专利名称:一种用于场效应晶体管的单一手性单壁碳纳米管的分离方法
技术领域:
本发明属于碳纳米管技术领域,具体涉及一种用于场效应晶体管,通过手性和/或直径分离单壁碳纳米管的分离方法。
背景技术:
自1993年报道了单壁碳纳米管(SWNT)以来,SWNT以其独特的一维纳米结构,优异的电子学、光学、热力学等性质被认为是制备新一代集成电路的理想候选材料。它最重要的应用之一是用来制备单壁碳纳米管场效应晶体管(FET),主要是因为SWNT中载流子的传输是一维的,载流子散射的相空间减小,反向散射受到强烈抑制,因而具有极高的载流子迁移率。而高载流子迁移率则使得工作电流大,延迟时间短,因此,SWNT作为导电沟道将使得FET的速度大大的提高。另外,SffNT的直径通常在I 2 nm范围,载流子被限域在非常狭小的空间范围内运动,因此可以有效地抑制短沟效应,使得理想的静电学控制成为可能。理论上SWNT可看作是由单层石墨烯片层按照一定的晶体学矢量方向卷曲而成的无缝空心圆筒,不同的卷曲方向和管径决定了不同种类的SWNT,这可由卷曲矢量Ch=Ha^ma2 = (n, m)来表征。其中B1和a2为石墨层六角网格的基矢,η和m均为整数,代表所有可能的螺旋矢量。当Ch和的夹角在O 30°C范围内时,任一组整数(n,m)都对应一种卷曲方式,形成不同的结构。SWNT中大约33%是金属型,67%是半导体型。而在半导体型SWNT中也包含了不同手性的碳管。半导体型SWNT由于具有较高的载流子迁移率而使其在FET方面的应用被寄予厚望。然而,由于金属性SWNT的混入使得FET的场迁移率以及on/off值大大降低,与半导体性SWNT的相互作用也会使半导体管发生近红外荧光发生淬灭,另外,不同手性的半导体性SffNT混合也会降低其在器 件中的灵敏度,从而限制了其在FET中的应用。因此,为了获得最佳的器件性能,半导体性SWNT带隙分布即直径分布越窄越好,因为直径分布窄可以减少SWNT的手性种类,从而获得具有特定手性的半导体性SWNT。要获得单一手性的半导体性SWNT,则需要选择性制备半导体性碳管,或者从混合物中把半导体性碳管分离出来。鉴于控制生长上的难度,一般采用金属性和半导体性SWNT的分离来实现。SWNT分离研究的主要理论依据是基于不同手性碳管具有的不同化学与电子结构,及其由此决定的微弱的物理和化学性质差异。目前用于分离SWNT的方法有DNA缠绕色谱法,密度梯度离心法(DGU),介电泳法,琼脂糖凝胶电泳法以及选择性化学修饰法等。利用前两种分离方法,已经有研究人员得到单一手性的SWNT,但是利用DNA缠绕色谱法,实验过程比较繁琐、低效且成本高,另外碳管表面包裹的DNA片段也难以去除从而会影响碳管的电子学性能。用DGU方法来量产单一手性半导体性SWNT,该方法具有较好的前景。
发明内容
本发明的目的在于提供一种操作简单,低成本,效率高,可规模化生产的用于场效应晶体管的单一手性半导体性单壁碳纳米管的分离方法,以克服现有DGU分离方法中的各种缺点和不足。本发明提供的单一手性半导体性单壁碳纳米管的分离方法及其在场效应晶体管中的应用,具体步骤如下:
(I)碘吸附单壁碳纳米管原液的制备
将IOmg原料单壁碳纳米管(SWNT)以及30mg碘颗粒放入容器中在30°C下搅拌l_20h,经过充分的吸附,SffNT表面吸附的碘含量在0.5-10wt%范围内;而后将吸附碘的SWNT分散在质量分数为0.2-2%的十二烷基硫酸钠(SDS)溶液中制得1-SWCNTs / SDS分散液,用于密度梯度离心过程。(2)非线性密度梯度离心法制备单一手性半导体性SWNT
非线性密度梯度液是通过在聚碳酸酯离心管中从上往下铺2.0, 1.0, 0.5以及0.5cm的质量体积浓度为17.5,22.5,32.5以及40%的碘克沙醇溶液而制得的;每层碘克沙醇溶液中均含有与1-SWCNTs / SDS分散液中一致浓度的SDS ;然后将0.2-0.5ml的1-SffCNTs / SDS分散液加入到密度梯度柱的顶端,在离心力为150000-250000g下超速离心10-20h,经过离心后,离心管中出现不同的色带,用微量移液管将不同色带的SWNT溶液取出,用聚四氟乙烯滤膜过滤,并用乙醇进行充分洗涤则可得到单一手性半导体性SWNT。(3)场效应晶体管的制备· 将制备所得的单一手性半导体性SWNT重新分散在质量分数为1%的SDS水溶液中,并将其旋涂在P型硅片(其上覆盖一层厚300nm的二氧化硅层)上,运用光刻技术刻蚀源/漏电极区,通过电子束蒸发制备金属源/漏电极将SWNT网络连接起来形成单壁碳纳米管场效应晶体管(FET),随后将制得的FET在氩气气氛中220°C下退火,使得金属电极和碳管的接触更好;用Keithley参数分析仪来表征FET器件的性能。本发明利用DGU方法进行分离,其原理与SWNT化学结构直接相关的浮游密度有关,浮游密度主要是由管径决定的。金属性和半导体性SWNT在溶液中的密度几乎相同,只有存在足够大的密度差时才能进行分离。由于DGU发生在水溶液中,并且碳管具有较强的疏水特性,要实现分离必须采用表面活性剂分散碳管,当在表面活性剂中分散以后,由于表面活性剂吸附在SWNT表面,使金属性和半导体性SWNT的密度有所增加,导致它们的密度不同,即金属性的和半导体性的碳管与表面活性剂结合的多少不同。在密度梯度溶剂中经过长时间的离心作用,不同管径的SWNT会在不同密度梯度环境中逐渐接近各自的平衡密度,从而达到分离。但是对于管径相近的SWNT来说浮游密度相近,DGU分离后不同色层会交叠在一起不利于得到单一手性的SWNT,因此,在本发明中利用不同手性的SWNT吸碘量的不同进一步增加碳管之间的密度差,只有吸附了适量的碘颗粒才能使不同色层在离心管中具有适当的较大的间距从而便于提取单一手性的半导体性SWNT。本发明中SWNT吸附的碘含量是通过在KI溶液中用硫代硫酸钠滴定而计算所得的。将DGU分离后过滤所得的单一手性半导体性SWNT放在50°C真空烘箱中过夜以完全去除吸附在SWNT上的碘。本发明中SWNT的密度是通过其与在碘克沙醇溶液中的折射率之间的关系测定其在碘克沙醇溶液的折射率来确定的。本发明中FET中的沟道长5um,宽5um。而所用的探测电极是金/钛(80nm/2nm)。
本发明中为了提高SWNT膜的均匀性,在旋涂SWNT分散液前,用IOOW的02等离子体刻蚀沟道3min,这有效地抑制了咖啡环效应。而所得的SWNT膜的电阻小于I ΜΩ,沟道中碳管密度大约在20-30 tubes/ μ m2。本发明的优点在于利用碘增强的非线性密度梯度离心法来分离单壁碳纳米管,在不破坏SWNT本身结构的同时通过控制密度梯度液、碘吸附量、离心力以及离心时间等条件有效的获得单一手性半导体性SWNT,纯度可达91%。此外用所得碳管制备的FET的载流子迁移率可达21.7 Cm2V4iT1, on/off比值则可达2xl04,同样说明了分离的有效性。该方法具有简单易操作、低成本、易于放大等特点,可规模化生产,具有良好的工业应用前景。
图1,其中,a、b、c、d 分别为用 SWNT/SDS,碘吸附量为 0.8wt%、2.2wt% 以及 5.5wt%的1-SWCNTs / SDS分散液经D⑶分离所得离心管的实物图,e为用碘吸附量为2.2wt%的1-SffCNTs / SDS分散液分离所得的离心管的放大图,可以看到已经分离成明显的不交叠的四个色层,由此可知仅SWNT原料在SDS中的分散液在DGU后大致分成三层,各色层之间界限模糊且有交叠,并不能进行有效地分离,而适量吸附典颗粒的SWNT则可使各色层进行有效地分离从而得到单一手性的SWNT。由此可知,过量的碘吸附则会使大部分SWNT沉淀降低了分离的效率,而过少的碘吸附则又会使色层重叠,因此,适量的碘吸附对于分离非常重要。图2,其中A为在离心力220000g,离心时间15h下离心前后的密度图,可知S-型密度梯度线在1.08到1.10 g cm_3之间浮游密度相差较小,而在1.10-1.16 g cm_3之间则有一个较陡的斜率,B为碘吸附量为2.2wt%的SWNT分离后所得单一手性的SWNT的密度梯度图,由图可知SWNT碳管的密度分布刚好在S-型密度梯度线的陡斜率区之间,从而加大了各色层的距离,有效的进行了单一手性碳管的分离。
图3,紫外-可见光-近红外吸收光谱,黑线代表理想纯(6,5) SWNT的光谱图,红线代表碘吸附量为2.2wt%的SWNT经DGU分离所得(6,5) SffNT的光谱图,后者与前者的面积比值即为所得碳管的纯度,通过计算可知纯度较高,达91.2%。图4,为碘吸附量为2.2wt%的SWNT经D⑶分离所得(6,5) SffNT的光致发光激发光谱,从另一个侧面可知所得的纯度较高。几乎没有别的手性的碳管。图5,为所制备的FET器件的示意图,沟道长5um,宽5um,介电层为厚度300nm的二氧化娃层。源/漏极为金/钛(80nm/2nm)。图6,为用碘吸附量为2.2wt%的SWNT经D⑶分离所得(6,5) SffNT制备FET后的Ids-Vgs图,可知器件的on/off值达2xl04,具有较好的性能。
具体实施例方式具体的制备过程如下:
(I)碘吸附单壁碳纳米管原液的制备
将IOmg原料单壁碳纳米管以及30mg碘颗粒放入容器中在30°C下搅拌5h,经过充分的吸附,SffNT表面吸附的碘含量为2.lwt%。而后将吸附碘的SWNT分散在质量分数为2%的十二烷基硫酸钠(SDS)溶液中制得1-SWCNTs / SDS分散液用于密度梯度离心过程。
(2)非线性密度梯度离心法制备单一手性半导体性SWNT
非线性密度梯度液是通过在聚碳酸酯离心管中从上往下铺2.0, 1.0, 0.5以及0.5cm的质量体积浓度为17.5,22.5,32.5以及40%的碘克沙醇溶液而制得的。每层碘克沙醇溶液中均含有2wt%的SDS。然后将0.3ml的1-SWCNTs / SDS分散液加入到密度梯度柱的顶端,在离心力为220000g下超速离心15h,经过离心后,离心管中出现4层不同的色带,分别为紫色、蓝色、绿色以及红色,用微量移液管将不同色带的SWNT溶液取出,用聚四氟乙烯滤膜过滤,并用乙醇进行充分洗涤后在50°C真空烘箱中过夜则可得到单一手性半导体性SffNT0(3)场效应晶体管的制备
将制备所得的单一手性半导体性SWNT重新分散在质量分数为1%的SDS水溶液中,并将其旋涂在P型硅片(其上覆盖一层厚300nm的二氧化硅层)上,运用光刻技术刻蚀源/漏电极区,通过电子束蒸发制备金属源/漏电极即金/钛(80nm/2nm)将SWNT网络连接起来形成FET,随后将制得的FET在氩气气氛中220°C下退火使得金属电极和碳管的接触更好。用Keithley参数分析仪来表征FET器 件的性能,载流子迁移率可达21.7 cmVs^1, on/off比值则可达2xl04。
权利要求
1.一种用于场效应晶体管的单一手性单壁碳纳米管的分离方法,其特征在于具体步骤如下: (1)碘吸附单壁碳纳米管原液的制备 将IOmg原料单壁碳纳米管SWNT以及30mg碘颗粒放入容器中在30°C下搅拌l_20h,经过充分的吸附,SffNT表面吸附的碘含量在0.5-10wt%范围内;而后将吸附碘的SWNT分散在质量分数为0.2-2%的十二烷基硫酸钠SDS溶液中制得1-SWCNTs/SDS分散液,用于密度梯度离心过程; (2)非线性密度梯度离心法制备单一手性半导体性SWNT 非线性密度梯度液是通过在聚碳酸酯离心管中从上往下铺2.0,1.0, 0.5以及0.5cm的质量体积浓度为17.5,22.5,32.5以及40%的碘克沙醇溶液而制得的;每层碘克沙醇溶液中均含有与1-SWCNTs/SDS分散液中一致浓度的SDS ;然后将0.2-0.5ml的1-SWCNTs/SDS分散液加入到密度梯度柱的顶端,在离心力为150000-250000g下超速离心10-20h,经过离心后,离心管中出现不同的色带,用微量移液管将不同色带的SWNT溶液取出,用聚四氟乙烯滤膜过滤,并用乙醇进行充分洗涤则可得到单一手性半导体性SWNT ; (3)场效应晶体管的制备 将制备所得的单一手性半导体性SWNT重新分散在质量分数为1%的SDS水溶液中,并将其旋涂在P型硅片上,运用光刻技术刻蚀源/漏电极区,通过电子束蒸发制备金属源/漏电极将SWNT网络连接起来形成单壁碳纳米管场效应晶体管FET,随后将制得的FET在氩气气氛中220°C下退火,使得金属电极和碳管的接触更好;用Keithley参数分析仪来表征FET器件的性能; 所述P型娃片上覆盖有一层厚300nm的二氧化娃层。
2.根据权利要求1所述的 用于场效应晶体管的单一手性单壁碳纳米管的分离方法,其特征在于SWNT吸附的碘含量是通过在KI溶液中用硫代硫酸钠滴定而计算所得的;将离心分离后过滤所得的单一手性半导体性SWNT放在50°C真空烘箱中过夜以完全去除吸附在SffNT上的碘颗粒。
3.根据权利要求1所述的用于场效应晶体管的单一手性单壁碳纳米管的分离方法,其特征在于SWNT的密度是通过其与在碘克沙醇溶液中的折射率之间的关系测定其在碘克沙醇溶液的折射率来确定的。
4.根据权利要求1所述的用于场效应晶体管的单一手性单壁碳纳米管的分离方法,其特征在于场效应晶体管中的沟道长5um,宽5um ;而所用的探测电极是金/钛,相应尺寸为80nm/2nmo
5.根据权利要求1所述的用于场效应晶体管的单一手性单壁碳纳米管的分离方法,其特征在于为了提高SWNT膜的均匀性,在旋涂SWNT分散液前,用100W的O2等离子体刻蚀沟道3min,有效地抑制了咖啡环效应;而所得的SWNT膜的电阻小于I ΜΩ,沟道中碳管密度大约在 20-30 tubes/ μ m2。
全文摘要
本发明属于单壁碳纳米管技术领域,具体为一种用于场效应晶体管,通过手性和/或直径分离单壁碳纳米管的分离方法。该方法包括将适量的单壁碳纳米管与碘颗粒充分混合均匀吸附后,再加入到十二烷基硫酸钠溶液中分散得到碘吸附的碳管水分散液,利用不同手性的单壁碳纳米管吸碘量的不同进而增加碳管之间的密度差。在高速离心机的辅助下,使不同碳管在离心管中经过非线性密度梯度离心后具有适量的较大的间距从而便于提取半导体性单壁碳纳米管。本发明具有较好的性能。该方法具有简单易操作、低成本、易于放大等特点,可规模化生产,具有良好的工业应用前景。
文档编号C01B31/00GK103112839SQ20131005637
公开日2013年5月22日 申请日期2013年2月22日 优先权日2013年2月22日
发明者张玲莉, 汪伟志 申请人:复旦大学