专利名称:掺锆锰酸锂正极薄膜材料及其制备方法
技术领域:
本发明属锂离子薄膜电池技术领域,具体涉及一种作为全固态薄膜锂电池正极材料及其制备方法。本发明涉及首次采用射频磁控溅射的方法制备掺锆锰酸锂薄膜(LMZO)。这种技术成功地制备了具有纳米晶态特性的薄膜,它的主要特点是薄膜颗粒小,改变了纯锰酸锂(LMO)的电化学行为,在大的电位范围内表现出斜的充放电曲线,克服了LMO充放电曲线中电位突跃的不利影响,具有高的电子导电率,能应用于全固态薄膜锂电池。
背景技术:
随着微电子器件的小型化,迫切要求开发与此相匹配的小型化长寿命电源。全固态可充放锂离子薄膜电池与其它化学电池相比,它的比容量最大,具有超长的充放电寿命,而且安全性能好。所以全固态可充放锂离子薄膜电池的研制具有广泛地应用背景。为了研制大容量的全固态薄膜锂离子电池,正极薄膜材料的选择尤为重要。典型的层状结构的LiCoO2、LiNixCo1-xO2和尖晶石结构的LiMn2O4已被应用于全固态薄膜锂电池。但是钴元素有毒且钴价格昂贵,限制了LiCoO2和LiNixCo1-xO2在电池中的应用。LiMn2O4则在3V区域易发生相变,造成容量衰减;并且LiMn2O4在3V和4V电化学平台间的电位突跃不利于其实际应用。
发明内容
本发明的目的在于提出一种电子导电率高,充放电曲线无电位突跃,制备条件简单的,能作为全固态薄膜锂电池正极的薄膜材料及其制备方法。
本发明提出的可作为全固态薄膜锂电池正极的薄膜材料,是一种纳米晶态掺锆锰酸锂薄膜,其分子式为LixMnyZrzO4,记为LMZO,其中,0.85<x<1.1,1.35<y<1.65,0.25<z<0.45,1.8<y+z<1.9。
本发明提出的制备掺锆锰酸锂薄膜的方法,是采用射频磁控溅射沉积法,即在一个磁控溅射系统上沉积薄膜,其步骤如下首先用分子泵将真空室的气压抽到1.0×10-3Pa以下,然后由针阀控制通入真空室氩气和氧气的体积流量,氩气和氧气流量比为2∶1~4∶1,通入口的方向正对沉积基片,调节混合气流量使真空室的气压保持在1.5Pa以下;用射频磁控溅射沉积LMZO薄膜,沉积时,射频输出功率为30~40瓦,基片与掺锆锰酸锂靶距离为5~7厘米,沉积速率为每小时25~50nm,基片温度为室温。薄膜沉积后在450~550℃马弗炉退火2~4小时。本发明中,掺锆锰酸锂靶由高温固相反应合成。
本发明在制备过程中,用扫描电子显微镜(SEM,Cambridge S-360,美国)观测薄膜的表面和剖面,以控制它的表面形貌和估计厚度。由扫描电子显微镜测定,表明薄膜颗粒较小,颗粒边界不明显。用能量弥散X射线分析(Kevex EDX spectrometer)测定薄膜化学组成,表明LMZO薄膜中Mn,Zr和O元素的摩尔比为(1.35~1.65)∶(0.25~0.45)∶4。用透射电镜(TEM,JEOL 2010)确定薄膜结构,电子衍射图谱表明沉积的薄膜为纳米晶结构。
分析掺锆锰酸锂和纯锰酸锂薄膜的异同,由于Zr的大量填入,在退火中,掺锆锰酸锂薄膜的颗粒生长被抑制,从而使其电化学行为与纯锰酸锂薄膜相比发生较大变化。电化学过程表现出斜的充放电曲线,克服了纯锰酸锂薄膜中两个平台间1V电位突跃的不利影响。
本发明结合射频磁控溅射制备的锂磷氧氮(LiPON)固态电解质薄膜与真空热蒸发制备的金属锂薄膜电极组装成全固态薄膜锂电池。作为比较,纯的锰酸锂薄膜也被组装到全固态薄膜锂电池。全固态薄膜锂电池Li/LiPON/LMZO/Pt的比容量为53mAh/cm2-μm,循环次数可达300次。这些结果表明基于用射频磁控溅射方法制备的LMZO正极薄膜材料,组装的全固态薄膜锂电池具有良好的充放电性能。
图1为Li/LiPON/LMO/Pt全固态电池的充放电曲线。
图2为500℃退火的LMZO薄膜的扫描电镜图。
图3为Li/LiPON/LMZO/Pt全固态电池的充放电曲线。
具体实施例方式
实施例1采用射频磁控溅射沉积方法制备纯锰酸锂(LMO)正极薄膜。首先用分子泵将真空室的气压抽到1.0×10-3Pa,然后由两针阀控制通入真空室的氩气和氧气的流量比为3∶1,通入口的方向正对沉积基片,调节混合气流量使真空室的气压保持在1.0Pa;沉积时,射频输出功率为35瓦,基片与锰酸锂靶距离为5厘米,沉积速率为每小时25nm,基片温度为室温。实验以Pt片为基片,锰酸锂靶由高温固相反应合成。
由X-射线衍射测定表明沉积的薄膜为尖晶石结构。由扫描电镜照片测定表明薄膜表面有明显的颗粒边界。由能量弥散X射线分析表明LMO薄膜中Mn,和O元素的摩尔比为1.92∶4。
结合射频磁控溅射制备的锂磷氧氮(LiPON)保护层薄膜与真空热蒸发制备的金属锂薄膜电极,组装成的全固态薄膜锂电池Li/LiPON/LMO/Pt的比容量约为78mAh/cm2-μm(附图1)。其充放电曲线在3V和4V区域表现出明显的电化学平台,平台间有1V的电位突跃。
实施例2本发明中,采用射频磁控溅射沉积方法制备掺锆锰酸锂(LMZO)正极薄膜。在一套磁控溅射沉积的真空系统进行。首先用分子泵将真空室的气压抽到1.0×10-3Pa,然后由针阀控制通入真空室的氩气和氧气的体积流量,氩气和氧气流量比为2∶1,通入口的方向正对沉积基片,调节混合气流量使真空室的气压保持在1.0Pa;沉积时,射频输出功率为40瓦,基片与掺锆锰酸锂靶距离为5厘米,沉积速率为每小时40nm,基片温度为室温,沉积后的薄膜在500℃空气中退火2小时。实验以Pt片为基片,掺锆锰酸锂靶由高温固相反应合成。
由透射电镜测定表明沉积的薄膜为纳米晶结构。由扫描电镜照片测定表明薄膜颗粒较小,颗粒边界不明显。由能量弥散X射线分析表明LMZO薄膜中Mn,Zr和O元素的摩尔比为1.41∶0.43∶4。
结合射频磁控溅射制备的锂磷氧氮(LiPON)保护层薄膜与真空热蒸发制备的金属锂薄膜电极,组装成的全固态薄膜锂电池Li/LiPON/LMZO/Pt的比容量约为51mAh/cm2-μm,循环次数可达300次。
实施例3本发明中,采用射频磁控溅射沉积方法制备掺锆锰酸锂(LMZO)正极薄膜。在一套磁控溅射沉积的真空系统进行。首先用分子泵将真空室的气压抽到1.0×10-3Pa,然后由针阀控制通入真空室的氩气和氧气的体积流量,氩气和氧气流量比为3∶1,通入口的方向正对沉积基片,调节混合气流量使真空室的气压保持在1.2Pa;沉积时,射频输出功率为40瓦,基片与掺锆锰酸锂靶距离为5厘米,沉积速率为每小时35nm,基片温度为室温,沉积后的薄膜在500℃空气中退火2小时。实验以Pt片为基片,掺锆锰酸锂靶由高温固相反应合成。
由透射电镜测定表明沉积的薄膜为纳米晶结构。由扫描电镜照片测定表明薄膜颗粒较小,颗粒边界不明显(附图2)。由能量弥散X射线分析表明LMZO薄膜中Mn,Zr和O元素的摩尔比为1.49∶0.39∶4。
结合射频磁控溅射制备的锂磷氧氮(LiPON)保护层薄膜与真空热蒸发制备的金属锂薄膜电极,组装成的全固态薄膜锂电池Li/LiPON/LMZO/Pt的比容量约为53mAh/cm2-μm,循环次数可达300次(附图3)。
实施例4本发明中,采用射频磁控溅射沉积方法制备掺锆锰酸锂(LMZO)正极薄膜。在一套磁控溅射沉积的真空系统进行。首先用分子泵将真空室的气压抽到1.0×10-3Pa,然后由针阀控制通入真空室的氩气和氧气的体积流量,氩气和氧气流量比为4∶1,通入口的方向正对沉积基片,调节混合气流量使真空室的气压保持在1.3Pa;沉积时,射频输出功率为40瓦。基片与掺锆锰酸锂靶距离为5厘米,沉积速率为每小时30nm,基片温度为室温,沉积后的薄膜在500℃空气中退火2小时。实验以Pt片为基片,掺锆锰酸锂靶由高温固相反应合成。
由透射电镜测定表明沉积的薄膜为纳米晶结构。由扫描电镜照片测定表明薄膜颗粒较小,颗粒边界不明显。由能量弥散X射线分析表明LMZO薄膜中Mn,Zr和O元素的摩尔比为1.53∶0.32∶4。
结合射频磁控溅射制备的锂磷氧氮(LiPON)保护层薄膜与真空热蒸发制备的金属锂薄膜电极,组装成的全固态薄膜锂电池Li/LiPON/LMZO/Pt的比容量约为50mAh/cm2-μm,循环次数可达300次。
因此,采用射频磁控溅射沉积方法制备的LMZO薄膜可应用在全固态薄膜锂电池中作为正极薄膜材料。此薄膜的特点是薄膜表面颗粒尺寸较小,充放电曲线没有明显的电位突跃,应用于全固态薄膜锂电池Li/LiPON/LMZO/Pt,体积比容量大。
权利要求
1.一种掺锆锰酸锂正极薄膜材料,其特征是由锰酸锂材料中掺入ZrO2而形成的纳米晶态掺锆锰酸锂薄膜材料,分子式为LixMnyZrzO4,0.85<x<1.1,1.35<y<1.65,0.25<z<0.45,1.8<y+z<1.9。
2.一种如权利要求1所述的掺锆锰酸锂正极薄膜材料的制备方法,其特征在于采用射频磁控溅射沉积法,具体步骤为首先用分子泵将真空室的气压抽到1.0×10-3Pa以下,然后由针阀控制通入真空室的氩气和氧气的体积流量,氩气和氧气的流量比为2∶1~4∶1,通入口的方向正对沉积基片,调节混合气流量使真空室的气压保持在1.5Pa以下;用射频磁控溅射沉积掺锆锰酸锂薄膜,沉积时,射频输出功率为30~40瓦,基片与掺锆锰酸锂靶距离为5~7厘米,沉积速率为每小时25~50nm,基片温度为室温;沉积后的薄膜在450~550℃马弗炉退火2~4小时。
3.如权利要求1所述的掺锆锰酸锂正极薄膜材料在全固态薄膜锂电池中的应用。
全文摘要
本发明属锂离子薄膜电池技术领域,具体涉及一种应用于全固态薄膜锂电池的正极材料掺锆锰酸锂薄膜(LMZO)及其制备方法。本发明采用射频磁控溅射沉积法制备掺锆锰酸锂薄膜,其颗粒尺寸明显小于纯的锰酸锂(LMO),且在电化学循环过程中表现出不同于LMO的斜的充放电曲线,克服了LMO充放电曲线中电位突跃的不利影响。结合射频磁控溅射制备的锂磷氧氮(LiPON)固态电解质薄膜与真空热蒸发制备的金属锂负极薄膜,组装成全固态薄膜锂电池。电池的比容量可达53mAh/cm
文档编号C01D15/00GK101034741SQ200710039149
公开日2007年9月12日 申请日期2007年4月5日 优先权日2007年4月5日
发明者李驰麟, 傅正文 申请人:复旦大学