一种油页岩干馏气化学链制氢联合发电系统的制作方法
【专利摘要】本实用新型公开了一种油页岩干馏气化学链制氢联合发电系统。所述系统包括依次连接的油页岩破碎筛分单元、油页岩干馏单元、干馏气冷凝回收单元,还包括燃料反应器、蒸汽反应器、发电单元及空气反应器。本实用新型集成油页岩干馏炼油技术和化学链制氢技术,将现有油页岩干馏炼油过程的低热值剩余煤气用于生产高经济价值和高化学价值的氢气,回收干馏气制氢过程中的余热用于发电和产生蒸汽,通过热量集成,实现化学循环过程中的热量平衡,在提高现有油页岩干馏过程中资源利用率和能量效率的同时,较大幅度提高了过程经济效益。
【专利说明】一种油页岩干馏气化学链制氢联合发电系统
【技术领域】
[0001] 本实用新型属于能源与化工【技术领域】,具体涉及一种油页岩干馏气化学链制氢联 合发电系统。
【背景技术】
[0002] 随着我国社会和经济快速发展,对能源需求日益增加。为减少对进口石油的依赖, 我国正积极实施多元化的能源战略以保障能源持续供应。油页岩是一种沉积岩,具有无机 矿物质的骨架,并含有固体有机质,为低热值固体化石燃料。我国油页岩资源十分丰富,储 量达7199亿吨,折合成干馏油品相当于426亿吨,远高于原油探明储量22亿吨。我国不仅 油页岩储量丰富,而且埋藏较浅,均有利于油页岩资源的开发利用。大力发展油页岩炼油技 术有利于缓解我国石油资源供需矛盾,为实现能源多元化提供切实可行的途径。
[0003]目前国内对油页岩的利用技术主要是干馏炼油技术。通过地下开采或露天开采得 到的油页岩,经破碎、筛分,在隔绝空气的条件下,加热到一定温度范围,发生一系列的物理 化学反应,最终生成页岩油、煤气和半焦等。目前国内干馏技术中,抚顺式干馏技术占据着 非常重要的地位。国内共装备了 476台该类的干馏炉,其页岩油产能占我国总量的85%以 上。
[0004] 但是该技术存在一个突出的问题是干馏气的热值低,一般小于3. 35MJ/m3,不能用 作家用煤气,也很难化工利用。在过去作为废气排放,现已用于内燃机燃烧发电。该利用途 径存在以下两方面的问题:一是燃烧发电过程能量效率较低;二是干馏气中含有化学价值 较高的H 2和C0,直接燃烧这两种气体并未能高效利用其化学价值,造成的资源的大量浪费。 除此之外,油页岩炼油过程的经济效益不佳。如何进一步提高油页岩炼油过程经济性能,已 成为页岩油加工行业的瓶颈。 实用新型内容
[0005] 为了克服现有技术的缺点与不足,本实用新型的目的在于提供一种油页岩干馏气 化学链制氢联合发电系统。
[0006] 本实用新型的目的通过下述技术方案实现:
[0007] -种油页岩干馈气化学链制氢联合发电系统,包括油页岩破碎筛分单兀、油页岩 干馏单元和干馏气冷凝回收单元,还包括燃料反应器、蒸汽反应器、发电单元及空气反应 器;
[0008] 所述油页岩破碎筛分单元设有油页岩原料入口、油页岩细颗粒出口及碎屑页岩出 n;
[0009] 所述油页岩干馏单元设有干馏页岩原料入口、干馏气出口、循环气入口和灰渣出 n;
[0010] 所述油页岩破碎筛分单元的油页岩细颗粒出口通过管道与所述油页岩干馏单元 的干馏页岩原料入口连接;
[0011] 所述干馏气冷凝回收单元设有干馏气入口、循环煤气出口、剩余干馏气出口及页 岩油出口;
[0012] 所述油页岩干馏单元的干馏气出口通过管道与所述干馏气冷凝回收单元的干馏 气入口连接,所述干馏气冷凝回收单元的循环煤气出口通过管道与所述油页岩干馏单元的 循环气入口连接;
[0013] 所述燃料反应器设有剩余干馏气原料入口、载氧体原料入口、CO2和N2混合气相物 流出口及被还原载氧体出口;
[0014] 所述干馏气冷凝回收单元的剩余干馏气出口通过管道与所述燃料反应器的剩余 干馏气原料入口连接;
[0015] 所述蒸汽反应器设有还原载氧体原料入口、蒸汽入口、氢气气相物流出口及被部 分氧化载氧体出口;
[0016] 所述空气反应器设有被部分氧化载氧体入口、空气入口、完全氧化载氧体出口及 缺氧空气出口;
[0017] 所述发电单元设有氢气入口、CO2和N2混合气入口、缺氧空气入口、蒸汽出口、氢气 产品出口及电力输出口;
[0018] 所述燃料反应器的被还原载氧体出口通过管道与所述蒸汽反应器的还原载氧体 原料入口连接;所述燃料反应器的CO2和N2混合气相物流出口通过管道与发电单元的CO2 和N2混合气入口相连接;
[0019] 所述蒸汽反应器的氢气气相物流出口通过管道与所述发电单元的氢气入口相连 接;所述蒸汽反应器的被部分氧化载氧体出口通过管道与所述空气反应器的被部分氧化载 氧体入口连接;
[0020] 所述发电单元的蒸汽出口通过管道与所述蒸汽反应器的蒸汽入口连接;
[0021] 所述空气反应器的完全氧化载氧体出口通过管道与所述燃料反应器的载氧体原 料入口连接;所述空气反应器的缺氧空气出口通过管道与所述发电单元的缺氧空气入口连 接。
[0022] 优选的,所述油页岩干馏单元包含预热器、干燥器、干馏反应器、第一气固分离器、 气化反应器、加热反应器、第二气固分离器、集合管和第一换热器;干馏气冷凝回收单元包 含第一冷却器、洗涤塔、第一分流器、气液分离器、分离器、混合装置、第二冷却器以及第二 分流器。
[0023] 所述预热器设有油页岩原料入口,预热器、干燥器和干馏反应器通过管道依次连 接;干馏反应器设有脱水油页岩入口、气化气体入口、热载体原料入口与油气混合物出口; 第一气固分离器设有油气混合物入口、含油气混合物流出口及固体物料出口;干馏反应器 的油气混合物出口通过管道与第一气固分离器的油气混合物入口相连接;第一冷却器设有 高温含油气混合物入口及混合物出口;第一气固分离器的含油气混合物流出口通过管道与 第一冷却器的高温含油气混合物入口相连接;所述洗涤塔设有混合物流入口、洗涤煤气出 口及第一页岩油出口;第一冷却器的混合物出口与洗涤塔的混合物流入口相连接;第二冷 却器设有洗漆煤气入口及冷却洗漆煤气出口;气液分离器设有洗漆煤气入口、第二页岩油 出口及第一净化煤气出口;所述洗涤塔的洗涤煤气出口接入第一分流器,然后分为两个通 道,分别通过管道与第二冷却器的冷却洗涤煤气入口以及气液分离器的洗涤煤气入口相连 接;所述分离器设有物流入口、第三页岩油出口及第二净化煤气出口;第二冷却器的冷却 洗涤煤气出口通过管道与分离器的物流入口相连接;
[0024] 气化反应器设有饱和空气入口、第一水蒸气入口、固体物料入口及气固混合物流 出口;第二气固分离器设有气固混合物流入口、气化气出口和灰渣出口;气化反应器的固 体物料入口通过管道与第一气固分离器的固体物料出口相连接,气化反应器的气固混合物 流出口通过管道与第二气固分离器的气固混合物流入口相连接;所述第一换热器设有燃烧 尾气入口、净化煤气入口、加热循环煤气出口及烟道气出口;第二气固分离器的气化气出口 和第一换热器的加热循环煤气出口经集合管合并后再通过管道与干馏反应器的热载体原 料入口相连接;
[0025] 所述加热反应器设有空气入口、净化煤气入口及燃烧尾气出口;所述分离器的第 二净化煤气出口通入第二分离器后分为两个通道,一通道通过管道与加热反应器的净化煤 气入口相连接,另一通道通过管道与燃料反应器的剩余干馏气原料入口相连接;加热反应 器的燃烧尾气出口通过管道与第一换热器的燃烧尾气入口相连接;第一换热器的净化煤气 入口通过管道与气液分离器的第一净化煤气出口相连接;洗涤塔的第一页岩油出口、气液 分离器的第二页岩油出口和分离器的第三页岩油出口通过混合装置连通合并。
[0026] 上述方案中,所述的第二分流器为流体分流设备,用于根据加热循环煤气所需热 负荷的大小调节分流比,即调节进入所述加热反应器的煤气量和进入所述燃料反应器的煤 气量。
[0027] 优选的,所述发电单元包括0)2和队混合气透平、氢气透平、余热回收装置、氢气压 缩机、第二换热器和闪蒸罐。
[0028] 所述CO2和N2混合气透平设有CO2和N2混合气入口、低压高热(:02和队混合气混 合气出口和第一电力输出端口;所述氢气透平设有氢气入口、氢气出口和第二电力输出端 口;所述余热回收装置设有第一气体入口、第二气体入口、自来水入口、缺氧空气入口、低压 低热COj^PN2混合气出口、低压低热氢气出口和蒸汽出口;所述氢气压缩机设有低压低热氢 气入口和升压氢气出口;
[0029] 燃料反应器的CO2和N2混合气相物流出口通过管道与CO2和N2混合气透平的CO2 和N2混合气入口相连接;所述CO2和N2混合气透平的低压高热CO2和N2混合气混合气出口 通过管道与余热回收装置的第一气体入口相连接;蒸汽反应器的氢气气相物流出口通过管 道与所述氢气透平的氢气入口相连接;氢气透平的氢气出口与余热回收装置的第二气体入 口相连接;余热回收装置的低压低热氢气出口通过管道与氢气压缩机的低压低热氢气入口 相连接;氢气压缩机的升压氢气出口接入所述第二换热器,再与闪蒸罐连接;所述闪蒸罐 设有氢气产品出口;余热回收装置的蒸汽出口通过管道与蒸汽反应器的蒸汽入口相连接。
[0030] 采用上述油页岩干馏气化学链制氢联合发电系统进行制氢联合发电的工艺,包括 以下步骤:
[0031] 将油页岩原料通过油页岩原料入口输入油页岩破碎筛分单元,进行破碎筛分,将 破碎筛分所得的油页岩颗粒经油页岩颗粒出口通过管道输入油页岩干馏单元,不符合干馏 粒径要求的碎屑页岩经碎屑页岩出口排出;
[0032] 所述油页岩颗粒在油页岩干馏单元中发生干馏反应,得到干馏气和灰渣,灰渣经 灰渣出口排出系统,干馏气经干馏气出口通过管道进入干馏气冷凝回收单元;
[0033] 所述干馏气在干馏气冷凝回收单元中分离得到循环煤气、页岩油和剩余干馏气, 循环煤气经循环煤气出口通过管道返回到油页岩干馏单元反应,剩余干馏气经剩余干馏气 出口进入燃料反应器中,页岩油经页岩油出口排出收集;
[0034] 所述剩余干馏气在燃料反应器中与载氧体原料进行还原反应,生成C02、H2O及被 还原载氧体;所产生的被还原载氧体经被还原载氧体出口通过管道进入蒸汽反应器与蒸汽 反应生产氢气,得到氢气气相物流,被还原载氧体被部分氧化得到被部分氧化载氧体;氢气 气相物流经氢气气相物流出口通过管道进入发电单元;被部分氧化载氧体经被部分氧化载 氧体出口通过管道进入空气反应器,与第一饱和空气发生反应使被部分氧化载氧体完全氧 化,得到载氧体原料,载氧体原料经完全氧化载氧体出口通过管道进入燃料反应器中循环 反应;上述工序形成一个循环过程;蒸汽反应器的氢气气相物流经氢气气相物流出口通过 管道进入发电单元,经过透平发电,得到电力和氢气产品;发电单元会产生蒸汽,蒸汽经蒸 汽出口通过管道进入蒸汽反应器中进行反应;空气反应器通过空气入口引入饱和空气,与 被部分氧化载氧体进行氧化反应,剩余的缺氧空气经缺氧空气出口进入发电单元内进行余 热回收,副产蒸汽。
[0035] 优选的,所述破碎筛分所得的油页岩颗粒的粒径为8?75mm ;
[0036] 优选的,所述油页岩干馏单元中干馏反应的温度为500?600°C,压力0. IMPa ;更 优选的,所述油页岩干馏单元中干馏反应的温度为565°C ;
[0037] 优选的,所述油页岩干馏单元的进料中空气和水蒸气的质量比为1. 05?1. 20 ;更 优选的,所述油页岩干馏单元的进料中空气和水蒸气的质量比为1. 13 ;
[0038] 优选的,所述燃料反应器的反应温度为800?900°C,压力为3?3. 5MPa ;更优选 的,所述燃料反应器的反应温度为870°C,反应压力为3MPa ;
[0039] 优选的,所述蒸汽反应器的反应温度为680?750°C,压力为2. 8-3. 5MPa ;更优选 的,所述蒸汽反应器的反应温度为720°C,反应压力为3MPa。
[0040] 优选的,所述载氧体原料为Ni、Cu、Fe或Mn的氧化物;
[0041] 更优选的,所述载氧体原料为Fe2O3,所述被还原载氧体为Fe,被部分氧化载氧体 为 Fe304。
[0042] 本实用新型相对于现有技术具有如下的优点及效果:
[0043] (1)本实用新型所述系统可高效合理利用油页岩炼油过程中产生的剩余干馏气, 该气体中的高化学价值的H2和CO利用率约为100%。
[0044] (2)采用本实用新型所述系统进行制氢发电的工艺的能量效率较现有的油页岩干 馏炼油过程高。一方面通过回收蒸汽反应器气相生成物的能量,进行发电;另一方面通过热 集成可实现化学链制氢过程热量平衡。
[0045] (3)采用本实用新型所述系统进行制氢发电可将油页岩干馏炼油过程中多余的干 馏气用于制备高经济价值的氢气。一方面为后序页岩油加氢提质单元提供稳定氢源,降低 了页岩油加氢过程的生产成本;另一方面作为产品输出,极大地提高了油页岩加工行业的 经济收入。本实用新型所述工艺的经济收入较油页岩单纯炼制过程提高了约20%,而总投 资费用和总生产成本约提高了 19%和14%。
[0046] (4)本实用新型集成油页岩干馏炼油技术和化学链制氢技术,优化了资源配置的 同时也提高了过程的经济效益,可为我国油页岩加工行业经济效益不佳问题提供一种解决 方法。
【专利附图】
【附图说明】
[0047] 图1为现有油页岩炼油过程的工艺示意图。其中1为油页岩破碎筛分单元,2为油 页岩干馏单元,3为干馏气冷凝回收单元,4为内燃机发电单元;5?13为物流编号,其中5 为油页岩原料,6为油页岩颗粒,7为干馈气,8为剩余干馈气,9为电力,10为页岩油,11为 循环煤气,12为碎屑页岩,13为灰渔。
[0048] 图2为本实用新型的油页岩干馏气化学链制氢联合发电系统的流程图。其中14 为燃料反应器,15为蒸汽反应器,16为发电单元,17为空气反应器;18-24为物流编号,其中 18为被还原载氧体,19为氢气气相物流,20为氢气产品,21为载氧体原料,22为被部分氧化 载氧体,23为蒸汽,24为第一饱和空气,25为缺氧空气,26为CO 2和N2混合气。其余编号与 图1中相同编号表示相同的操作单元或物流。
[0049] 图3为油页岩干馏过程的工艺流程图。其中48为预热器,49为干燥器,50为干馏 反应器,51为第一气固分离器,52为第一冷却器,53为洗漆塔,54为第一分流器,55为第二 冷却器,56为气液分离器,57为分离器,58为混合装置,59为第二分流器,60为加热反应器, 61为气化反应器,62为第二气固分离器,63为集合管,64为第一换热器;其中27为页岩油 和干馏气混合物,28为冷凝页岩油和干馏气混合物,29为第一洗涤煤气,30为第二洗涤煤 气,31为第一页岩油,32为冷却洗漆煤气,33为第三洗漆煤气,34为第二净化煤气,35为第 三页岩油,36为第二页岩油,37为第三净化煤气,38为燃烧尾气,39为空气,40为第一净化 煤气,41为烟道气,42为固体物流,43为混合循环煤气,44为气化气体,45为混合物流,46 为第二饱和空气,47为脱除水,65为预热油页岩,76为干燥油页岩。其余编号与图1中相同 编号表不相同物流。
[0050] 图4为油页岩干馏气化学链制氢工艺流程图。其中77为CO2和N 2混合气透平,78 为氢气透平,79为余热回收装置,80为氢气压缩机,81为第二换热器,82为闪蒸罐;66?75 为物流编号,其中66为低压高热CO 2和N2混合气,67为低压低热CO2和N2混合气,68为低 压低热氢气,69为升压氢气,70为冷凝氢气,71为液态水,72为热量,73为H 2和H2O混合气, 74为自来水,75为低压H2和H2O混合气。其余编号与图2中相同编号表示相同物流。
【具体实施方式】
[0051] 下面结合实施例对本实用新型作进一步详细的描述,但本实用新型的实施方式不 限于此。
[0052] 现有技术中的油页岩炼制过程的工艺示意图如图1所示,包括依次连接的油页岩 破碎筛分单元1、油页岩干馏单元2、干馏气冷凝回收单元3及内燃机发电单元4 ;油页岩原 料5进入油页岩破碎筛分单元1进行破碎筛分,符合干馏粒径要求的油页岩颗粒6进入油 页岩干馏单元2,而不符合要求的碎屑页岩12排出系统;油页岩颗粒6在油页岩干馏单元 2进行干馏得到干馏气7,干馏气7通入干馏气冷凝回收单元3,而干馏过程中的灰渣13则 排出系统外;干馏气7在干馏气冷凝回收单元3进行冷凝分离,得到的页岩油10排出收集, 得到的循环煤气11通入油页岩干馏单元2循环反应,而剩余干馏气8则进入内燃机发电单 元进行燃烧发电,得到电力9输出系统外。
[0053] 本实用新型油页岩干馏气化学链制氢联合发电系统,流程图如图2所示,包括油 页岩破碎筛分单元1、油页岩干馏单元2、干馏气冷凝回收单元3,还包括燃料反应器14、蒸 汽反应器15、发电单元16及空气反应器17。
[0054] 所述油页岩破碎筛分单元1设有油页岩原料入口、油页岩细颗粒出口及碎屑页岩 出口;
[0055] 所述油页岩干馏单元2设有干馏页岩原料入口、干馏气出口、循环气入口和灰渣 出口;
[0056] 所述油页岩破碎筛分单元1的油页岩细颗粒出口通过管道与所述油页岩干馏单 元2的干馏页岩原料入口连接;
[0057] 所述干馏气冷凝回收单元3设有干馏气入口、循环煤气出口、剩余干馏气出口及 页岩油出口;
[0058] 所述油页岩干馏单元2的干馏气出口通过管道与所述干馏气冷凝回收单元3的干 馏气入口连接,所述干馏气冷凝回收单元3的循环煤气出口通过管道与所述油页岩干馏单 元2的循环气入口连接;
[0059] 所述燃料反应器14设有剩余干馏气原料入口、载氧体原料入口、CO 2和N2混合气 相物流出口及被还原载氧体出口;
[0060] 所述干馏气冷凝回收单元3的剩余干馏气出口通过管道与所述燃料反应器14的 剩余干馏气原料入口连接;
[0061] 所述蒸汽反应器15设有还原载氧体原料入口、蒸汽入口、氢气气相物流出口及被 部分氧化载氧体出口;
[0062] 所述空气反应器17设有被部分氧化载氧体入口、空气入口、完全氧化载氧体出口 及缺氧空气出口;
[0063] 所述发电单元16设有氢气入口、CO2和N2混合气入口、缺氧空气入口、蒸汽出口、 氢气产品出口及电力输出口;
[0064] 所述燃料反应器14的被还原载氧体出口通过管道与所述蒸汽反应器15的还原载 氧体原料入口连接;所述燃料反应器14的CO 2和N2混合气相物流出口通过管道与发电单元 16的CO2和N 2混合气入口相连接;
[0065] 所述蒸汽反应器15的氢气气相物流出口通过管道与所述发电单元16的氢气入口 相连接;所述蒸汽反应器15的被部分氧化载氧体出口通过管道与所述空气反应器17的被 部分氧化载氧体入口连接;
[0066] 所述发电单元16的蒸汽出口通过管道与所述蒸汽反应器15的蒸汽入口连接;[0067] 所述空气反应器17的完全氧化载氧体出口通过管道与所述燃料反应器14的载氧 体原料入口连接;所述空气反应器17的缺氧空气出口通过管道与所述发电单元16的缺氧 空气入口连接。
[0068] 所述油页岩干馏单元2包含预热器48、干燥器49、干馏反应器50、第一气固分离器 51、气化反应器61、加热反应器60、第二气固分离器62、集合管63和第一换热器64 ;干馈气 冷凝回收单兀3包含第一冷却器52、洗漆塔53、第一分流器54、气液分离器56、分离器57、 混合装置58、第二冷却器55以及第二分流器59。
[0069] 所述预热器48设有油页岩原料入口,预热器48、干燥器49和干馏反应器50通过 管道依次连接;干馏反应器50设有脱水油页岩入口、气化气体入口、热载体原料入口与油 气混合物出口;第一气固分离器51设有油气混合物入口、含油气混合物流出口及固体物料 出口;干馏反应器50的油气混合物出口通过管道与第一气固分离器51的油气混合物入口 相连接;第一冷却器52设有高温含油气混合物入口及混合物出口;第一气固分离器51的 含油气混合物流出口通过管道与第一冷却器52的高温含油气混合物入口相连接;所述洗 涤塔53设有混合物流入口、洗涤煤气出口及第一页岩油出口;第一冷却器52的混合物出口 与洗涤塔53的混合物流入口相连接;第二冷却器55设有洗涤煤气入口及冷却洗涤煤气出 口;气液分离器56设有洗涤煤气入口、第二页岩油出口及第一净化煤气出口;所述洗涤塔 53的洗涤煤气出口接入第一分流器,然后分为两个通道,分别通过管道与第二冷却器55的 冷却洗涤煤气入口以及气液分离器56的洗涤煤气入口相连接;所述分离器57设有物流入 口、第三页岩油出口及第二净化煤气出口;第二冷却器55的冷却洗涤煤气出口通过管道与 分离器57的物流入口相连接;
[0070] 气化反应器61设有饱和空气入口、第一水蒸气入口、固体物料入口及气固混合物 流出口;第二气固分离器62设有气固混合物流入口、气化气出口和灰渣出口;气化反应器 61的固体物料入口通过管道与第一气固分离器51的固体物料出口相连接,气化反应器61 的气固混合物流出口通过管道与第二气固分离器62的气固混合物流入口相连接;所述第 一换热器64设有燃烧尾气入口、净化煤气入口、加热循环煤气出口及烟道气出口;第二气 固分离器62的气化气出口分为两个通道,一通道通过管道与干馏反应器50的气化气体入 口直接连接,另一通道和第一换热器的加热循环煤气出口经集合管63合并后再通过管道 与干馏反应器60的热载体原料入口相连接;
[0071] 所述加热反应器60设有空气入口、净化煤气入口及燃烧尾气出口;所述分离器57 的第二净化煤气出口通入第二分离器59后分为两个通道,一通道通过管道与加热反应器 60的净化煤气入口相连接,另一通道通过管道与燃料反应器14的剩余干馏气原料入口相 连接;加热反应器60的燃烧尾气出口通过管道与第一换热器64的燃烧尾气入口相连接; 第一换热器64的净化煤气入口通过管道与气液分离器56的第一净化煤气出口相连接;洗 漆塔53的第一页岩油出口、气液分离器56的第二页岩油出口和分离器57的第三页岩油出 口通过混合装置58连通合并。
[0072] 上述方案中,所述的第二分流器59为流体分流设备,用于根据加热循环煤气所需 热负荷的大小调节分流比,即调节进入所述加热反应器60的煤气量和进入所述燃料反应 器14的煤气量。
[0073] 所述发电单元16包括CO2和N2混合气透平77、氢气透平78、余热回收装置79、氢 气压缩机80、第二换热器81和闪蒸罐82。
[0074] 所述CO2和N2混合气透平77设有(:0 2和队混合气入口、低压高热(:02和队混合气 混合气出口和第一电力输出端口;所述氢气透平78设有氢气入口、氢气出口和第二电力输 出端口;所述余热回收装置79设有第一气体入口、第二气体入口、自来水入口、缺氧空气入 口、低压低热CO 2和N2混合气出口、低压低热氢气出口和蒸汽出口;所述氢气压缩机80设有 低压低热氢气入口和升压氢气出口;
[0075] 燃料反应器14的CO2和N2混合气相物流出口通过管道与CO 2和N2混合气透平77 的CO2和N2混合气入口相连接;所述CO 2和N2混合气透平77的低压高热CO2和N2混合气 混合气出口通过管道与余热回收装置79的第一气体入口相连接;蒸汽反应器15的氢气气 相物流出口通过管道与所述氢气透平78的氢气入口相连接;氢气透平78的氢气出口与余 热回收装置79的第二气体入口相连接;余热回收装置79的低压低热氢气出口通过管道与 氢气压缩机80的低压低热氢气入口相连接;氢气压缩机80的升压氢气出口接入所述第二 换热器81,再与闪蒸罐82连接;所述闪蒸罐82设有氢气产品出口;
[0076]采用本实用新型所述油页岩干馏气化学链制氢联合发电系统进行制氢联合发电 系统的工艺,包括以下步骤:
[0077] 将油页岩原料5通过油页岩原料入口输入油页岩破碎筛分单元1,进行破碎筛分, 将破碎筛分所得的油页岩颗粒6经油页岩颗粒出口通过管道输入油页岩干馏单元2,不符 合干馏粒径要求的碎屑页岩12经碎屑页岩出口排出;
[0078] 所述油页岩颗粒6在油页岩干馏单元2中发生干馏反应,得到干馏气7和灰渣13, 灰渣13经灰渣出口排出系统,干馏气7经干馏气出口通过管道进入干馏气冷凝回收单元 3 ;
[0079]所述干馏气7在干馏气冷凝回收单元3中分离得到循环煤气11、页岩油10和剩余 干馏气8,循环煤气11经循环煤气出口通过管道返回到油页岩干馏单元2反应,剩余干馏气 8经剩余干馏气出口进入燃料反应器14中,页岩油10经页岩油出口排出收集;
[0080] 所述剩余干馏气8在燃料反应器14中与载氧体原料21进行还原反应,生成C02、 H 2O及被还原载氧体18 ;所产生的被还原载氧体18经被还原载氧体出口通过管道进入蒸汽 反应器15与蒸汽23反应生产氢气,得到氢气气相物流19,被还原载氧体18被部分氧化得 到被部分氧化载氧体22 ;氢气气相物流19经氢气气相物流出口通过管道进入发电单元16 ; 被部分氧化载氧体22经被部分氧化载氧体出口通过管道进入空气反应器17,与第一饱和 空气24发生反应使被部分氧化载氧体22完全氧化,得到载氧体原料21,载氧体原料21经 完全氧化载氧体出口通过管道进入燃料反应器14中循环反应;上述工序形成一个循环过 程;蒸汽反应器15的氢气气相物流19经氢气气相物流出口通过管道进入发电单元16,经 过发电,得到电力9和氢气产品20 ;发电单元16会产生蒸汽23,蒸汽23经蒸汽出口通过管 道进入蒸汽反应器15中进行反应;空气反应器17通过空气入口引入第一饱和空气24,与 被部分氧化载氧体22进行氧化反应,剩余的缺氧空气25经缺氧空气出口进入发电单元16 内进行余热回收,副产蒸汽。
[0081] 上述工艺中,油页岩干馏单元2和干馏气冷凝回收单元3形成一个油页岩干馏炼 油过程,具体过程如图3所示:
[0082] 经破碎筛分后的符合干馏要求的油页岩颗粒6经预热器48预热,得到的预热油页 岩65经干燥器49干燥处理排除脱除水47后,得到干燥油页岩76 ;干燥油页岩76进入干 馏反应器50,与混合循环煤气43进行干馏反应生成混杂有页岩油和半焦的干馏气7 ;干馏 气7经第一气固分离器51分离成页岩油和干馏气混合物27和含无机矿物质和半焦等的固 体物流42 ;
[0083] 所述页岩油和干馏气混合物27经第一冷却器52冷却得到冷凝页岩油和干馏气混 合物28,将所述冷凝页岩油和干馏气混合物28进入洗涤塔53洗涤,得到第一页岩油31与 第一洗漆煤气29,第一洗漆煤气29被第一分流器54分为两股物流,分别为第二洗漆煤气 30和第三洗漆煤气33,第三洗漆煤气33进入气液分离器56得到第二页岩油36和第一净 化煤气40,第一净化煤气40进入第一换热器64 ;第二洗涤煤气30经第二冷却器55得到冷 却洗漆煤气32,冷却洗漆煤气32进入分离器57后得到第三页岩油35和第二净化煤气34, 第二净化煤气34经第二分流器59分为第三净化煤气37和剩余干馏气8两部分,第三净化 煤气37进入加热反应器60与空气39混合后进行燃烧,然后得到的燃烧尾气38通入第一 换热器64并将第一净化煤气40加热至500?600°C,得到加热后的循环煤气11和烟道气 41,剩余干馏气8则进入燃烧反应器14进行处理;
[0084] 固体物流42进入气化反应器61与第二饱和空气46混合发生气化反应,反应得到 含气化气体、无机矿物质和灰渣的混合物流45,所述混合物流45进入第二气固分离器62除 去灰渣13 (还包括半焦等固体物质)后得到气化气体44,得到的气化气体44与加热后的循 环煤气11经集合管63混合后得到混合循环煤气43,混合循环煤气43通入干馏反应器50, 为干馏段提供热量;
[0085] 第一页岩油31、第二页岩油36和第三页岩油35经混合装置58混合后得到页岩油 10排出收集。
[0086] 上述工艺中所述油页岩干馏单元2的气化反应器61的进料中,空气和水蒸气的质 量比为1. 05?1. 20。
[0087] 上述工艺中所述的干馏气化学制氢联合发电过程的具体过程如图4所示:
[0088] 油页岩炼油过程产生的剩余干馏气8作为还原性气体进入燃料反应器14,将载氧 体原料21还原至低价态;被还原载氧体18通入蒸汽反应器15,与来自发电单元16的蒸汽 23发生反应,将被还原载氧体18部分氧化;被部分氧化载氧体22通入空气反应器17,与第 一饱和空气24发生完全氧化得到又形成载氧体原料21,该过程放出的热量72则可供给燃 料反应器14 ;载氧体原料21通入燃料反应器14,循环使用;
[0089] 燃料反应器14出来的CO2和N2混合气26推动CO 2和N2混合气透平77发电,蒸汽 反应器15出来的H2和H2O混合气73推动氢气透平78进行发电;由CO 2和N2混合气透平 77出来的低压高热CO2和N2混合气66和氢气透平78出来的低压H 2和H2O混合气75进入 余热回收装置79进行余热回收,将自来水74变成蒸汽23 ;换热后的低压低热氢气68经过 氢气压缩机80、第二换热器81和闪蒸罐82等一系列工序,可分离得到高纯度的氢气产品 20 ;闪蒸罐82出来的液态水进行循环使用。
[0090] 所述燃料反应器14的反应温度为800?900°C,压力为3?3. 5MPa ;蒸汽反应器 15的反应温度为680?750°C,压力为2. 8-3. 5MPa
[0091] 所述载氧体原料18为Ni、Cu、Fe或Mn的氧化物。
[0092] 从现有技术中的油页岩炼制过程和本实用新型的油页岩干馏气化学链制氢的工 艺可见,本实用新型将现有油页岩干馏炼油过程中的剩余干馏气,通过化学循环技术生产 具有较高经济价值和化学价值的氢气,实现了废弃物的高效利用,为油页岩加工行业提供 了一种提高经济效益的途径。
[0093] 实施例1
[0094] 本实施例的油页岩及其伴生煤综合利用工艺的具体实施如下:
[0095] 进入本实用新型系统的油页岩原料流量为375t/h,其中进入油页岩干馏单元的为 300t/h,碎屑页岩流量为75t/h。油页岩干馏单元2的气化反应器61进料中空气与水蒸气 质量比为1.13。油页岩原料的工业分析和元素分析见表1。油页岩干馏气化学链制氢联合 发电系统的流程图见图2。
[0096]表1油页岩原料的工业分析元素分析
[0097]
【权利要求】
1. 一种油页岩干馏气化学链制氢联合发电系统,包括油页岩破碎筛分单元、油页岩干 馏单元和干馏气冷凝回收单元,其特征在于:还包括燃料反应器、蒸汽反应器、发电单元及 空气反应器; 所述油页岩破碎筛分单元设有油页岩原料入口、油页岩细颗粒出口及碎屑页岩出口; 所述油页岩干馏单元设有干馏页岩原料入口、干馏气出口、循环气入口和灰渣出口; 所述油页岩破碎筛分单元的油页岩细颗粒出口通过管道与所述油页岩干馏单元的干 馏页岩原料入口连接; 所述干馏气冷凝回收单元设有干馏气入口、循环煤气出口、剩余干馏气出口及页岩油 出口; 所述油页岩干馏单元的干馏气出口通过管道与所述干馏气冷凝回收单元的干馏气入 口连接,所述干馏气冷凝回收单元的循环煤气出口通过管道与所述油页岩干馏单元的循环 气入口连接; 所述燃料反应器设有剩余干馏气原料入口、载氧体原料入口、CO2和N2混合气相物流出 口及被还原载氧体出口; 所述干馏气冷凝回收单元的剩余干馏气出口通过管道与所述燃料反应器的剩余干馏 气原料入口连接; 所述蒸汽反应器设有还原载氧体原料入口、蒸汽入口、氢气气相物流出口及被部分氧 化载氧体出口; 所述空气反应器设有被部分氧化载氧体入口、空气入口、完全氧化载氧体出口及缺氧 空气出口; 所述发电单元设有氢气入口、CO2和N2混合气入口、缺氧空气入口、蒸汽出口、氢气产品 出口及电力输出口; 所述燃料反应器的被还原载氧体出口通过管道与所述蒸汽反应器的还原载氧体原料 入口连接;所述燃料反应器的CO2和N2混合气相物流出口通过管道与发电单元的CO2和N 2 混合气入口相连接; 所述蒸汽反应器的氢气气相物流出口通过管道与所述发电单元的氢气入口相连接;所 述蒸汽反应器的被部分氧化载氧体出口通过管道与所述空气反应器的被部分氧化载氧体 入口连接; 所述发电单元的蒸汽出口通过管道与所述蒸汽反应器的蒸汽入口连接; 所述空气反应器的完全氧化载氧体出口通过管道与所述燃料反应器的载氧体原料入 口连接;所述空气反应器的缺氧空气出口通过管道与所述发电单元的缺氧空气入口连接。
2. 根据权利要求1所述的一种油页岩干馏气化学链制氢联合发电系统,其特征在于: 所述油页岩干馏单元包含预热器、干燥器、干馏反应器、第一气固分离器、气化反应器、加热 反应器、第二气固分离器、集合管和第一换热器;干馏气冷凝回收单元包含第一冷却器、洗 涤塔、第一分流器、气液分离器、分离器、混合装置、第二冷却器以及第二分流器; 所述预热器设有油页岩原料入口,预热器、干燥器和干馏反应器通过管道依次连接;干 馏反应器设有脱水油页岩入口、气化气体入口、热载体原料入口与油气混合物出口;第一气 固分离器设有油气混合物入口、含油气混合物流出口及固体物料出口;干馏反应器的油气 混合物出口通过管道与第一气固分离器的油气混合物入口相连接;第一冷却器设有高温含 油气混合物入口及混合物出口;第一气固分离器的含油气混合物流出口通过管道与第一冷 却器的高温含油气混合物入口相连接;所述洗涤塔设有混合物流入口、洗涤煤气出口及第 一页岩油出口;第一冷却器的混合物出口与洗涤塔的混合物流入口相连接;第二冷却器设 有洗涤煤气入口及冷却洗涤煤气出口;气液分离器设有洗涤煤气入口、第二页岩油出口及 第一净化煤气出口;所述洗涤塔的洗涤煤气出口接入第一分流器,然后分为两个通道,分别 通过管道与第二冷却器的冷却洗涤煤气入口以及气液分离器的洗涤煤气入口相连接;所述 分离器设有物流入口、第三页岩油出口及第二净化煤气出口;第二冷却器的冷却洗涤煤气 出口通过管道与分离器的物流入口相连接; 气化反应器设有饱和空气入口、第一水蒸气入口、固体物料入口及气固混合物流出口; 第二气固分离器设有气固混合物流入口、气化气出口和灰渣出口;气化反应器的固体物料 入口通过管道与第一气固分离器的固体物料出口相连接,气化反应器的气固混合物流出口 通过管道与第二气固分离器的气固混合物流入口相连接;所述第一换热器设有燃烧尾气入 口、净化煤气入口、加热循环煤气出口及烟道气出口;第二气固分离器的气化气出口和第一 换热器的加热循环煤气出口经集合管合并后再通过管道与干馏反应器的热载体原料入口 相连接; 所述加热反应器设有空气入口、净化煤气入口及燃烧尾气出口;所述分离器的第二净 化煤气出口通入第二分离器后分为两个通道,一通道通过管道与加热反应器的净化煤气入 口相连接,另一通道通过管道与燃料反应器的剩余干馏气原料入口相连接;加热反应器的 燃烧尾气出口通过管道与第一换热器的燃烧尾气入口相连接;第一换热器的净化煤气入口 通过管道与气液分离器的第一净化煤气出口相连接;洗涤塔的第一页岩油出口、气液分离 器的第二页岩油出口和分离器的第三页岩油出口通过混合装置连通合并。
3.根据权利要求1所述的一种油页岩干馏气化学链制氢联合发电系统,其特征在于: 所述发电单元包括CO2和N2混合气透平、氢气透平、余热回收装置、氢气压缩机、第二换热器 和闪蒸罐; 所述CO2和N2混合气透平设有CO2和N2混合气入口、低压高热CO 2和N2混合气混合 气出口和第一电力输出端口;所述氢气透平设有氢气入口、氢气出口和第二电力输出端口; 所述余热回收装置设有第一气体入口、第二气体入口、自来水入口、缺氧空气入口、低压低 热(1) 2和队混合气出口、低压低热氢气出口和蒸汽出口;所述氢气压缩机设有低压低热氢气 入口和升压氢气出口; 燃料反应器的CO2和N2混合气相物流出口通过管道与CO2和N 2混合气透平的CO2和N2 混合气入口相连接;所述CO2和N2混合气透平的低压高热CO2和N 2混合气混合气出口通过 管道与余热回收装置的第一气体入口相连接;蒸汽反应器的氢气气相物流出口通过管道与 所述氢气透平的氢气入口相连接;氢气透平的氢气出口与余热回收装置的第二气体入口相 连接;余热回收装置的低压低热氢气出口通过管道与氢气压缩机的低压低热氢气入口相连 接;氢气压缩机的升压氢气出口接入所述第二换热器,再与闪蒸罐连接;所述闪蒸罐设有 氢气产品出口;余热回收装置的蒸汽出口通过管道与蒸汽反应器的蒸汽入口相连接。
【文档编号】C01B3/34GK204125164SQ201420497127
【公开日】2015年1月28日 申请日期:2014年8月29日 优先权日:2014年8月29日
【发明者】杨思宇, 杨庆春, 钱宇 申请人:华南理工大学