一种制备空心微球结构勃姆石超细粉体的方法及装置的制作方法

文档序号:3446643阅读:256来源:国知局
专利名称:一种制备空心微球结构勃姆石超细粉体的方法及装置的制作方法
技术领域
本发明属于化工生产技术领域,尤其涉及一种制备空心微球结构勃姆石超细粉体的方法及装置。
背景技术
勃姆石又称一水软铝石,英文名称boehmite,外观呈现白色粉末,分子式为Y-A100H。勃姆石的重要应用价值是经过煅烧后制备エ业上用途广泛的氧化铝粉体,其突出优点ー是煅烧前后勃姆石的形貌保持不变,可以方便的获得与勃姆石形貌相同的氧化铝产品。ニ是由于从分子结构上比较,勃姆石可以看做是氢氧化铝(Al(OH)3)失去一分子水的产物,因此从勃姆石出发,经过煅烧制备氧化铝,在能耗上明显低于煅烧氢氧化铝的方法。综上所述,制备不同形貌的勃姆石,是最终获得相应形貌氧化铝粉体的捷径。故此,勃姆石被称为氧化铝的前驱体。 水热法是制备不同形貌勃姆石的常用方法,该方法制备的粉体具有较好的性能粉体晶粒发育完整;粒径很小且分布均匀;粉体团聚程度很轻;易得到合适的化学计量比的产物和晶粒形态;可以使用较便宜的原料;省去了高温燃烧和球磨,避免了杂质的引入和结构缺陷。同时水热反应过程中反应温度、压力、时间、原料配比等调节因素众多,有利于提高综合调控效果。但是水热法也存在着由于反应时间长,而需长时间維持反应温度,能耗相对较高,反应机理尚不十分明确等缺点。微波加热是ー种内加热,可实现分子水平的搅拌。微波对化学反应的影响作用非常复杂,一般认为反应物分子吸收了微波能量,提高了分子运动速度,致使分子运动杂乱无章,导致熵的増加,降低了反应活化能。凝聚液态物质在微波场中的行为与其自身的极性密切相关,也就是与物质的偶极矩在电场中的极化过程密切相关。物质的介电常数越大,吸收微波的能力越强,在相同时间内的升温越大。在微波场中,能量在体系内部直接转化,水和醇类都有过热的现象出现。在过热区域内,局部温度过高,使得反应更加容易进行,从而提高了反应速度;同时,微波对羟基的极化,使得羟基的反应活性大大增加,从而降低了反应活化能,提高了反应速度。微波加热具有加热速度快,加热均勻,无温度梯度,无滞后效应,物质升温迅速,能量利用效率高等特点。微波水热法是把传统的水热法与微波加热结合起来,兼具微波的独特性和水热法本身的优势,该方法可大大缩短反应时间,反应温度也有所下降,从而在反应过程中能以更低的温度和更短的时间进行晶核的形成和生长。反应温度和时间的降低,既加快了化学反应速率,又降低了能耗,限制了产物微晶粒的进ー步长大,有利于制备超细粉体材料,是ー种有较大应用潜力的新方法。

发明内容
本发明提供了一种制备空心微球结构勃姆石超细粉体的方法及装置,g在解决现有技术提供的水热法制备不同形貌勃姆石的不足,当前水热方法存在反应时间长,需要长时间维持反应温度,能耗较高,反应机理尚不十分明确,生产效率低下的问题。本发明的目的在于提供一种制备空心微球结构勃姆石超细粉体的方法,该方法包括以下步骤将分析纯的Al2(SO4)3 · 18H20溶于去离子水中,制得Al3+浓度为O. I O. 5mol/L的透明溶液A ;加入一定量的沉淀剂,继续搅拌半小吋,制得透明溶液B ;将溶液B倒入微波水热反应仪器中,填充度控制在65 80%,水热温度控制在140 210°C,反应40 240分钟,反应结束后自然冷却到室温;
将沉淀产物以4000转/分钟的转速离心分离,分别用去离子水和无水こ醇洗涤,并置于80 100°C的真空干燥箱内干燥4 8小时,获得空心微球结构勃姆石超细粉体。进ー步,该方法中可采用尿素作为沉淀剂。进ー步,将微波水热反应仪器中的沉淀产物以4000转/分钟的转速离心分离后,先用去离子水洗涤三次,然后用无水こ醇洗涤三次。本发明的另一目的在于提供一种制备空心微球结构勃姆石超细粉体的装置,该装置包括磁力搅拌器、微波水热反应仪器、离心机、真空干燥箱;所述磁力搅拌器用于溶解原料,配制溶液;所述微波水热反应仪器用于产物的制备;所述离心机用于产物的离心分离;所述真空干燥箱用于离心后样品的干燥。进ー步,所述微波水热反应仪器由微波水热反应釜和温压双控微波水热反应仪构成,所述温压双控微波水热反应仪用于加热微波水热反应釜,使微波水热反应釜中的物料达到并維持在指定的反应温度。进ー步,所述微波水热反应釜由内胆和外罐构成,所述内胆放置于所述外罐的内部;所述内胆用于容纳反应物料,所述外罐用于密封内胆,并确保内胆中的物料在反应过程中不泄露。进ー步,所述内胆采用聚四氟こ烯材质制成,所述外罐采用聚醚醚酮复合材料制成。本发明提供的制备空心微球结构勃姆石超细粉体的方法及装置,将分析纯的Al2(SO4)3 · 18H20加入溶解去离子水中,在磁力搅拌器上搅拌,制得Al3+浓度为O. I O. 5mol/L的透明溶液A ;加入一定量的沉淀剂,继续搅拌半小时,制得透明溶液B ;将溶液B倒入聚四氟こ烯材质的微波水热反应釜中的内胆中,填充度控制在65 80%,密封微波水热反应釜,将其放入温压双控微波水热反应仪中,将水热温度控制在140 210°C,反应40 240分钟,反应结束后自然冷却到室温;最后打开微波水热反应釜,将沉淀产物以4000转/分钟的转速离心分离,用去离子水洗涤后,再用无水こ醇洗涤,使产物颗粒间疏松,并置于80 100°C的真空干燥箱内干燥4 8小时,获得空心微球结构勃姆石超细粉体;由于制备勃姆石超细粉体反应在液相中一次完成,原料价廉易得,不需要使用添加剤,后处理过程简单,制备的产物形貌规则,分散均匀,并且利用微波水热法比传统的水热法可缩短反应时间,降低能量消耗,制备成本低,具有较强的推广与应用价值。


图I是本发明实施例提供的制备空心微球结构勃姆石超细粉体的微波水热方法的实现流程图;图2是本发明实施例提供的制备空心微球结构勃姆石超细粉体的装置的结构框图。图中11、磁力搅拌器;12、微波水热反应仪器;121、微波水热反应釜;122、温压双控微波水热反应仪;13、离心机;14、真空干燥箱。
具体实施例方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进ー步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定发明。图I示出了本发明实施例提供的制备空心微球结构勃姆石超细粉体的微波水热方法的实现流程。
该微波水热方法包括以下步骤在步骤SlOl中,将分析纯的Al2 (SO4) 3 ·18Η20溶解到去离子水中,制得Al3+浓度为O. I O. 5mol/L的透明溶液A ;在步骤S102中,加入一定量的沉淀剂,继续搅拌半小时,制得透明溶液B ;在步骤S103中,将溶液B倒入微波水热反应仪器中,填充度控制在65 80%,水热温度控制在140 210°C,反应40 240分钟,反应结束后自然冷却到室温;在步骤S104中,将沉淀产物以4000转/分钟的转速离心分离,分别用去离子水和无水こ醇洗涤,并置于80 100°C的真空干燥箱内干燥4 8小吋,获得空心微球结构勃姆石超细粉体。在本发明实施例中,微波水热方法中可采用尿素作为沉淀剂。在本发明实施例中,将微波水热反应仪器中的沉淀产物以4000转/分钟的转速离心分离后,先用去离子水洗涤三次,然后用无水こ醇洗涤三次。图2示出了本发明实施例提供的制备空心微球结构勃姆石超细粉体的装置的结构。为了便于说明,仅示出了与本发明相关的部分。该装置包括磁力搅拌器11、微波水热反应仪器12、离心机13、真空干燥箱14 ;磁力搅拌器11用于溶解原料,配制溶液;微波水热反应仪器12用于产物的制备;离心机13用于产物的离心分离;真空干燥箱14用于离心后样品的干燥。在本发明实施例中,微波水热反应仪器12包括微波水热反应釜121、温压双控微波水热反应仪122 ;微波水热反应釜121由内胆和外罐构成,使用过程中,微波水热反应釜121中的内胆放置于外罐内。在本发明实施例中,微波水热反应釜121中的内胆用于容纳反应物料,外罐用于密封内胆,并确保内胆中的物料,在反应过程中不泄露。在本发明实施例中,微波水热反应釜121中的内胆采用聚四氟こ烯材质制成,夕卜罐采用聚醚醚酮复合材料制成。温压双控微波水热反应仪122用于加热微波水热反应釜121,使内胆中的物料达到并维持在指定的反应温度。
在本发明实施例中,微波水热反应釜121放置于温压双控微波水热反应仪122中进行加热。下面结合附图及具体实施例对本发明的应用原理作进ー步描述。如图I及图2所示,将分析纯的Al2(SO4)3 · 18H20加入去离子水中,在磁力搅拌器11上搅拌上使其溶解,制得Al3+浓度为O. I O. 5mol/L的透明溶液A ;加入一定量的沉淀剂,继续搅拌半小吋,制得透明溶液B ;将透明溶液B倒入聚四氟こ烯材质的微波水热反应釜121中的内胆中,填充度控制在65 80%,密封微波水热反应釜121,将其放入温压双控微波水热反应仪122中,将水热温度控制在140 210°C,反应40 240分钟,反应结束后自然冷却到室温;打开微波水热反应釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离 心分离,用去离子水洗涤后,再用无水こ醇洗涤,使产物颗粒间疏松,并置于80 100°C的真空干燥箱14内干燥4 8小吋,即可获得空心微球结构勃姆石超细粉体。实施例I :首先,将分析纯的Al2(SO4)3 ·18Η20加入去离子水中,在磁力搅拌器11上搅拌上使其溶解,制得Al3+浓度为O. lmol/L的透明溶液A ;其次,加入一定量的分析纯的尿素作为沉淀剂,尿素的加入量为沉淀全部Al3+所需理论需求量的150%,继续搅拌半小吋,制得透明溶液B;然后,将溶液B倒入聚四氟こ烯材质的微波水热反应釜121中的内胆中,填充度控制在80 %,密封微波水热反应釜121,将其放入MDS-6型温压双控微波水热反应仪122中,将水热温度控制在210 C,反应40分钟,反应结束后自然冷却到室温;最后打开微波水热釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离心分离,用去离子水洗涤三次后,再用无水こ醇洗涤三次,使产物颗粒间疏松,并置于80°C的真空干燥箱14内干燥8小吋,即可获得空心微球结构勃姆石超细粉体;实施例2 :首先,将分析纯的Al2(SO4)3 · 18H20加入去离子水中,在磁力搅拌器11上搅拌上使其溶解,制得Al3+浓度为O. 2mol/L的透明溶液A ;其次,加入一定量的分析纯的尿素作为沉淀剂,尿素的加入量为沉淀全部Al3+所需理论需求量的200%,继续搅拌半小时,制得透明溶液B;然后,将溶液B倒入聚四氟こ烯材质的微波水热反应釜121中的内胆中,填充度控制在80%,密封微波水热反应釜121,将其放入MDS-6型温压双控微波水热反应仪122中,将水热温度控制在200°C,反应60分钟,反应结束后自然冷却到室温;最后打开微波水热反应釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离心分离,用去离子水洗涤三次后,再用无水こ醇洗涤三次,使产物颗粒间疏松,并置于90°C的真空干燥箱14内干燥6小时,获得空心微球结构勃姆石超细粉体;实施例3 :首先,将分析纯的Al2 (SO4) 3 · 18H20加入去离子水中,在磁力搅拌器11上搅拌上使其溶解,制得Al3+浓度为O. 3mol/L的透明溶液A ;其次,加入一定量的分析纯的尿素作为沉淀剂,尿素的加入量为沉淀全部Al3+所需理论需求量的250 %,继续搅拌半小吋,制得透明溶液B;然后,将溶液B倒入聚四氟こ烯材质的微波水热釜121内胆中,填充度控制在75%,密封微波水热反应釜121,将其放入MDS-6型温压双控微波水热反应仪122中,将水热温度控制在180°C,反应90分钟,反应结束后自然冷却到室温;最后打开微波水热反应釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离心分离,用去离子水洗涤三次后,再用无水こ醇洗涤三次,使产物颗粒间疏松,并置于100°C的真空干燥箱14内干燥4小时,获得空心微球结构勃姆石超细粉体;
实施例4 :首先,将分析纯的Al2(SO4)3 ·18Η20加入去离子水中,在磁力搅拌器11上搅拌上使其溶解,制得Al3+浓度为O. 4mol/L的透明溶液A ;其次,加入一定量的分析纯的尿素作为沉淀剂,尿素的加入量为沉淀全部Al3+所需理论需求量的250 %,继续搅拌半小吋,制得透明溶液B;然后,将溶液B倒入聚四氟こ烯材质的微波水热反应釜121中,填充度控制在75%,密封微波水热反应釜121,将其放入MDS-6型温压双控微波水热反应仪122中,将水热温度控制在160°C,反应120分钟,反应结束后自然冷却到室温;最后打开微波水热反应釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离心分离,用去离子水洗涤三次后,再用无水こ醇洗涤三次,使产物颗粒间疏松,并置于100°C的真空干燥箱14内干燥5小时,获得空心微球结构勃姆石超细粉体;实施例5 :首先,将分析纯的Al2(SO4)3 · 18H20加入去离子水中,在磁力搅拌器11上搅拌上使其溶解,制得Al3+浓度为O. 2mol/L的透明溶液A ;其次,加入一定量的分析纯的尿素作为沉淀剂,尿素的加入量为沉淀全部Al3+所需理论需求量的300%,继续搅拌半小时,制得透明溶液B;然后,将溶液B倒入聚四氟こ烯材质的微波水热反应釜121中的内胆中,填充度控制在70%,密封微波水热反应釜121,将其放入MDS-6型温压双控微波水热反应仪122中,将水热温度控制在140°C,反应180分钟,反应结束后自然冷却到室温;最后打开微波水热反应釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离心分离,用去离子水洗涤三次后,再用无水こ醇洗涤三次,使产物颗粒间疏松,并置于80°C的真空干燥箱14内干燥7小时,获得空心微球结构勃姆石超细粉体;实施例6 :首先,将分析纯的Al2(SO4)3 · 18H20加入去离子水中,在磁力搅拌器11上搅拌上使其溶解,制得Al3+浓度为O. lmol/L的透明溶液A ;其次,加入一定量的分析纯的尿素作为沉淀剂,尿素的加入量为沉淀全部Al3+所需理论需求量的200%,继续搅拌半小时,制得透明溶液B;然后,将溶液B倒入聚四氟こ烯材质的微波水热反应釜121中的内胆中,填充度控制在75%,密封微波水热反应釜121,将其放入MDS-6型温压双控微波水热反应仪122中,将水热温度控制在180°C,反应90分钟,反应结束后自然冷却到室温;最后打开微波水热反应釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离心分离,用去离子水洗涤三次后,再用无水こ醇洗涤三次,使产物颗粒间疏松,并置于90°C的真空干燥箱14内干燥6小时,获得空心微球结构勃姆石超细粉体。本发明实施例提供的制备空心微球结构勃姆石超细粉体的方法及装置,将分析纯的Al2 (SO4) 3 · 18H20加入溶解去离子水中,在磁力搅拌器11上搅拌,制得Al3+浓度为O. I
O.5mol/L的透明溶液A ;加入一定量的沉淀剂,继续搅拌半小时,制得透明溶液B ;将溶液B倒入聚四氟こ烯材质的微波水热反应釜121中的内胆中,填充度控制在65 80%,密封微波水热反应釜121,将其放入温压双控微波水热反应仪122中,将水热温度控制在140 210°C,反应40 240分钟,反应结束后自然冷却到室温;最后打开微波水热反应釜121,将沉淀产物转入离心机13,以4000转/分钟的转速离心分离,用去离子水洗涤后,再用无水こ醇洗漆,使产物颗粒间疏松,并置于80 100°C的真空干燥箱14内干燥4 8小吋,获得空心微球结构勃姆石超细粉体;由于制备勃姆石超细粉体反应在液相中一次完成,原料价廉易得,不需要使用添加剤,后处理过程简单,制备的产物形貌规则,分散均匀,利用微波水热法比传统的水热法可缩短反应时间,降低能量消耗,制备成本低,具有较强的推广与应用价值。、
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替 换和改进等,均应包含在本发明的保护范围之内。
权利要求
1.一种制备空心微球结构勃姆石超细粉体的方法,其特征在于,该方法包括以下步骤 将分析纯的Al2(SO4)3 · 18H20溶于去离子水中,制得Al3+浓度为O. I O. 5mol/L的透明溶液A; 加入一定量的沉淀剂,继续搅拌半小吋,制得透明溶液B ; 将溶液B倒入微波水热反应仪器中,填充度控制在65 80%,水热温度控制在140 210°C,反应40 240分钟,反应结束后自然冷却到室温; 将沉淀产物以4000转/分钟的转速离心分离,分别用去离子水和无水こ醇洗涤,井置于80 100°C的真空干燥箱内干燥4 8小时,获得空心微球结构勃姆石超细粉体。
2.如权利要求I所述的方法,其特征在于,该方法中可采用尿素作为沉淀剂。
3.如权利要求I所述的方法,其特征在于,将微波水热反应仪器中的沉淀产物以4000转/分钟的转速离心分离后,先用去离子水洗涤三次,然后用无水こ醇洗涤三次。
4.一种制备空心微球结构勃姆石超细粉体的装置,其特征在于,该装置包括磁力搅拌器、微波水热反应仪器、离心机、真空干燥箱;所述磁力搅拌器用于溶解原料,配制溶液;所述微波水热反应仪器用于产物的制备;所述离心机用于产物的离心分离;所述真空干燥箱用于离心后样品的干燥。
5.如权利要求书4所述的装置,其特征在于,所述微波水热反应仪器由微波水热反应釜和温压双控微波水热反应仪构成,所述温压双控微波水热反应仪用于加热微波水热反应釜,使微波水热反应釜中的物料达到并維持在指定的反应温度。
6.如权利要求书5所述的装置,其特征在于,所述微波水热反应釜由内胆和外罐构成,所述内胆放置于所述外罐的内部;所述内胆用于容纳反应物料,所述外罐用于密封内胆,并确保内胆中的物料在反应过程中不泄露。
7.如权利要求书6所述的装置,其特征在于,所述内胆采用聚四氟こ烯材质制成,所述外罐采用聚醚醚酮复合材料制成。
全文摘要
本发明属于化工生产技术领域,提供了一种制备空心微球结构勃姆石超细粉体的方法及装置,将分析纯的Al2(SO4)3·18H2O溶于去离子水中,制得Al3+浓度为0.1~0.5mol/L的溶液A;加入一定量的沉淀剂,制得溶液B;将溶液B倒入微波水热反应仪器中,填充度控制在65~80%,水热温度控制在140~210℃,反应40~240分钟;将沉淀产物以4000转/分钟的转速离心分离,依次用去离子水及无水乙醇洗涤,并置于80~100℃的真空干燥箱内干燥4~8小时;由于制备勃姆石超细粉体反应在液相中一次完成,原料价廉易得,不需要添加剂,后处理过程简单,产物形貌规则,反应时间短,降低了能量消耗及制备成本。
文档编号C01F7/02GK102730727SQ20121022756
公开日2012年10月17日 申请日期2012年7月2日 优先权日2012年7月2日
发明者吴秀勇 申请人:泰山医学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1