一种高合金高强度钢的冶炼方法

文档序号:8218700阅读:197来源:国知局
一种高合金高强度钢的冶炼方法
【技术领域】
[0001]本发明涉及一种炼钢方法,尤其是一种高合金高强度钢的冶炼方法。
【背景技术】
[0002]随着钢铁行业科技进步,从满足轻量化的要求出发,对钢材的综合力学性能要求越来越高,而为了达到钢材高的力学性能要求,需要对钢种的化学成份进行调整。目前国内主流的化学成份设计思路为低碳高锰加铌、钒、钛微合金化。其强化机理为组织强化和细晶强化以及微合金元素铌、钒、钛的碳氮化物粒子的析出强化。在此类高合金高强度钢种的化学成份设计中,为了达到强化效果,碳元素一般控制在0.08%以下,而锰元素在2.0%左右,为了同时满足要求,避免锰合金化带来的碳含量超出,正常的冶炼为采用低碳锰铁或金属锰进行锰元素的合金化;但这种方法会造成钢材成本较高。

【发明内容】

[0003]本发明要解决的技术问题是提供一种能有效降低生产成本的高合金高强度钢的冶炼方法。
[0004]为解决上述技术问题,本发明所采取的技术方案是:其包括转炉冶炼和LF精炼,所述转炉冶炼中,采用中碳锰铁进行锰合金化,终点碳含量控制在0.04%及以下;所述LF精炼中,采用低碳锰铁进行锰成分调整。
[0005]本发明所述转炉冶炼中,转炉出钢的锰含量为1.05?1.20%ο
[0006]本发明所述转炉冶炼中,转炉终点出钢温度控制在1650?1670°C。
[0007]本发明所述转炉冶炼中,采用铌铁微合金化。
[0008]本发明所述LF精炼中,采用强搅拌化渣,然后加入铝基脱氧剂进行深脱氧,使用低碳锰铁进行锰成分调整,最后钛铁微合金化。
[0009]本发明所述中碳锰铁牌号为FeMn78C2.0,其中Mn 78?82%、C彡2.0% ;所述低碳锰铁牌号为FeMn84C0.4,其中Mn 80%?87%、C彡0.4%。
[0010]本发明所述高合金高强度钢主要合金化成份的重量配比为:C 0.04?0.08% ;Mn1.8 ?2.0% ;Nb 0.02 ?0.05% ;Ti 0.08 ?0.14%。
[0011]采用上述技术方案所产生的有益效果在于:本发明通过降低转炉终点碳含量(0.04%及以下),利用中碳锰铁代替低碳锰铁进行转炉冶炼,剩余锰含量利用LF精炼处理进行调整的方法,达到最终钢种化学成份满足低碳高锰的技术要求,实现降低成本的目的。本发明利用中碳锰铁代替部分低碳锰铁,降低产品钢材的成本,具有工艺简单、产品成本低、质量稳定的特点。
[0012]本发明通过提高转炉终点出钢温度,能有效的抵消LF由于低碳锰铁加入造成的温度下降;采用在LF强搅化渣,进行深脱氧能有效地保证锰元素的稳定吸收率;从而能进一步的降低能耗、提升产品稳定性。
【具体实施方式】
[0013]下面结合具体实施例对本发明作进一步详细的说明。
[0014]实施例1:本高合金高强度钢的冶炼方法采用下述工艺步骤,其中成分配比均为质量分数。
[0015]转炉吹炼终点:C 0.04%,Mn 0.08% ;出钢温度1658°C。转炉出钢加入中碳锰铁(C1.8%,Mn 79%) 14.6kg/ 吨钢,铌铁(Nb 63%) 0.8kg/ 吨钢。
[0016]出钢后钢包温度为:1598°C;化学成分:C 0.065%,Mn 1.20%,Nb 0.048%。
[0017]LF精炼进站加入石灰、萤石等渣料进行强搅拌化渣,使用铝基脱氧剂脱渣中氧,使用铝线脱钢中氧,并采用电极加热进行温度补偿,脱氧、脱硫合格后,再次采用电极加热进行钢水升温,升温原则为保证补偿后续物料加入及静吹温降,之后加入低碳锰铁(C 0.4%,Mn 83%) 9kg/ 吨钢;钛铁(11 30%) 5kg/ 吨钢。
[0018]上述强搅拌化渣:转炉出钢过程中会不可避免的下渣,同时,转炉出钢过程中会加入石灰、萤石、脱氧剂等形成顶渣,因此钢包在由转炉炉后工位吊包至LF精炼工位时,由于顶部温降大于钢水内部温降,故顶部会形成渣壳。因此,需要在LF精炼进站时采用大氩气量强搅拌,冲破渣壳,并利用内部钢水高温熔化渣壳,同时,此过程中需加入石灰萤石等渣料,低温块状渣料与高温钢水接触并迅速熔化,形成以CaO-S12-Al2O3为主的熔融液态层覆盖于钢水表面。
[0019]上述铌铁微合金化工艺为:将块状铌铁(粒度5?30mm,铌含量约63%)在转炉出钢时在硅铁、锰铁、铝铁之后加入钢包中,并伴随钢包底吹氩,铌铁逐步溶解。
[0020]上述铝基脱氧剂深脱氧工艺为:将铝基脱氧剂(粒度10?50mm,铝含量约50%、三氧化二铝约25%、氧化钙约25%)通过LF精炼观察口加入钢包中,伴随着大流量底吹氩操作,通过蘸渣操作观察渣样颜色,渣样颜色变化依次为:亮黑一浅暗黑一蜡黄一浅黄一暗白一明白,必须保证渣样颜色至浅黄,此时,渣中氧化铁约1.5%。
[0021 ] 上述钛铁微合金化工艺为:将块状钛铁(粒度10?50mm,钛含量约30%或约70%)在LF精炼钙处理之前加入钢包中,并伴随底吹氩,此后不允许再次升温给电,仅允许钙处理操作和小流量底吹氩操作,防止钛二次氧化。
[0022]LF 精炼钢水出站温度:1582°C ;化学成分:C 0.074% ;Mn 1.95% ;Nb 0.049% ;Ti
0.11%,余量为铁和不可避免的杂质。
[0023]实施例2:本高合金高强度钢的冶炼方法采用下述工艺步骤。
[0024]转炉吹炼终点:C 0.03%,Mn 0.06% ;出钢温度1662°C。转炉出钢加入中碳锰铁(C
1.8% ;Mn:79%) 15kg/ 吨,铌铁(Nb 63%) 0.6kg/ 吨。
[0025]出钢后钢包温度为:1600°C;化学成分:C 0.056%,Mn 1.21%,Nb 0.032%。
[0026]LF精炼进站加入石灰、萤石等渣料进行强搅拌化渣,使用铝基脱氧剂脱渣中氧,使用铝线脱钢中氧,并采用电极加热进行温度补偿,脱氧、脱硫合格后,再次采用电极加热进行钢水升温,升温原则为保证补偿后续物料加入及静吹温降,之后加入低碳锰铁(C 0.4%,Mn 83%) 8.5kg/ 吨;钛铁(Ti 30%) 4kg/ 吨。
[0027]LF精炼钢水出站温度:1580°C ;主要化学成分:C 0.061%,Mn 1.91%,Nb 0.033%,Ti 0.094%。
[0028]实施例3:本高合金高强度钢的冶炼方法采用下述工艺步骤。
[0029]转炉吹炼终点:C 0.02%,Mn 0.07% ;出钢温度1668°C。转炉出钢加入中碳锰铁(C1.8%,Mn 79%) 13kg/ 吨;铌铁(Nb 63%) 0.4kg/ 吨。
[0030]出钢后钢包温度为:1604°C;化学成分:C 0.045%,Mn 1.07%,Nb 0.022%。
[0031]LF精炼进站加入石灰、萤石等渣料进行强搅拌化渣,使用铝基脱氧剂脱渣中氧,使用铝线脱钢中氧,并采用电极加热进行温度补偿,脱氧、脱硫合格后,再次采用电极加热进行钢水升温,升温原则为保证补偿后续物料加入及静吹温降,之后加入低碳锰铁(C 0.4%,Mn 83%) Ilkg/ 吨;钛铁(Ti 30%) 3.5kg/ 吨。
[0032]LF 精炼钢水出站温度:1585°C ;主要化学成分:C 0.05%,Mn 1.98%,Nb 0.023%,Ti
0.082%。
[0033]实施例4:本高合金高强度钢的冶炼方法采用下述工艺步骤。
[0034]转炉吹炼终点:C 0.04%,Mn 0.09% ;出钢温度1659°C。转炉出钢加入中碳锰铁(C
1.8% ;Mn 79%) 14kg/ 吨,铌铁(Nb 63%) 0.8kg/ 吨。
[0035]出钢后钢包温度为:1593°C;化学成分 C 0.064%,Mn 1.16%,Nb 0.030%。
[0036]LF精炼进站加入石灰、萤石等渣料进行强搅拌化渣,使用铝基脱氧剂脱渣中氧,使用铝线脱钢中氧,并采用电极加热进行温度补偿,脱氧、脱硫合格后,再次采用电极加热进行钢水升温,升温原则为保证补偿后续物料加入及静吹温降,之后加入低碳锰铁(C 0.4% ;Mn 83%) 8kg/ 吨;钛铁(Ti 30%) 5.3kg/ 吨。
[0037]LF精炼钢水出站温度:1583°C ;主要化学成分:C 0.069%,Mn 1.83%,Nb 0.030%,Ti 0.12%ο
[0038]实施例5:本高合金高强度钢的冶炼方法采用下述工艺步骤。
[0039]转炉吹炼终点:C 0.03%,Mn 0.06% ;出钢温度1665°C。转炉出钢加入中碳锰铁(C1.8% ;Mn 79%) 14kg/ 吨,铌铁(Nb 63%) 0.8kg/ 吨。
[0040]出钢后钢包温度为:1603°C;化学成分:C 0.54%,Mn 1.13%,Nb 0.046%。
[0041]LF精炼进站加入石灰、萤石等渣料进行强搅拌化渣,使用铝基脱氧剂脱渣中氧,使用铝线脱钢中氧,并采用电极加热进行温度补偿,脱氧、脱硫合格后,再次采用电极加热进行钢水升温,升温原则为保证补偿后续物料加入及静吹温降,之后加入低碳锰铁(C 0.4% ;Mn 83%) 9kg/ 吨;钛铁(Ti 30%) 5kg/ 吨。
[0042]LF精炼钢水出站温度:1582°C ;主要化学成分:C 0.061%,Mn 1.88%,Nb 0.048%,
Ti 0.11%ο
【主权项】
1.一种高合金高强度钢的冶炼方法,其包括转炉冶炼和LF精炼,其特征在于:所述转炉冶炼中,采用中碳锰铁进行锰合金化,终点碳含量控制在0.04%及以下;所述LF精炼中,采用低碳锰铁进行锰成分调整。
2.根据权利要求1所述的一种高合金高强度钢的冶炼方法,其特征在于:所述转炉冶炼中,转炉出钢的锰含量为1.05?1.20%ο
3.根据权利要求1所述的一种高合金高强度钢的冶炼方法,其特征在于:所述转炉冶炼中,转炉终点出钢温度控制在1650?1670°C。
4.根据权利要求1所述的一种高合金高强度钢的冶炼方法,其特征在于:所述转炉冶炼中,采用铌铁微合金化。
5.根据权利要求1所述的一种高合金高强度钢的冶炼方法,其特征在于:所述LF精炼中,采用强搅拌化渣,然后加入铝基脱氧剂进行深脱氧,使用低碳锰铁进行锰成分调整,最后钛铁微合金化。
6.根据权利要求1所述的一种高合金高强度钢的冶炼方法,其特征在于:所述中碳锰铁牌号为FeMn78C2.0,低碳锰铁牌号为FeMn84C0.4。
7.根据权利要求1一 6任意一项所述的一种高合金高强度钢的冶炼方法,其特征在于,所述高合金高强度钢主要合金化成份的重量配比为:c 0.04?0.08% ;Mn 1.8?2.0% ;Nb.0.02 ?0.05% ;Ti 0.08 ?0.14%。
【专利摘要】本发明公开了一种高合金高强度钢的冶炼方法,其包括转炉冶炼和LF精炼,所述转炉冶炼中,采用中碳锰铁进行锰合金化,终点碳含量控制在0.04%及以下;所述LF精炼中,采用低碳锰铁进行锰成分调整。本方法通过降低转炉终点碳含量(0.04%及以下),利用中碳锰铁代替低碳锰铁进行转炉冶炼,剩余锰含量利用LF精炼处理进行调整的方法,达到最终钢种化学成份满足低碳高锰的技术要求,实现降低成本的目的。本方法利用中碳锰铁代替部分低碳锰铁,降低产品钢材的成本,具有工艺简单、产品成本低、质量稳定的特点。
【IPC分类】C21C7-06, C22C33-04, C21C5-28, C22C38-14
【公开号】CN104531939
【申请号】CN201510019789
【发明人】刘宝喜, 席晓利, 陈俊东, 王云阁, 梁桂梅, 冯慧霄, 汪云辉, 武冠华
【申请人】唐山钢铁集团有限责任公司
【公开日】2015年4月22日
【申请日】2015年1月15日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1