骤。
由此可见,人们需要在强度和重量特性上有所改进,经过很长时间也不会降解,制备的操作步骤又比较简单的陶瓷纤维金属复合材料。
发明综述本发明涉及具有广泛工业用途的连续纤维铝基质复合材料。从广义上说,本发明涉及连续纤维铝基质复合材料,其特征在于使用连续的高强度高刚性纤维,这些纤维包含在基质材料中,所述基质材料中没有会产生脆性金属互化物或金属中间相的杂质,并且在基质/纤维界面上也没有杂质的偏析区域。基质材料应选择屈服强度较低的,纤维应选择拉伸强度较高的。另外,基质材料和纤维的选择应注意纤维在基质(不论是熔融态还是固相)中都是相对化学惰性的。
更具体地,本发明涉及复合材料,该材料是以元素铝(屈服强度约为20MPa)或含高达约2%铜的元素铝合金(屈服强度约为80MPa)为基质,其中含有多晶α-Al2O3的连续纤维(拉伸强度约为2.8GPa)。这种复合材料的结构能提供高强度和轻重量,同时可避免长时期以后发生降解的可能性。这些复合材料也可不需要现有技术中的许多步操作步骤来制备。
在一个实施方案中,本发明的连续纤维铝基质复合材料可形成具有理想的强度-重量特性和高导电性的线材。这种线材适于用作高压电力传输(HVPT)电缆中的芯材,因为它们与现有技术中的HVPT电缆相比,电学和物理性能得到改进。
附图的简要说明

图1为用超声能量制备金属基质复合材料线材装置的示意图。
图2a和2b是两个实施方案中的含金属基质复合材料芯材的架空高压传输电缆的截面示意图。
图3是本发明的材料与其它材料的强度重量之比的比较图。
图4a和4b为各种电缆的垂度与间距长度关系的比较曲线图。
图5为一种CF-AMC芯材的热膨胀系数随温度变化的曲线图。
详细说明本发明的纤维增强铝基质复合材料是以基本纯的元素铝基质或含高达约2重量%铜的纯铝合金为基质,其中包封着多晶α-Al2O3的连续纤维(拉伸强度约为2.8GPa)。较好的纤维中的等轴晶粒尺寸宜小于约100nm,纤维直径宜约为1-50微米。较好的是纤维直径约为5-25微米,最好的是约为5-15微米。较好的复合材料的纤维密度约为3.90-3.95克/立方厘米。较好的纤维包括在美国专利No.4,954,462(Wood等人,已转让给明尼苏达州的美国3M公司)中提到的纤维,其内容参考结合于本发明中。这些纤维可从美国3M公司购得,商品名称为NEXTELTM610陶瓷纤维。应选择包封用的基质,使其不与纤维材料发生化学反应,因此在纤维外面不需要提供保护性涂层。
在此所用的术语“多晶”是指主要含有许多粒径小于纤维直径的晶粒的材料,所述晶粒存在于所述纤维中。术语“连续的”是指纤维的长度与纤维直径相比是相对无限长的。实际上,这些纤维的长度约在15cm至至少几米,甚至可长达几千米或更长。
在较好的实施方案中,使用含有基本纯的元素铝或含高达约2%铜的元素铝合金作为基质,可制得理想的复合材料。在此使用的术语“基本纯的元素铝”、“纯铝”和“元素铝”是可互换的,都是指所含杂质少于约0.05重量%的铝。这些杂质通常是第一行过渡金属(钛、钒、铬、锰、铁、钴、镍和锌)以及镧系元素中第二和第三行金属。在一个较好的实施方案中,上述这些术语是指含少于约0.03重量%铁、最好为少于约0.01重量%铁的铝。将铁的含量降到尽可能低是很重要的,这是因为铁是铝中常见的杂质,而且铁和铝会化合产生脆性的金属互化物(如Al3Fe、Al2Fe等等)。避免硅杂质(如来自SiO2的硅,因为SiO2在熔融铝中会被还原产生硅)也是特别重要的,这是因为与铁一样,硅也会形成脆性相,而且硅也会与铝(以及可能存在的铁)反应,形成脆性的Al-Fe-Si金属互化物。在复合材料中存在脆性相是不好的,因为当受到应力时,这些相会加速复合材料的碎裂。尤其是甚至在增强陶瓷纤维碎裂之前,这些脆性相会使基质碎裂,从而导致复合材料破坏。一般来说,应避免含有较多量的过渡金属(即周期表中第IB至VIIIB族),因为这些金属会生产脆性金属互化物。尤其要避免含有较多量的铁和硅,因为在冶金过程中铁和硅是常见的杂质。
上述第一行过渡金属在熔融铝中的溶解度都较大,而且会与铝反应生成脆性金属互化物。而诸如锡、铅、铋、锑等金属杂质则不会与铝生成化合物,而且实际上是不溶于熔融铝的。结果,这些杂质会在纤维/基质界面上产生偏析,因此在界面上降低了复合材料的强度。虽然这种偏析可能因对总负荷共载区域(a globalload sharing domain)有贡献(将在下面讨论)而有利于提高最终复合材料的纵向强度,但杂质的存在最终会因其减弱纤维/基质界面的结合力而导致复合材料的横向强度明显减小。周期表第IA族和IIA族的元素会与纤维反应,大大减小复合材料中纤维的强度。在这方面,镁和锂的不良作用尤其大,这部分是由于在加工或使用过程中纤维和金属在高温下必须保持的较长的时间长度。
应该理解,在此使用的术语“基本纯的元素铝”、“纯铝”和“元素铝”是用于基质材料而不是用于增强纤维,因为纤维可能在其晶粒结构中含有铁(以及其它可能的元素)化合物的区域。这些区域通常是在纤维制造过程中留下的,它对所得到的复合材料总的性能的影响可以忽略,因为这些区域的尺寸相对很小,且完全包封在纤维晶粒中。由于它们不会与复合材料的基质反应,因此避免了与基质杂质有关的缺点。
本发明复合材料中所用的金属基质,应选择其屈服强度低于增强纤维的屈服强度。在本文中屈服强度的定义是在未增强的金属或合金的标准化拉伸试验中对应于0.2%残余应变的应力。一般来说,根据基质的屈服强度,可将铝基质复合材料大致分为两类。一类是基质的屈服强度相对较低的复合材料,它具有高的纵向拉伸强度,这主要是由于增强纤维的强度起了作用。在此所用的在铝基质复合材料中的低屈服强度铝基质是指屈服强度小于约150MPa的基质。基质屈服强度在基质材料的样品上进行测定,所用样品与制造复合材料的基质材料组成相同,且是用相同方法制造的。因此,例如在复合材料中所用的基本纯的元素铝基质材料的屈服强度就通过测定无纤维增强的基本纯的元素铝的屈服强度来确定。测定方法最好根据ASTM拉伸试验标准E345-93(金属箔拉伸试验的标准试验方法(Standard Test Methods of Tension Testing of Metallic Foil))。在含有低屈服强度基质的复合材料中,基质在基质-纤维界面附近的剪切减小了已破坏纤维附近的应力集中,因此使总的应力重新分布。在此状态下,该复合材料达到“混合物规则”的强度。纯铝的屈服强度小于约13.8MPa(2ksi),Al-2重量%Cu的屈服强度小于约96.5MPa(14ksi)。
上述低屈服强度基质的复合材料可与另一类高屈服强度基质的复合材料形成对照,后者的纵向强度一般低于“混合物规则”所预计的强度。在含有高强度基质的复合材料中,构成其特征的破坏方式是通过骤然的裂缝蔓延而进行的。在复合材料中,高屈服强度的基质通常能耐来自毁损纤维的剪切力,因此在所有纤维断裂的附近产生很高的应力集中。这种很高的应力集中使裂缝蔓延开来,导致在“混合物规则”强度达到之前,最近的纤维发生破坏,而致复合材料骤然破坏。在此状态下的破坏方式被认为是“局域负荷共载”的结果。对于含约50体积%纤维的金属基质复合材料,当其中用的是强度大于2.8GPa(400ksi)的氧化铝纤维时,低屈服强度的基质会生成高强度(即>1.17GPa(170ksi))的复合材料。因此可以认为,对于相同的纤维负荷,复合材料强度将随纤维强度而增大。
复合材料的强度还可以通过在多晶α-Al2O3纤维束中渗入细微的氧化铝区域(其形式为颗粒、晶须或短(切断的)纤维)而得到提高。这些微区的尺寸通常小于20微米,且常为亚微米,它们被陷获在纤维表面,在复合材料的纤维之间提供空隙。这些空隙免除了纤维间的直接接触,因此生成较高强度的复合材料。对于材料中使用这些微区,使纤维间接触达到最少的讨论,可参见美国专利No.4,961,990(Yamada等人,转让给日本的Kabushiki Kaisha Toyota Chuo Kinkyusho和Ube Industries,Ltd.)。
如上所述,生成复合材料重要的阻碍因素之一是周围的基质材料难以对增强纤维充分润湿。同样,采用在纤维束中渗入基质材料的工艺在金属基质复合材料线材的生产中也遇到一个重要的问题,因为连续的线材形成过程通常在接近大气压力的条件下进行。在大气压力或接近大气压力下用分批渗入工艺形成复合材料也存在这一问题。
基质不能完全渗入纤维束的问题可通过使用帮助基质渗入的超声能量源而得到克服。例如,美国专利No.4,779,563(Ishikawa等人,转让给日本东京的Agencyof Industrial Science and Techmology)中叙述了用碳化硅纤维增强的金属复合材料生产预制线材、板材或带材中使用超声波振荡装置。超声波能量通过具有转换器和浸没在熔融基质材料中纤维附近的超声“喇叭”的振荡器提供给纤维。该喇叭最好由几乎不溶于或完全不溶于所述熔融基质的材料制成,这样能防止向基质中引入杂质。在此情况下,已发现市售的纯铌或95%铌和5%钼的合金喇叭能产生令人满意的结果。所用的转换器通常含有钛。
采用超声喇叭的金属基质复合材料线材制造系统的一个实施方案如图1所示。在该图中,多晶α-Al2O3纤维束10从一供料滚筒12上解开,通过滚轴14拉过装有熔融态基质金属18的容器16,该纤维束10在浸入熔融基质金属时,经受浸没在熔融基质金属18中位于线束10一段附近的超声能量源20所提供的超声能量。超声能量源20包括振荡器22和具有转换器26和喇叭27的振动器24。喇叭27在熔融基质金属18中,以振荡器22产生并传送至振动器24和转换器26的频率振动。这样就使基质材料熔体完全渗入纤维束。被基质所渗入的纤维束从熔融基质中拉出储存在接收滚筒28上。
制备金属基质复合材料的方法通常要将纤维先形成“预制件”。纤维通常绕成许多排堆积在一起。将直径细小的氧化铝纤维缠绕成平行排列的纤维束。可用任何方式进行堆积,得到在最终复合材料中所需的纤维密度。纤维可在一矩形鼓、轮或环上缠绕制成简单的预制件。它们也可以缠绕在圆筒上。将许多层以此方式缠绕的纤维切断,然后堆积或捆在一起形成所需的形状。处理这些纤维排的办法可以直接使用水或将水与有机粘合剂混合后使用,将纤维聚在一起成一垫状物。
一种制造复合材料部件的方法是先将纤维置于模具中,再将熔融金属填满模具,然后对填满的模具施加高压。在美国专利No.3,547,180,名称为“增强复合材料的制备”中揭示了该方法。该模具不应向基质金属引入杂质。在一个实施方案中,所述模具可由石墨、氧化铝或涂覆氧化铝的钢材制成。可将所述纤维在模具中以所需的形式堆放,如现有技术中已知的与模具壁平行或一层垂直于另一层。复合材料的形状可以是模具所能制成的任何形状。这样,可使用多种预制件制成纤维结构,包括(但不限于)矩形鼓形、轮形或环形、圆柱形或藉堆积或在模腔中以另外的方式装填纤维而产生的各种形状。上述各种预制件是指用分批处理方法来制备复合材料部件。也可以使用形成基本上连续的线材、带材电缆等连续的方法。制成部件的表面通常只需要少量的机械加工。也可以使用金刚石刀具将复合材料的块料加工成任何形状。因此可以制成许多复杂的形状。
通过将熔融铝渗入氧化铝纤维束可以形成线状复合材料。这可以通过将纤维束加入熔融铝浴中来进行。为了促进纤维湿润,在纤维通过铝浴的同时使用超声喇叭搅拌铝浴。
纤维增强的金属基质复合材料对于需要重量轻,强度高,耐高温(至少约为300℃)材料的用途是很重要的。例如,这种复合材料可用于喷气发动机中的燃气轮机压缩机叶片、建筑用管道、传动杆、工字梁、汽车连接杆、导弹叶片、飞轮转子、运动器材(如高尔夫球棍)以及电力传输电缆支撑芯。金属基质复合材料在刚性、强度、耐疲劳和耐磨性方面均优于未增强的金属。
在本发明的一个较佳实施方案中,复合材料是在基本纯的元素铝基质中含有约30-70%的多晶α-Al2O3纤维。较好的是该基质中铁的含量少于约0.03%,最好少于0.01%。至少纤维含量,约40-60重量%的多晶α-Al2O3纤维是优选的。现已发现,由屈服强度小于约20MPa的基质和纵向拉伸强度至少约2.8GPa的纤维形成的复合材料具有优良的强度性能。
如上所述,该基质也可以由含有高达约2重量%铜的元素铝合金形成。在如同使用基本纯的元素铝基质的实施方案一样,含铝/铜合金基质的复合材料中较好地含有30-70重量%多晶α-Al2O3纤维,最好含有40-60重量%多晶α-Al2O3纤维。另外,如上所述,该基质较好地含有少于约0.03%铁,最好含有少于约0.01%铁。铝/铜合金的屈服强度较好为小于约80MPa,如前相同,多晶α-Al2O3纤维的纵向拉伸强度也至少约为2.8GPa。下面表1中列出了两种复合材料的性能,第一种含有元素铝基质,第二种含有某种铝/铜合金基质,各含有约55-65体积%的多晶α-Al2O3纤维表1复合材料件能汇总表(1)
1)表中所列出的性能表示对含55-65体积%的NEXTELTM610陶瓷纤维复合材料测得的机械性能的范围。该范围并不能表示统计分散性。
(2)标记符号1=纤维方向;2=横向 ij∶i=垂直于应力作用平面的方向,j=应力方向,S=极限强度,除非另外说明。
虽然本发明的复合材料适用于许多用途,在一个实施方案中它们可用于形成金属基质复合材料线材。这些线材是由如上所述的包含在基本纯的元素铝基质或含高达约2%铜的元素铝合金中的多晶α-Al2O3的连续的纤维形成的。制造这些线材的工艺是先提供装上排列成束的基本上连续的多晶α-Al2O3纤维的卷筒。再将纤维束拉伸通过熔融基质材料浴。然后使得到的复合线材固化,其中含有包封在基质中的纤维。较好的是将如上所述的超声喇叭下降至熔融基质浴中,用于帮助基质渗入纤维束中。
如上所述的金属基质复合材料线材在许多用途上是很有用的。这些线材对于用于电力传输架空电缆是特别理想的,这是因为它们同时具有重量轻、强度高、导电性良好、热膨胀系数低、使用温度高以及耐腐蚀性能好的优点。金属基质复合材料线材所具有的竞争力(如上所述用于电力传输架空电缆)是电缆性能对整个电力传输系统具有重大影响的结果。单位强度重量较轻,同时具有较高导电性和较低热膨胀系数的电缆,提供了设置更长电缆间距和/或更低塔架高度的可能性。结果,建造用于给定电力传输系统的电缆塔的成本可以大大减少。而且,导体电性能的改进可减少传输系统中的电损耗,从而减少了为补偿这种损耗要多发电的需求。
如上所述,本发明的金属基质复合材料线材特别适用于高压电力传输架空电缆。在一个实施方案中,高压电力传输架空电缆中可有由至少一种金属基质复合材料线材形成的导电芯材,该芯材被至少一种由许多铝或铝合金线材形成的至少一层导电性外套所包围。电缆的许多芯材和外套的构型是电缆领域的现有技术中已知的。例如,如图2a所示,高压电力传输架空电缆30的截面可以是19根复合材料金属基质线材34可以是被30根铝或铝合金线材38的外套36包围的芯材32。同样,如图2b所示,作为多种选择中的一种,另一种高压电力传输架空电缆30′的截面可以是37根金属基质复合材料线材34′被30根铝或铝合金线材38′的外套36′所包围的芯材32′。
电缆中的金属基质复合材料线材的重量百分数取决于传输线路的设计。在这种电缆中,用作导电性外套的铝或铝合金线材可以是任何已知的高压电力架空传输系统中所用的材料,包括(但不限于)1350Al或6201Al。
在另一个实施方案中,高压电力传输架空电缆可以整个由许多根连续的纤维铝基质复合材料线材(CF-AMCs)构成。如下所述,这种结构适用于长间距电缆,因为这种情况下对于电缆强度对重量之比和热膨胀系数的需要超过电阻损耗要尽量小的需要。
虽然高压电力传输架空电缆的垂度取决于多种因素,但它随间距长度的平方成正比,与电缆的拉伸强度成反比。如图3中所示,CF-AMC材料与通常用于电力传输的电缆材料相比,强度对重量之比有了明显的改进。应注意,CF-AMC材料和电缆的强度、导电性和密度取决于复合材料中纤维的体积。在图3、4a、4b和5中,设定了50%纤维体积,相应的密度约为3.2gm/cm3(约0.115lb/in3),拉伸强度为1.38GPa(200ksi),导电率为30%IACS。
由于含CF-AMC线材的电缆的强度增加,使电缆的垂度明显减小。图4a和4b为CF-AMC电缆的垂度随间距长度的变化与通常所用的钢绞线(ACSR)电缆(含31重量%钢,具有7根钢绳芯,被26根铝线的外套包围)以及一种相当的全铝合金导体(AAAC)电缆比较的计算结果。所有这些电缆具有相同的导电性和直径。图4a表明,对于约550m(约1800ft)的间距,CF-AMC电缆使电缆塔高度与ACSR相比降低40%。同样,假设允许的垂度为15m(约50ft),CF-AMC电缆可使间距长度增加约25%。使用CF-AMC电缆在长间距应用中还有如图4b所示的优点。在图4b中,ACSR电缆含72重量%的钢,具有19根钢绳芯,周围为16根铝线的外套。
高压电力传输(HVPT)电缆在其最高操作温度下的垂度也取决于电缆在其最高操作温度下的热膨胀系数(CTE)。该电缆的极限CTE由增强芯子和周围金属绳的CTE和弹性模量确定。在限定的范围内,具有低CTE和高弹性模量的材料是理想的。CF-AMC电缆的CTE随温度的变化如图5所示,图中还提供了铝和钢的情况作为对比。
我们注意到,本发明不限于使用复合材料金属基质技术的线材和HVPT电缆,它还包括这里所述的一些具体的新颖复合材料以及许多其它的用途。因此,在此所述的金属基质复合材料可用于许多用途中,包括(但不限于)飞轮转子、高性能航天元件、电压传输或许多其它需要高强度低密度材料的用途。
还应注意,虽然较佳的实施方案是使用美国专利No.4,954,462(前面提到的)多晶α-Al2O3纤维(该纤维现已上市,商标为NEXTELTM610,由明尼苏达州的美国3M公司生产),但本发明不限于这种特定纤维。任何多晶α-Al2O3纤维都可采用。然而较好的是这些纤维的拉伸强度至少应与NEXTELTM610纤维相当(约2.8GPa)。
在本发明的实施中,基质必须在约20℃-760℃的温度范围内对纤维是化学惰性的。该温度范围表示复合材料加工制造和使用时的预期温度范围。这就需要尽可能减少基质和纤维之间的化学反应,因为反应会对复合材料总的性能带来不利的影响。当基质材料是含元素铝和高达约2%铜的合金时,该铸造合金的屈服强度约为41.4-55.2MPa(6-8ksi)。为了提高该金属合金的强度,可以使用各种处理方法。在一个较佳实施方案中,与金属纤维一经混合,即将合金加热至约520℃,并保持约16小时,然后在温度保持在约60至100℃的水中骤冷。然后将该复合材料放入烘箱中,保持在约190℃(通常为0-10天),直到该基质达到所需的强度。该基质在约190℃的温度下保持5天后,发现达到约68.9-89.6MPa(10-13ksi)的最大屈服强度。相反,未经这种热处理的纯铝在铸造状态的屈服强度约为6.9-13.8MPa(1-2ksi)。
实施例通过下面的实施例进一步说明本发明的目的和优点,但在这些实施例中提到的具体材料和用量以及其它的条件和细节不应视作对本发明的限制。除非另有说明,否则所有的份数和百分数均以重量计。
测试方法使用拉力测试仪(Instron 4201 tester,购自Instron of Canton,MA)测定纤维的强度。这个测试在ASTM D 3379-75(高模量单纤维材料的拉伸强度和杨氏模量的标准测试方法(Standard Test Methods for Tensile Strength and Young′s Modulus forHigh Modulus Single-Jilament Materials))中有叙述。样品的标距为25.4mm(1inch),拉伸速率为0.02mm/mm/min。
为了获得纤维束的拉伸强度,从一束纤维中任意选择10根单纤丝。测定每根纤丝的断裂负荷。测定至少10根纤丝,确定纤维束中纤丝的平均强度。随机取样的单根纤维的强度范围为2.06-4.82GPa(300-700ksi)。纤丝的平均拉伸强度为2.76至3.58GPa(400-520ksi)。
使用连接于光学显微镜(Dolan-Jenner Measure-Rite Video Micrometer System,型号M25-0002,购自MA Lawernce的Dolan-Jenner Industries,Inc.)的一个附属装置在×1000的倍数下用光学方法测定纤维直径。该装置使用反射光进行观测,备有一个经校准的台式测微计。
以单位面积的负荷计算单根纤丝的断裂应力。
从负荷位移曲线确定纤维的伸长率,其范围为约0.55%至1.3%。
适用于本发明复合材料的纤维强度平均值大于2.76GPa(400ksi)(标准偏差一般为15%)。增强纤维的平均强度越高,复合材料的强度越高。当根据本发明制备的复合材料中纤维含量为60体积%时,复合材料的强度至少为1.38GPa(200ksi)(标准偏差5%),通常至少1.72GPa(250ksi)(标准偏差5%)。
拉伸试验复合材料的拉伸强度试验采用拉力测试仪(Instron 8562 Tester,购自MA,Canton的Instron Corp.)。这个试验基本上是按金属箔拉伸试验所述的方法,即ASTM E345-93中所述的方法(金属箔拉伸试验的标准测试方法)进行的。
为了进行拉伸试验,将复合材料制成15.24cm×7.62cm×0.13cm(6”×3”×0.05”)的片。使用金刚石锯将该片切割成7片试样(15.24cm×0.95cm×0.13cm(6”×0.375”×0.05”)用于测试。
测出含有纯铝基质或含2%Cu的铝基质的复合材料的平均纵向强度(即复合材料中的纤维平行于测试方向)为1.38GPa(200ksi)。对于纤维体积含量约为60%的复合材料,当复合材料含纯铝时,平均横向强度(即复合材料中的纤维垂直于测试方向)为138MPa(20ksi),当复合材料含铝/2%Cu合金时,平均横向强度为262MPa(38ksi)。
制备各种复合材料金属基质的具体实施例叙述如下。
实施例1制备纤维增强的金属复合材料用商业名称为NEXTELTM610陶瓷纤维的氧化铝纤维束制备复合材料。该纤维束中含有420根纤维。这些纤维的截面基本上是圆的,直径平均约为11-13微米。纤维的平均拉伸强度(测定方法如上所述)为2.76-3.58GPa(400-520ksi)。单根纤维的强度为2.06-4.82GPa(300-700ksi)。
将制得的纤维绕成用于金属渗入的“预制件”。具体是用蒸馏水先使纤维湿润,在周长约为86.4cm(34英寸)的矩形鼓上缠绕多层,形成所需的约0.25cm(0.10英寸)厚的预制件。
将缠绕的纤维从矩形鼓上切下来,堆积在模腔中,达到最终所需预制件的厚度。使用的是长方形平板状石墨模具。将约1300克铝金属(纯度99.99%,购自NY,Brooklyn的Belmont Metals)放入铸造装置中。
将装有纤维的模具放入加压渗入铸造装置中。在该装置中,模具是放入一密封容器或坩埚中,并置于可抽真空室的底部。将铝金属片装入所述室内模具上方的一块支撑片上。在支撑片上有若干个小洞(直径约为2.54mm),可供熔融铝通过进入下面的模具中。封闭该室,室内压力减小至3毫乇,从模具和室中将空气抽去。将铝金属加热至720℃,并将模具(连同其中的纤维预制件)加热至至少约670℃。铝在该温度下熔化,但仍留在模具上方的平板上。为了对模具填铝,对加热器停止供电,充入氩气使所述室内压力加至8.96MPa(1300psi)。熔融铝立即穿过支撑片上的小洞流入模具。在将该室放空至大气压力之前,先将温度降至600℃。当该室温度冷却至室温后,从模具中取出样品,其尺寸为15.2cm×7.6cm×0.13cm(6”×3”×0.05”)。
这种复合材料的长方形片状样品中含有60体积%纤维。体积分数是使用阿基米德液体置换原理并通过检测200倍放大倍数的抛光截面显微照片测定的。
将片状样品再切割成用于拉伸试验的试样,不再对其进行机械加工。从上述试样测得的拉伸强度为1400MPa(204ksi)(纵向强度)和140MPa(20.4ksi)(横向强度)。
实施例2制备金属基质复合材料线材本实施例中所用的纤维和金属与实施例1中所述的相同。氧化铝纤维不制成预制件,而是以多束形式直接输入铝熔融浴中,然后绕在一卷带盘上。铝是在尺寸约为24.1cm×31.3cm×31.8cm(9.5″×12.5″×12.5″)的氧化铝坩埚(购自PA,Beaver Falls的Vesuvirs McDaniel)中熔化。熔融铝的温度约为720℃。将95%铌和5%钼的合金制成尺寸长约12.7cm(5″)直径2.5cm(1″)的圆柱体。该圆柱体用作超声喇叭的执行机构,其办法是对其调制至所需的振动(即通过改变长度而调制),使振动频率达到约20.0-20.4kHz。此执行机构的振幅大于0.002cm(0.0008″)。此执行机构与一根钛波导管连接,后者则与超声转换器连接。纤维被基质材料渗入形成截面和直径相对均匀的线材。用这个方法制得的线材,直径约为0.13cm(0.05″)。
从截面的显微照片(放大倍数200)估算纤维的体积百分数为40体积%。
线材的拉伸强度为1.03-1.31GPa(150-190ksi)。
室温伸长率约为0.7-0.8%。伸长率是用延长仪在拉伸试验中测定的。
实施例3使用Al/Cu合金基质的金属基质复合材料这个实施例完全按实施例1所述的方法进行,但使用含铜2重量%的铝合金替代纯铝。该合金中铁的含量约0.02重量%,且杂质总含量小于约0.05重量%。该合金的屈服强度为41.4-103.4MPa(6-15ksi)。根据下述程序对该合金进行热处理在520℃加热16小时,然后用水骤冷(水温为60-100℃);立即放入190℃的烘箱中保持5天。
用实施例1所述的方法制成金属基质复合材料的长方形片,然后再切成适用于拉伸试验的试样,不同的是金属加热至710℃,模具(连同其中的纤维)加热至高于660℃。
复合材料中含有60体积%纤维。纵向强度范围为138-1.86GPa(200-270ksi)(10次测定的平均值为1.52GPa(220ksi)),横向强度范围为239-328MPa(35-48ksi)(10次测定的平均值为262MPa(38ksi))。
本发明的等价物本领域的技术人员容易理解可对本发明作各种改进和变化而不脱离本发明的范围和精神。应该指出,本发明不限于上面所述的说明性实施方案和实施例,这些实施方案和实施例只是用于举例说明,本发明的范围则由权利要求书所限定。
权利要求
1.复合材料,它含有至少一种包含在元素铝基质中拉伸强度至少约为2.8GPa的多晶α-Al2O3的纤维,基本上不含会提高纤维或基质脆性的物质相或微区。
2.复合材料,它含有至少一种包含在基质中的拉伸强度至少约为2.gGPa的多晶α-Al2O3的纤维,所述基质是元素铝和高达约2%铜构成的合金,其特征在于基本上不含能提高纤维或基质脆性的物质相或微区。
3.如权利要求1或2所述的复合材料,其特征在于所述至少一种纤维基本上是连续的。
4.如权利要求1或2所述的复合材料,其特征在于含有约30至70%多晶α-Al2O3纤维。
5.如权利要求1或2所述的复合材料,其特征在于含有约40至60%多晶α-Al2O3纤维。
6.如权利要求1或2所述的复合材料,其特征在于所述元素铝基质中铁含量小于约0.03%。
7.如权利要求1或2所述的复合材料,其特征在于所述元素铝基质中铁含量小于约0.01%。
8.如权利要求2所述的复合材料,其特征在于所述基质的屈服强度小于约90Mpa。
9.一种线材,它含有许多根包含在基质中基本上连续的多晶α-Al2O3纤维,所述基质选自基本纯的元素铝和元素铝和高达2%铜形成的合金。
10.如权利要求9所述的线材,其特征在于所述至少一种纤维是基本上连续的。
11.高压电力传输架空电缆,它含有许多根铝基质复合材料线材,每根线材中有许多根包含在基质中基本上连续的多晶α-Al2O3纤维,所述基质选自基本纯的元素铝和元素铝和高达2%铜形成的合金。
12.如权利要求11所述的高压电力传输架空电缆,其特征在于还包括至少一个导电性外套,所述外套由许多根导电性铝或铝合金的线材构成。
13.如权利要求9或11所述的制品,其特征在于所述铝基质复合材料线材含有约30至70%多晶α-Al2O3纤维。
14.如权利要求9或11所述的制品,其特征在于所述铝基质复合材料线材含有约40至60%多晶α-Al2O3纤维。
15.如权利要求9或11所述的制品,其特征在于所述铝基质复合材料线材中基质的铁含量小于约0.03%。
16.如权利要求9或11所述的制品,其特征在于所述铝基质复合材料线材中的基质是基本纯的元素铝,其屈服强度小于约20Mpa。
17.如权利要求9或11所述的制品,其特征在于所述铝基质复合材料线材中的基质是元素铝和高达2%铜形成的合金,且基质的屈服强度小于90Mpa。
18.如权利要求9或11所述的制品,其特征在于所述多晶α-Al2O3纤维的纵向拉伸强度至少约为2.8Gpa。
19.如权利要求12所述的制品,其特征在于所述导电性外套的导电性铝线材是选自1350Al和6201Al的材料。
全文摘要
一种金属基质复合材料,它是将许多根多晶α-Al
文档编号C22C47/08GK1188514SQ96194957
公开日1998年7月22日 申请日期1996年5月21日 优先权日1995年6月21日
发明者C·麦克劳夫, A·莫腾森, P·S·沃纳, H·E·德福, T·L·安德森 申请人:美国3M公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1