介电颗粒团聚物,使用该团聚物的低温可烧结的介电陶瓷组合物,使用该组合物生产的低...的制作方法

文档序号:3432210阅读:638来源:国知局
专利名称:介电颗粒团聚物,使用该团聚物的低温可烧结的介电陶瓷组合物,使用该组合物生产的低 ...的制作方法
技术领域
本发明涉及用于制备叠层介电谐振器、叠层陶瓷电容器、叠层LC滤波器和叠层介电基板的低温可烧结的介电陶瓷组合物,这些是叠层和多层结构的电子器件或元件或组件并主要用于微波波段电子设备,涉及用于这种组合物的介电颗粒团聚物,并涉及使用这种低温可烧结的介电陶瓷组合物制备的低温可烧结介电陶瓷,还涉及制备该团聚物、组合物和陶瓷的方法。更特别地,本发明涉及使含Ti的介电材料的烧结成为可能的介电颗粒团聚物,该含Ti介电材料迄今被认为如果含有玻璃则难以在不高于1000℃的低温下进行烧结,涉及能通过使用这种介电颗粒团聚物获得的低温可烧结的介电陶瓷组合物,涉及通过使用这种低温可烧结的介电陶瓷组合物制备的低温烧结的介电陶瓷并且还涉及制造它们的方法。
背景技术
对于具有适应于微波电路较高集成度趋势的小的介电损耗(tanδ)和稳定介电性能的小型介电谐振器存在日益增加的需求。当通过介电谐振器形成介电滤波器时,用于介电谐振器的电介质需要的性能包括(1)能够使谐振频率的温度系数τf具有小的绝对值以使相对于温度改变的性能波动最小化和(2)能够使谐振Q值具有大的值以使满足介电滤波器需要的输入损耗最小化。此外,由于谐振器的长度受用于移动电话等的微波频率范围内的电介质的比介电常数εr限制,当减少元件尺寸时比介电常数εr需要显示大的值。通过参考用于谐振器的电磁波波长来决定介电谐振器的长度。通过具有比介电常数εr的电介质传播的电磁波波长λ可表示为λ=λ0/(εr)1/2,其中λ0是电磁波在真空中传播时的波长。因此,当用于元件的电介质的介电常数较大时,能更多的减小元件的尺寸。
同时,通过在层中设置内导体并通过层叠和烧结的介电陶瓷将它们夹在中间形成作为叠层电子元件的叠层介电谐振器等。通常,使用贵金属例如Au、Pt和Pd作为这种叠层电子元件的内导体材料。然而,从成本的观点,通常使用较廉价Ag、Cu和含Ag和/或Cu作为主要成分的合金作为内导体。特别地,Ag和含Ag作为主要成分的合金由于它们具有低的DC电阻因此提供了提高介电谐振器Q特性的优势,因此对这种材料的需求不断增加。然而,Ag和含Ag作为主要成分的合金具有低至约960℃的熔点,因而必须将它们之一与能在较低温度下稳定烧结的介电材料结合使用。
通过添加玻璃作为成分获得的介电材料被用作满足上述介电性能要求的材料以便能够在低温下烧结。已知由BaO-TiO2-Nd2O3型陶瓷和玻璃的复合材料制得的玻璃陶瓷是具有高介电常数的介电材料(专利文献1JP-A-8-239263和专利文献2JP-A-10-330161)。
专利文献1JP-A-8-239263专利文献2JP-A-10-330161发明内容发明要解决的问题然而,难以在低温下烧结BaO-TiO2-Nd2O3型陶瓷材料,并且专利文献1中公开的玻璃陶瓷材料需要被粉碎为具有不大于0.1μm平均颗粒尺寸的颗粒。粉碎过程消耗长的时间。此外,由于这种粉碎的材料难以被烧结,当烧结生片(green sheet)的叠层时,玻璃陶瓷材料会产生需要复杂的烧结方式的问题。
专利文献2中公开的玻璃陶瓷材料可通过和玻璃一起添加CuO、ZnO和/或SnO制成平均颗粒直径0.3μm以用于低温烧结。然而,由于仍难以在低温下烧结该玻璃陶瓷材料并且粉碎过程耗费长的时间。此外,还具有当烧结生片的叠层时产生需要复杂烧结方式的问题。
类似于上述BaO-TiO2-Nd2O3型陶瓷材料,诸如BaTiO3和SrTiO3的材料也显示出高介电常数但难以将它们烧结。总之,这些材料如果只是与玻璃混合并烧结,那么它们在低温下难以被烧结。
鉴于上述问题,因此本发明的第一目的是提供即使含有难烧结的元素Ti也能在不高于1000℃的低温下容易烧结的低温可烧结的介电陶瓷组合物。
本发明的第二目的是提供用于这种低温可烧结的介电陶瓷组合物的介电颗粒团聚物以及通过使用这种低温可烧结的介电陶瓷组合物生产的低温烧结介电陶瓷。
解决问题的方式根据本发明,为了获得至少一个上述目的,提供由含Ti的介电颗粒制得的介电颗粒团聚物,特征在于该颗粒在其表面层中含有一种或多种包括Ti和Zn的氧化物。
在本发明的一个方面,包括Ti和Zn的氧化物是ZnTiO3和/或Zn2TiO4。在本发明的一个方面,含Ti的电介质是BaO-TiO2-Nd2O3型电介质、BaTiO3型电介质或SrTiO3型电介质。在本发明的一个方面,含Ti的电介质是含有10-16摩尔%BaO、67-72摩尔%TiO2和16-18摩尔%Nd2O3作为主要成分并且相对于100重量份的主要成分包含7-10重量份Bi2O3和0.3-1.0重量份Al2O3作为辅助成分的BaO-TiO2-Nd2O3型电介质。在本发明的一个方面,含有一种或多种包括Ti和Zn的氧化物的表面层具有不大于50nm的厚度。在本发明的一个方面,介电颗粒团聚物具有0.4-3.0μm的平均颗粒尺寸。
根据本发明,为了实现至少一个上述目的,提供制造上述介电颗粒团聚物的方法,特征在于包括混合ZnO与含Ti的介电基体材料颗粒团聚物以及将制得的混合物进行煅烧过程的步骤。在本发明的一个方面,将0.5-10重量份的ZnO与100重量份的介电基体材料颗粒团聚物混合。在本发明的一个方面,在含氧气氛中进行煅烧过程。在本发明的一个方面,煅烧过程的温度是900-1200℃。
根据本发明,为了实现至少一个上述目的,提供低温可烧结的介电陶瓷组合物,特征在于含有100重量份的上述介电颗粒团聚物和2.5-20重量份的玻璃组分。在本发明的一个方面,玻璃组分含有45-70重量%ZnO、5-13重量%B2O3、7-40重量%SiO2和8-20重量%Al2O3。
根据本发明,为了实现至少一个上述目的,提供低温烧结的介电陶瓷,特征在于含有100重量份的构成上述介电陶瓷团聚物的介电颗粒和2.5-20重量份的玻璃组分。在本发明的一个方面,该玻璃组分含有45-70重量%ZnO、5-13重量%B2O3、7-40重量%SiO2和8-20重量%Al2O3。
根据本发明,为了实现至少一个上述目的,提供制造低温烧结介电陶瓷的方法,特征在于包括在880-1000℃下烧结上述低温可烧结介电陶瓷组合物的步骤。在本发明的一个方面,玻璃组分含有45-70重量%ZnO、5-13重量%B2O3、7-40重量%SiO2和8-20重量%Al2O3。在本发明的一个方面,对叠层进行烧结步骤,该叠层具有包含低温可烧结介电陶瓷组合物的层和含有金属的层,以便由此获得具有叠层结构的电子元件,其中金属层作为内导体。在本发明的一个方面,该金属层由Ag、Cu或含它们中至少任何一种的合金制成。
发明效果因此,根据本发明,通过混合100重量份介电颗粒团聚物和2.5-20重量份玻璃组分提供低温可烧结的介电陶瓷组合物,其中该介电颗粒团聚物由含Ti且表面层含有一种或多种Ti和Zn氧化物的电介质制成。然后通过在880-1000℃下烧结这种低温可烧结的介电陶瓷组合物能够生产低温烧结的介电陶瓷。然后,因此能够提供具有叠层或多层结构和由Ag、Cu或含有至少其中一种的合金制成的内导体的电子元件。因此,根据本发明,能够在不高于1000℃的低温下烧结合Ti的介电材料,该介电材料显示出高的介电常数,并且当用于迄今难以在低于Ag、Cu或含有至少其中一种的合金的熔点的不高于1000℃的低温下烧结的电子元件时提供了优势。
附图简述

图1是实施例1中获得的根据本发明的介电颗粒团聚物的X-射线衍射图;图2是实施例1中获得的介电陶瓷的X-射线衍射图;图3是能够作为具有根据本发明介电陶瓷的叠层电子元件的实施方案制备的三板(tri-plate)型介电谐振器的示意性透视图;图4是图3介电谐振器的示意性截面图;图5是通过透射电子显微镜观察的在实施例3中获得的根据本发明介电颗粒团聚物的介电颗粒的照片;图6是通过EDS(能量色散谱仪)在图5中点1处获得的谱图;和图7是通过EDS在图5中点5处获得的谱图,其中附图标记1表示介电陶瓷层,附图标记2表示内导体,附图标记3表示外导体。
实施发明的最佳方式现在,通过参照附图更为详细地描述根据本发明的介电颗粒团聚物、低温可烧结的介电陶瓷组合物、低温烧结的介电陶瓷和其制备方法。
根据本发明的介电颗粒团聚物是含Ti(钛元素)的大量电介质颗粒的团聚物并也可在下文称为“介电颗粒的粉末”。含Ti的介电颗粒在其表面层中含有包括Ti和Zn的氧化物。能用于本发明目的的含Ti电介质的例子包括BaO-TiO2-Nd2O3型电介质,BaTiO3型电介质和SrTiO3型电介质。特别地,含有10-16摩尔%BaO、67-72摩尔%TiO2和16-18摩尔%Nd2O3作为主要成分并且相对于100重量份主要成分含有7-10重量份Bi2O3和0.3-1.0重量份Al2O3作为辅助成分的煅烧的BaO-TiO2-Nd2O3型电介质优选用于本发明目的。包含在颗粒表面层中的Ti和Zn的氧化物的例子包括ZnTiO3和/或Zn2TiO4,含有Ti和Zn氧化物的表面层厚度典型不小于10nm并不大于50nm。然而,含有Ti和Zn氧化物的表面层厚度不必在整个颗粒表面上是一致的,且上述值限定了平均的范围。根据本发明的介电颗粒团聚物显示出0.4-3.0μm的平均颗粒尺寸。
根据本发明制造介电颗粒团聚物的方法包括混合ZnO与含Ti介电基体材料的颗粒团聚物和将获得的混合物进行煅烧过程的步骤。基本上不含Zn的含Ti介电基体材料的颗粒可用于本发明的目的。优选将0.5-10重量份ZnO与100重量份介电基体材料的颗粒团聚物混合。煅烧过程优选在含氧气氛(例如地球的大气)中进行。进行煅烧过程的温度典型是900-1200℃。
通过混合100重量份介电颗粒团聚物和2.5-20重量份玻璃组分获得根据本发明的低温可烧结的介电陶瓷组合物。玻璃组分可典型含有45-70重量份ZnO、5-13重量份B2O3、7-40重量份SiO2和8-20重量份Al2O3。
根据本发明的低温烧结的介电陶瓷含有100重量份的构成介电颗粒团聚物的介电颗粒和2.5-20重量份的玻璃组分。其可以通过包括在880-1000℃下烧结低温可烧结的介电陶瓷组合物步骤的制备方法制得。典型在含有低温可烧结的介电陶瓷组合物的层和含有金属的层的叠层上进行该烧结步骤。通过烧结步骤,能够获得具有叠层或多层结构的电子元件,其中金属层作为内导体,并且是由Ag、Cu或含有至少其中一种的合金制成。
下面将更为详细地描述本发明。
根据本发明的制造低温烧结介电陶瓷的方法包括混合ZnO与颗粒(大量颗粒的团聚物),该颗粒是含Ti元素的介电颗粒(基体材料的颗粒),并且烧结(煅烧)该混合物以便在含有Ti元素的介电基体材料颗粒的表面上(在表面层中)形成一种或多种Ti和Zn的氧化物的步骤(制造介电颗粒团聚物的步骤)和将介电基体材料表面层上形成有一种或多种Ti和Zn的氧化物的介电颗粒粉末与玻璃组分进行混合(以获得低温可烧结的介电陶瓷组合物)并在880-1000℃烧结该混合物的步骤。为了实现低温烧结操作,根据本发明,在含有Ti元素的介电基体材料的颗粒表面形成ZnO型复合氧化物并向其中添加玻璃组分。该玻璃组分可以是ZnO-B2O3-SiO2-Al2O3型的玻璃材料。
对于本发明目的,可用于含Ti元素的介电基体材料颗粒的材料包括BaO-TiO2-Nd2O3型材料,例如BaTiO3和SrTiO3材料。例如,含有Bi2O3和Al2O3的BaO-TiO2-Nd2O3型介电材料本身表现出高介电常数的介电特性。然而,对于这种本身表现出良好介电特性的材料而言,通常不得不在1300℃或更高的温度下进行烧结。当Cu或Ag用作内电极材料时,需要使用能在约1000℃温度水平进行烧结的介电材料。要注意的是Cu的熔点是1083℃,而Au的熔点是1063℃。虽然Ag的熔点是960℃,然而已知的是假如Ag包埋在电介质中如果在1000℃烧结时,内Ag电极并不变形。因此,如果其可以在不高于1000℃的温度水平下烧结,通过烧结具有包含任意上述优选作为内电极金属的层和含有介电陶瓷组合物的层的叠层,能够制备叠层电子元件。
BaO-TiO2-Nd2O3型材料优选为煅烧的BaO-TiO2-Nd2O3型高介电常数材料,其包含10-16摩尔%BaO、67-72摩尔%TiO2和16-18摩尔%Nd2O3作为主要成分并且相对于100重量份的主要成分包含7-10重量份Bi2O3和0.3-1.0重量份Al2O3作为辅助成分。具有这种组成的BaO-TiO2-Nd2O3型材料为最佳地显示出如下描述的材料本身的性能。例如,当作为主要成分的BaO的含量比例小于10摩尔%时,获得的介电陶瓷显示出小的比介电常数,而当BaO含量比例超过16摩尔%时获得的介电陶瓷的谐振频率的温度系数的绝对值趋于升高。当同样为主要成分的TiO2的含量比例小于67摩尔%时,介电材料的可烧结性差,而当TiO2含量比例超过72摩尔%时获得的介电陶瓷的谐振频率的温度系数的绝对值趋于升高。当同样为主要成分的Nd2O3的含量比例小于16摩尔%时,获得的介电陶瓷的谐振频率的温度系数的绝对值过大,然而当Nd2O3含量比例超过18摩尔%时获得的介电陶瓷的比介电常数趋于降低。另一方面,当作为辅助成分的Bi2O3的含量比例相对于100重量份主要成分小于7重量份时,获得的介电陶瓷的谐振频率的温度系数的改善效果差,而当Bi2O3含量比例超过10重量份时,介电陶瓷的可烧结性差。当同样为辅助成分的Al2O3含量比例相对于100重量份主要成分小于0.3重量份时,获得的介电陶瓷的谐振Q值和谐振频率温度系数的改善效果差,而当Al2O3含量比例大于1.0重量份时,获得的介电陶瓷的比介电常数差,介电陶瓷的谐振Q值趋于降低。
根据本发明制备低温烧结的介电陶瓷的方法,包括混合ZnO与含有Ti元素的介电基体材料颗粒粉末的步骤和对混合物进行煅烧过程的步骤。因此,在介电基体材料颗粒中的TiO2组分与ZnO反应在介电基体材料颗粒的表面上形成一种或多种Ti和Zn的氧化物。Ti和Zn的氧化物的例子包括ZnTiO3、Zn2TiO4和其混合物。ZnTiO3和Zn2TiO4均表现出高的介电常数和对玻璃的亲和性,因而认为它们起到粘结介电基体材料颗粒和后添加的玻璃组分的作用。
在介电基体材料颗粒表面上形成一种或多种Ti和Zn的氧化物以实现允许高介电常数的介电基体材料颗粒在低温下烧结的目的。作为为实现该目的所做的深入研究工作的结果,本发明的发明人发现当以合适的比率在介电基体材料的颗粒表面上形成一种或多种Ti和Zn的氧化物时,能有效提高烧结陶瓷的相对密度(实际密度/理论密度)。当使用BaO-TiO2-Nd2O3型介电材料时,相对于100重量份基体材料优选添加0.5-10重量份的ZnO。当ZnO的含量比小于0.5重量份时,获得的介电陶瓷的相对密度趋于降低,而当ZnO的含量比大于10重量份时,获得的介电陶瓷的比介电常数趋于降低。当通过X-射线衍射仪观察介电颗粒的团聚物时,如图1所示,出现归因于基体材料颗粒成分的衍射峰和此外归因于表面层中ZnTiO3和/或Zn2TiO4的衍射峰。
根据本发明,通过混合其表面上含有一种或多种Ti和Zn氧化物的介电基体材料的颗粒粉末与玻璃组分(玻璃材料)获得低温可烧结的介电陶瓷组合物。然后,在880-1000℃下对低温可烧结的介电陶瓷组合物进行烧结。
添加玻璃材料以使高介电常数材料在低温下结晶。本发明发明人对各种不同组成玻璃的系列实验的结果是,发明人发现当以适当比率添加ZnO-B2O3-SiO2-Al2O3型玻璃材料时,能有效提高烧结陶瓷的相对密度(实际密度/理论密度)。
制备玻璃组分以呈现颗粒形式并与介电颗粒粉末混合或复合(compounded)以便获得低温可烧结的介电陶瓷组合物。用于形成低温可烧结介电陶瓷组合物的介电颗粒和玻璃组分颗粒优选具有均匀的颗粒尺寸以便获得在烧结操作后显示出高的无载Q值和稳定比介电常数εr的低温烧结的介电陶瓷。为此,介电颗粒的团聚物和玻璃组分的团聚物优选表现出不大于3.0μm的平均颗粒尺寸,更优选不大于2.0μm,最优选不大于1.0μm。当颗粒平均尺寸过小时,它们会引起难以处理的问题。因此,平均颗粒的尺寸优选不小于0.4μm,更优选不小于0.5μm。
玻璃组分优选包含45-70重量%的ZnO、5-13重量%的B2O3、7-40重量%的SiO2和8-20重量%的Al2O3。当ZnO含量少于45重量%时,获得的介电陶瓷的相对密度趋于降低,而当ZnO含量多于70重量%时获得的介电陶瓷的比介电常数趋于降低。当B2O3含量少于5重量%时获得的介电陶瓷的谐振Q值趋于降低,而当B2O3含量多于13重量%时获得的介电陶瓷的相对密度趋于降低。当SiO2含量少于7重量%时获得的介电陶瓷的谐振频率的温度系数的改善效果差,而当SiO2含量多于40重量%时获得的介电陶瓷的相对密度趋于降低。当Al2O3含量少于8重量%时获得的介电陶瓷的谐振Q值趋于降低,而当Al2O3含量多于20重量%时获得的介电陶瓷的比介电常数趋于降低。
优选地,将2.5-20重量份玻璃材料与100重量份介电颗粒粉末(包含一种或多种形成于介电基体材料颗粒表面上的Ti和Zn的氧化物)混合。当向100重量份的其中在表面上形成ZnO型复合氧化物的介电材料中添加2.5-20重量份玻璃材料时,能够通过在880-1000℃间的适合温度水平下对低温可烧结的介电陶瓷组合物进行烧结生产相对密度不小于90%的低温烧结的介电陶瓷。当添加的玻璃材料少于2.5重量份时,介电陶瓷组合物难以被烧结,而当添加的玻璃材料多于20重量份时,获得的介电陶瓷的比介电常数趋于降低。例如图2显示了以这种方式生产的介电陶瓷的X-射线衍射图谱。
下面将进一步描述根据本发明的生产介电陶瓷的方法。首先,以各自预定比例的量,取氧化锌和含Ti元素的介电颗粒的粉末,并通过湿式混合使用可以是水或醇的溶剂进行混合。随后,在除去水或醇后,在含氧气氛中(例如地球大气)在900-1200℃下煅烧混合物约1-5小时。煅烧的粉末是在含有Ti元素的介电基体材料的颗粒表面上形成有一种或多种Ti和Zn氧化物的介电颗粒粉末。此后,以各自预定比例的量取表面上形成一种或多种Ti和Zn氧化物的介电颗粒粉末和含45-70重量%的ZnO、5-13重量%的B2O3、7-40重量%的SiO2和8-20重量%的Al2O3的无铅低熔点玻璃,并通过湿式混合使用可以是水或醇的溶剂将它们相互混合。然后在除去水、醇等后,制备用于形成低温烧结的介电陶瓷的原材料粉末(低温可烧结的介电陶瓷组合物)。
对用于生产低温烧结的介电陶瓷的原材料粉末进行烧结以获得丸粒形态并以这种形态观测介电性能。更具体地,将有机粘结剂例如聚乙烯醇与原材料粉末混合,并对混合物进行均匀化、干燥、粉碎和随后在压力(约100-1000kg/cm2)下成型以形成丸粒形状。在880-1000℃下在含氧气氛中例如空气中烧结获得的成型产品以获得介电陶瓷,其中含有Ti元素并且在其表面形成Ti和Zn氧化物的介电材料的晶相与玻璃相共存。玻璃位于介电颗粒间。
本发明还涉及在含有Ti元素的介电基体材料颗粒表面上形成有ZnTiO3和/或Zn2TiO4的介电颗粒的团聚物。含有Ti元素的颗粒形式的介电基体材料的例子包括BaO-TiO2-Nd2O3型材料,和例如BaTiO3和SrTiO3的材料。将ZnO与这种含有Ti元素的介电基体材料的粉末混合,并对混合物进行烧结以获得在含有Ti元素的介电基体材料颗粒表面上形成有ZnTiO3和/或Zn2TiO4的介电颗粒。
通过将在含Ti元素的介电基体材料颗粒表面上形成有ZnTiO3和/或Zn2TiO4的介电颗粒与玻璃组分混合并在880-1000℃之间的适当温度水平下烧结该混合物,能够获得根据本发明的低温烧结的介电陶瓷,并为该介电陶瓷获得不小于90%的相对密度。
含有Ti元素的电介质的特别优选的例子是BaO-TiO2-Nd2O3型电介质。根据本发明,通过以预定比例相互混合氧化钡BaO、氧化钛TiO2和氧化钕Nd2O3,并烧结该混合物,随后进一步将氧化锌(ZnO)与上述混合物进行混合并烧结(煅烧)该混合物以获得在其表面上形成有ZnTiO3和/或Zn2TiO4的BaO-TiO2-Nd2O3型电介质的颗粒。能用于BaO-TiO2-Nd2O3和ZnO的材料包括BaO、TiO2、Nd2O3和ZnO,以及当烧结时能转变为氧化物的Ba、Ti、Nd和Zn的硝酸盐、碳酸盐、氢氧化物、氯化物和有机金属化合物。
根据本发明的低温烧结的介电陶瓷的特征在于在含Ti元素的介电基体材料颗粒表面上形成有ZnTiO3和/或Zn2TiO4的介电颗粒间具有位于其间的玻璃。通过将在含Ti元素的介电基体材料颗粒表面上形成有ZnTiO3和/或Zn2TiO4的介电颗粒团聚物与玻璃组分混合制备低温可烧结的介电陶瓷组合物,通过对该低温可烧结的介电陶瓷组合物进行烧结获得这种低温烧结的介电陶瓷。根据本发明的介电陶瓷是在低温下获得,同时表现出优异的介电性能。玻璃组分优选是ZnO-B2O3-SiO2-Al2O3型玻璃材料,因为它能够通过在低温下对含有这种玻璃材料的介电陶瓷组合物进行烧结获得显示出优异介电性能的介电陶瓷,然而本发明决不局限于这种玻璃材料的使用。
因此,能通过上述的制备方法获得根据本发明的介电陶瓷。在本发明的优选实施方案中,在介电基体材料的煅烧颗粒的表面上形成一种或多种Ti和Zn的氧化物,该介电基体材料锻烧颗粒的平均颗粒尺寸已调整为约0.4-3.0μm以获得介电颗粒,并且向100重量份的其表面上形成有一种或多种Ti和Zn氧化物的高介电常数的颗粒中添加2.5-20重量份的玻璃化材料,以获得低温可烧结的介电陶瓷组合物,该玻璃化材料的组成包括45-70重量%ZnO、5-13重量%B2O3、7-40重量%SiO2和8-20重量%Al2O3。然后,通过在880-1000℃温度水平下对低温可烧结的陶瓷组合物进行烧结可以获得介电陶瓷。可以将介电陶瓷的相对密度提高到不低于90%。获得的介电陶瓷的组成与烧结过程前介电陶瓷组合物的组成基本上相同。介电陶瓷包括含有Ti元素的介电颗粒、一种或多种形成于介电颗粒表面上的Ti和Zn的氧化物和位于颗粒间的玻璃相。
通过将根据本发明的介电陶瓷组合物成型为分别表现出适合外形和尺寸的未加工元件或通过刮片法等形成片,并将这些片(介电陶瓷组合物的层)和电极(含金属层)层叠成未加工元件,然后烧结该未加工元件,从而可以得到各种叠层陶瓷元件(叠层电子元件)。能根据本发明生产的叠层陶瓷元件包括叠层陶瓷电容器、叠层LC滤波器、叠层介电谐振器和叠层介电基板。
根据本发明的叠层陶瓷元件的实施方案包括多个介电层,相邻介电层间形成的内电极和与内电极电连接的外电极。通过使用由烧结根据本发明的介电陶瓷组合物获得的介电陶瓷形成介电层,并且内电极由Cu、Ag或含有Cu或Ag作为主要成分的合金材料制成。通过同时烧结含有介电陶瓷组合物的层和含有Cu、Ag或含有Cu或Ag作为主要成分的合金材料的层获得根据本发明的叠层陶瓷元件。
图3和4图示了作为根据本发明的叠层陶瓷元件实施方案的三板型介电谐振器。
图3是能够通过使用根据本发明的介电陶瓷制备的三板型介电谐振器的示意透视图。图4是图3中介电谐振器的示意截面图。如图3和4所示,该三板型介电谐振器是包括多个介电层1、形成于相邻两介电层之间的内电极2和与内电极电连接的外电极3的叠层陶瓷元件。这种三板型介电谐振器是通过在一层上放置另一层的方式放置多个介电层1并在其中心部分放置内电极2来得到。形成内电极2使得其从图3和4所示的第一表面A一直延伸到相对布置的第二表面B。在三板型谐振器中,只有第一表面A是开放的,而在第一表面A以外的所有剩余5个表面上形成外电极3,并且内电极2和外电极3在第二表面B上相互连接。内电极2由Cu、Ag或含有Cu或Ag作为主要成分的合金制成。由于根据本发明的介电陶瓷组合物可以在低温下烧结,所以能够使用这种电极材料。
实施例实施例1预先制备和煅烧含有如表1A和1B所示的调整组成比例成分的BaO-TiO2-Nd2O3型材料(介电基体材料的颗粒),向100重量份的介电材料中添加1重量份ZnO。然后将它们和乙醇一起倒入球磨机中进行湿法混合操作12小时。应注意的是,在表1A和1B中,作为BaO-TiO2-Nd2O3型材料的辅助成分的Bi2O3和Al2O3的量,是以相对于BaO-TiO2-Nd2O3型材料的主要成分BaO、TiO2和Nd2O3总量的100重量份以重量份表示。
从溶液中除去溶剂后,在大气中在1100℃下煅烧混合物以获得介电基体材料的颗粒表面上形成有一种或多种Ti和Zn氧化物的BaO-TiO2-Nd2O3型材料的煅烧粉末(介电颗粒的团聚物)。煅烧粉末的平均颗粒尺寸是1.0μm。图1是该实施例的煅烧粉末的X-射线衍射图谱。如图1中所示,发现在这个实施例的煅烧粉末中除BaO-TiO2-Nd2O3相外产生作为Ti和Zn氧化物的Zn2TiO4相和ZnTiO3相。
然后,将100重量份的表面上形成有Zn2TiO4相和ZnTiO3相的BaO-TiO2-Nd2O3型材料的煅烧粉末与5重量份的含有45重量%ZnO、7重量%B2O3、40重量%SiO2和8重量%Al2O3的玻璃粉末(平均颗粒尺寸为1.9μm)一起放入球磨机中进行湿法混合操作24小时。然后,从溶液中除去溶剂,干燥剩余物以获得有待用于低温烧结的粉末状材料(低温可烧结的介电陶瓷组合物)。
之后,向粉末状材料中添加适量聚乙烯醇溶液,并干燥产物,之后成型为直径12mm且厚4mm的丸粒,然后将其在大气中在950℃下烧结2小时。图2是烧结产品的X-射线衍射图。从图2中可以看到,在根据本发明的介电陶瓷中(烧结产品),作为Ti和Zn氧化物的Zn2TiO4相和ZnTiO3相与BaO-TiO2-Nd2O3相同存。
对获得的介电陶瓷进行加工以具有直径7mm和厚度3mm,然后通过介电谐振方法测量获得的介电陶瓷在5-7GHz谐振频率范围内的无载Q值、比介电常数εr和谐振频率温度系数τf。表1A和1B还概括显示了获得的结果。在表1中用○和×对每个实施例和比较例进行评价,其中○表示获得的介电陶瓷的介电性能良好而×表示获得的介电陶瓷的介电性能不好或没有获得介电陶瓷。
表1A

表1B

实施例2-11在每个实施例中,其表面上在表1A和1B所示条件下形成有一种或多种Ti和Zn氧化物的介电颗粒团聚物与具有同样如表1A和1B所示组成的玻璃粉末以同样如表1A和1B所示的混合比例按实施例1的方式进行混合,在与实施例1相同的条件下制备烧结产物的丸粒。然后,按实施例1的方式评价丸粒的性能。表1A和1B也概括显示了获得的结果。
实施例12和13在每个实施例中,其表面上在表1A和1B所示的条件下形成有一种或多种Ti和Zn氧化物的BaTiO3或SrTiO3的介电颗粒团聚物与具有同样如表1A和1B所示组成的玻璃粉末以同样如表1A和1B所示的混合比例按实施例1的方式进行混合,在与实施例1相同的条件下制备烧结产物的丸粒。然后,按实施例1的方式评价丸粒的性能。表1A和1B也概括显示了获得的结果。
比较例1-5在每个比较例中,其表面没有形成任何Ti和Zn氧化物并具有如表1A和1B所示组成的BaO-TiO2-Nd2O3型材料的介电颗粒团聚物与具有同样如表1A和1B所示组成的玻璃粉末以同样如表1A和1B所示的混合比例按实施例1的方式进行混合,在与实施例1相同的条件下制备烧结产物的丸粒。然后,按实施例1的方式评价丸粒的性能。表1A和1B也概括显示了获得的结果。
比较例6和7在每个比较例中,其表面没有形成任何Ti和Zn氧化物的BaTiO3或SrTiO3介电颗粒团聚物与具有如表1A和1B所示组成的玻璃粉末以同样如表1A和1B所示的混合比例按实施例1的方式进行混合,在与实施例1相同条件下制备烧结产物的丸粒。然后,按实施例1的方式评价丸粒的性能。表1A和1B也概括显示了获得的结果。
实施例14通过Ar离子研磨对在与实施例3相同的条件下制备的其表面形成有一种或多种Ti和Zn氧化物的介电颗粒进行处理以制备这个实施例的样品,并通过JEOL,Ltd.提供的JEM-2010F(场发射透射电子显微镜,加速电压200kV)观察介电颗粒的内部。通过NORAN提供的UTW型Si(Li)半导体检测器(束直径1nm)评价组成。在图5、6和7中和表2中显示出结果。图5是通过透射电子显微镜观察的在实施例3中获得的在含Ti元素的介电基体材料颗粒表面形成有一种或多种Zn和Ti氧化物的介电颗粒的照片。图6和7是分别在图5中点1和点5处获得的EDS光谱图。
从下面所示的表2,可看出仅在点1-3处而没有在点4和5处检测到Zn。特别地,在点1和2处观察到Zn,并且在点1处非常强烈。因此,通过参照图4可以有把握地认为只是在介电颗粒的表面层中形成一种或多种Ti和Zn的氧化物,且表面层的厚度不超过50nm。
表2

权利要求
1.由含Ti的介电颗粒制成的介电颗粒团聚物,特征在于该颗粒在其表面层中含有一种或多种包括Ti和Zn的氧化物。
2.根据权利要求1的介电颗粒团聚物,其中包括Ti和Zn的氧化物是ZnTiO3和/或Zn2TiO4。
3.根据权利要求1的介电颗粒团聚物,其中含Ti的电介质是BaO-TiO2-Nd2O3型电介质,BaTiO3型电介质或SrTiO3型电介质。
4.根据权利要求1的介电颗粒团聚物,其中含Ti的电介质是含有10-16摩尔%BaO、67-72摩尔%TiO2和16-18摩尔%Nd2O3作为主要成分并且相对于100重量份主要成分包含7-10重量份Bi2O3和0.3-1.0重量份Al2O3作为辅助成分的BaO-TiO2-Nd2O3型电介质。
5.根据权利要求1的介电颗粒团聚物,其中含有一种或多种包括Ti和Zn的氧化物的表面层具有不大于50nm的厚度。
6.根据权利要求1的介电颗粒团聚物,其中该介电颗粒团聚物具有0.4-3.0μm的平均颗粒尺寸。
7.制备权利要求1-6中任一项的介电颗粒团聚物的方法,特征在于包括将ZnO与含Ti的介电基体材料的颗粒团聚物混合和将制得的混合物进行煅烧过程的步骤。
8.根据权利要求7的制备介电颗粒团聚物的方法,其中将0.5-10重量份的ZnO与100重量份的介电基体材料的颗粒团聚物混合。
9.根据权利要求7的制备介电颗粒团聚物的方法,其中在含氧气氛中进行煅烧过程。
10.根据权利要求7的制备介电颗粒团聚物的方法,其中煅烧过程的温度是900-1200℃。
11.低温可烧结的介电陶瓷组合物,特征在于含有100重量份的如权利要求1-6中任一项的介电颗粒团聚物和2.5-20重量份的玻璃组分。
12.根据权利要求11的低温可烧结的介电陶瓷组合物,其中玻璃组分含有45-70重量%ZnO、5-13重量%B2O3、7-40重量%SiO2和8-20重量%Al2O3。
13.低温烧结的介电陶瓷,特征在于含有100重量份的构成如权利要求1-6中任一项的介电陶瓷团聚物的介电颗粒和2.5-20重量份的玻璃组分。
14.根据权利要求13的低温烧结的介电陶瓷,其中玻璃组分含有45-70重量%ZnO、5-13重量%B2O3、7-40重量%SiO2和8-20重量%Al2O3。
15.制备低温烧结的介电陶瓷的方法,特征在于包括在880-1000℃下烧结如权利要求11的低温可烧结的介电陶瓷组合物的步骤。
16.根据权利要求15的制备低温烧结的介电陶瓷的方法,其中玻璃组分含有45-70重量%ZnO、5-13重量%B2O3、7-40重量%SiO2和8-20重量%Al2O3。
17.根据权利要求15的制备低温烧结的介电陶瓷的方法,其中对叠层进行烧结步骤,该叠层具有含有低温可烧结介电陶瓷组合物的层和含有金属的层,以便由此获得具有叠层结构的电子元件,其中该金属层作为内导体。
18.根据权利要求17的制备低温烧结的介电陶瓷的方法,其中金属层由Ag、Cu或含有至少其中任何一种的合金制成。
全文摘要
通过在每100重量份的由含Ti介电材料组成并在表面部分含有包括Ti和Zn的氧化物的介电颗粒团聚物中混合2.5-20重量份的玻璃组分制得低温可烧结的介电陶瓷组合物。通过在880-1000℃下对这种低温可烧结的介电陶瓷组合物进行烧结生产低温烧结的介电陶瓷。使用这种低温可烧结的介电陶瓷组合物,可以获得具有由Ag、Cu或含有至少其中一种的合金制成的内电极的多层电子元件。
文档编号C01G23/00GK101014549SQ200580007069
公开日2007年8月8日 申请日期2005年3月3日 优先权日2004年3月5日
发明者河野孝史, 山永正孝, 福田晃一 申请人:宇部兴产株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1