高强镁质陶瓷砖坯体、陶瓷砖及其制备方法与流程

文档序号:12938238阅读:817来源:国知局
高强镁质陶瓷砖坯体、陶瓷砖及其制备方法与流程

本发明涉及建筑陶瓷领域,特别涉及高强镁质陶瓷砖坯体、陶瓷砖及其制备方法。



背景技术:

镁质粘土是一种具有较强可塑性的粘土材料,不仅具有粘土塑性好的特点,而且镁质粘土中还含有20%左右的氧化镁,经常作为助熔剂使用,可以降低陶瓷砖坯体配方生成液相的温度和液相的高温粘度,降低陶瓷砖坯体的烧成温度,在陶瓷砖坯体配方中的用量一般在1~5%之间。不少厂家尝试利用镁质粘土制备陶瓷砖,但是氧化镁会造成na2o(k2o)-sio2-al2o3体系的配方高温粘度降低速度过快,导致配方的烧成范围窄,通常在10~20℃,很容易导致坯体烧成变形,对烧成窑炉内部温度一致性要求高。在市场上,已出现了采用精选烧滑石成功制备出的超白镁质陶瓷砖,其坯体配方中以纯度高的烧滑石为主要原料与其它精选原材料配合,利用氧化镁的乳浊效果制备高白坯体,然而其配方的烧成范围窄,对生产控制精度要求高而导致不良率大,生产成本高,价格昂贵,市场销售量小。cn200810198373.9公布一个利用镁质粘土制备的sio2-mgo-cao-al2o3为四元相陶瓷配方体系,然而根据其实施例可知,其配方的烧成时间在115~120min,存在生产效率低的弊端。

镁质粘土在江西不仅分布范围,而且广数量多。但现有技术中仍未能找到一个高温强度好的镁质配方体系及控制镁质配方烧成工艺的参数,可实现镁质粘土在陶瓷砖坯体配方中大量应用,可大幅度降低陶瓷配方的综合成本。



技术实现要素:

本发明的目的在于针对目前镁质陶瓷砖坯体配方烧成范围窄和烧成时间长的问题,提供一种烧成范围宽、烧成速度快的低成本且高强度的镁质陶瓷砖坯体配方,其可降低生产的综合成本,同时提供其制备方法和一种用该坯体制备成的陶瓷砖。

本发明所采取的技术方案是:一种高强镁质陶瓷砖坯体,其按原料质量百分比计其中镁质粘土占坯体总质量的40~60%,并形成以sio2和mgo为主的sio2-mgo-k2o-al2o3四元相配方体系。

具体地,本发明利用了镁质粘土具有较高塑性的特点,在坯体配方中大量使用镁质粘土从而提高成型后生坯的强度,降低生坯的破损率,且在后续烧制过程中镁质粘土中的硅酸镁能在高温下脱水生成顽火辉石,其中部分顽火辉石以晶相的形式保留在坯体中,从而进一步提高坯体烧成后的强度。

作为上述方案的进一步改进,按原料质量百分比计还包括25~35%的高温钾砂和10~20%的中温砂。具体地,干燥时高温钾砂和中温砂为坯体提供排水通道从而提高坯体的干燥性能;烧成时具有较高熔融温度的高温钾砂能起到骨架作用以提高坯体的高温强度,中温砂因含有钾长石和钠长石从而可降低坯体始熔温度并与氧化镁作用提高形成液相的生成速度,从而实现陶瓷坯体快速烧成。

作为上述方案的进一步改进,坯体的化学成分为70~78%的sio2、6~9%的al2o3、9~13%的mgo、1.5~3%的k2o、0.8~1.5%的fe2o3、0.05~0.5%的tio2、0.3~0.8%的cao和0.2~0.8%的na2o,烧失:4~6%。。具体地,坯体的化学成分影响着坯体本身的性能及坯体的烧成情况,本发明中坯体的化学成分以低al2o3高sio2的原料为主,利用钾长石中含有k2o可在温度较低时与sio2生成低共熔物特性以提高坯体在低温阶段的烧成情况,随着温度升高坯体中的mgo在降低液相粘度的同时提高液相生成速度,坯体迅速实现致密化,从而可实现坯体的快速烧成。

另外,本发明中因mgo含量高,可有效降低坯体化学成分中fe2o3对坯体颜色的影响,使得即使坯体配方中使用铁含量高的原料后坯体仍然能具有较好的白度。

一种如上所述的高强镁质陶瓷砖坯体的制备方法为:按原料质量百分比计将各组分混合得混合粉料,球磨至细度为11~13(以坯体浆料不能通过250目筛的比例表征)的料浆,后经喷雾干燥和陈腐后干压成型,再经1120~1150℃烧制而成,烧成后坯体的吸水率为3~6%。

作为上述方案的进一步改进,所述球磨过程中还加入了按料浆重量百分比计0.2~0.4%的三聚磷酸钠。实际上,三聚磷酸钠为球磨过程中常用的助剂,本发明限定其添加量以保证坯体各原料组分球磨更充分,同时在球磨过程中还加入重量为料浆总重量的32~35%的水。

作为上述方案的进一步改进,所述球磨时间为5~8h。实际上,本发明大量使用了颗粒细小的镁质粘土,大大缩短了坯体原料球磨时间。对比60吨球磨机将普通的陶瓷砖坯体原料球磨到11~13的细度需要的时间是10~13h,本发明坯体原料球磨时间减少40%以上。

作为上述方案的进一步改进,所述喷雾干燥后坯体粉料含水率为5~8%。

作为上述方案的进一步改进,所述陈腐时间为20~26h,其可使坯体粉料具有更好的成型性能。

作为上述方案的进一步改进,所述烧制时间为25~40min。具体地,在该烧制时间范围内即可获得高强镁质陶瓷砖坯体,其较普通陶瓷砖坯体的烧成时间更短,从而大大缩短生产周期及生产成本。

本发明所采取的另一个技术方案是:一种在如上所述的高强镁质陶瓷砖坯体表面进行施釉、印花后烧制而成的陶瓷砖,其烧制温度与上述坯体的烧制温度相同,且控制烧成后陶瓷砖的吸水率为3~6%,从而获得带有装饰性的高强度镁质陶瓷砖。

本发明的有益效果是:

(1)本发明坯体中镁质粘土的大比例使用使得坯体干燥后的强度达到2.8~3.2mpa,远高于普通坯体配方干燥后1.2~1.4mpa的干坯强度,大大减少坯体在烧成前出现破损的情况。同时坯体的断裂模数可达到42~48mpa,远高于国家标准(bⅱa类),减少了其在存放和运输过程的破损风险。且大量使用镁质粘度可有效地缩短原料球磨时间和烧制时间,其球磨时间较普通坯体原料的球磨时间减少40%以上,烧成成本约为普通坯体烧成成本的20~30%。

(2)本发明进一步采用价格低的镁质粘土作为坯体原料主要组分,扩大原料来源同时大幅降低陶瓷砖坯体配方成本。

(3)本发明的制备方法操作性好,可控性强,且其采用的快速烧成工艺大大提高了陶瓷砖的生产效率,降低生产能耗。

附图说明

本发明中的附图1a为实施例1所得坯体的扫描电镜图;

本发明中的附图1b为实施例1所得坯体的xrd衍射图谱;

本发明中的附图2为实施例2的所得坯体的扫描电镜图;

本发明中的附图3为实施例3的所得坯体的扫描电镜图。

具体实施方式

下面结合实施例对本发明进行具体描述,以便于所属技术领域的人员对本发明的理解。有必要在此特别指出的是,实施例只是用于对本发明做进一步说明,不能理解为对本发明保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本发明作出的非本质性的改进和调整,应仍属于本发明的保护范围。同时下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或制备方法为均为本领域技术人员所知晓的工艺步骤或制备方法。

实施例1

一种高强镁质陶瓷砖坯体,其按原料质量百分比计由60%的镁质粘土、30%的高温钾砂和10%的中温砂组成,其形成以sio2和mgo为主的sio2-mgo-k2o-al2o3四元相配方体系,理论化学成分为73.06%的sio2、6.65%的al2o3、12.32%的mgo、1.44%的k2o、1.15%的fe2o3、0.01%的tio2、0.18%的cao和0.30%的na2o,烧失:4.84%。

制备方法:

按上述原料质量百分比计将各组分混合得混合粉料,按重量百分比计将66%的混合粉料、0.4%的三聚磷酸钠和33.6%的水加入到球磨机中,球磨6.5h,得到细度为11.9的料浆,后经喷雾干燥,控制喷雾干燥后坯体粉料含水率为5~8%,再经24h陈腐后干压成型,最后经1150℃烧制而成,烧制时间为29min,烧成后坯体的吸水率为4.6%,得实施例1成品。

观察实施例1成品,其扫描电镜图如附图1a所示,xrd衍射图谱如附图1b所示,由附图1a和1b可以看出本发明制备出的坯体晶相多同时晶粒突出,且xrd分析显示烧后坯体里面含大量方石英和顽火辉石晶相,进一步对实施例1成品进行力学性能检测,测试结果显示其断裂模数为46.3mpa。

实施例2

一种高强镁质陶瓷砖坯体,其按原料质量百分比计由45%的镁质粘土、35%的高温钾砂和20%的中温砂组成,其形成以sio2和mgo为主的sio2-mgo-k2o-al2o3四元相配方体系,理论化学成分为73.93%的sio2、8.30%的al2o3、9.35%的mgo、2.11%的k2o、1.02%的fe2o3、0.02%的tio2、0.20%的cao和0.52%的na2o,烧失:4.55%。

制备方法:

按上述原料质量百分比计将各组分混合得混合粉料,按重量百分比计将65.8%的混合粉料、0.3%的三聚磷酸钠和33.9%的水加入到球磨机中,球磨7h,得到细度为11.2的料浆,后经喷雾干燥,控制喷雾干燥后坯体粉料含水率为5~8%,再经24h陈腐后干压成型,最后经1125℃烧制而成,烧制时间为35min,烧成后坯体的吸水率为5.8%,得实施例2成品。

观察实施例2成品,其扫描电镜图如附图2所示,可以看出本发明制备出的坯体晶相多同时晶粒突出,进一步对实施例2成品进行力学性能检测,测试结果显示其断裂模数为43.4mpa。

实施例3

一种高强镁质陶瓷砖坯体,其按原料质量百分比计由50%的镁质粘土、30%的高温钾砂和20%的中温砂组成,其形成以sio2和mgo为主的sio2-mgo-k2o-al2o3四元相配方体系,理论化学成分为73.71%的sio2、6.78%的al2o3、11.35%的mgo、1.86%的k2o、1.10%的fe2o3、0.01%的tio2、0.19%的cao和0.43%的na2o,烧失:4.57%。

制备方法:

按上述原料质量百分比计将各组分混合得混合粉料,按重量百分比计将65%的混合粉料、0.3%的三聚磷酸钠和34.7%的水加入到球磨机中,球磨8h,得到细度为12.8的料浆,后经喷雾干燥,控制喷雾干燥后坯体粉料含水率为5~8%,再经24h陈腐后干压成型,最后经1143℃烧制而成,烧制时间为32min,烧成后坯体的吸水率为5.5%,得实施例3成品。

观察实施例3成品,其扫描电镜图如附图3所示,可以看出本发明制备出的坯体晶相多同时晶粒突出,进一步对实施例3成品进行力学性能检测,测试结果显示其断裂模数为42.8mpa。

实施例4

一种高强镁质陶瓷砖,其砖坯按原料质量百分比计由55%的镁质粘土、30%的高温钾砂和15%的中温砂组成,其形成以sio2和mgo为主的sio2-mgo-k2o-al2o3四元相配方体系,理论化学成分为74.24%的sio2、7.31%的al2o3、10.36%的mgo、2.08%的k2o、1.03%的fe2o3、0.01%的tio2、0.19%的cao和0.42%的na2o,烧失:4.38%。

制备方法:

1)按上述原料质量百分比计将各组分混合得混合粉料,按重量百分比计将66%的混合粉料、0.4%的三聚磷酸钠和33.6%的水加入到球磨机中,球磨6.5h,得到细度为11.9的料浆,后经喷雾干燥,控制喷雾干燥后坯体粉料含水率为5~8%,再经24h陈腐后备用;

2)根据需求调配釉料,将釉料球磨至细度小于0.5(以釉浆中不能通过325目筛的比例表征)得釉浆,进行除铁和过筛处理后陈腐待用;

3)将步骤1)所得坯体粉料干压成型,干燥后在坯体表面进行施釉、印花,最后经1150℃烧制而成,烧制时间为30min,烧成后坯体的吸水率为4.4%,得实施例4成品。

对实施例4成品进行力学性能检测,测试结果显示其断裂模数为46.1mpa。

上述实施例为本发明的优选实施例,凡与本发明类似的工艺及所作的等效变化,均应属于本发明的保护范畴。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1