一种3D打印用料、其制备方法和用途与流程

文档序号:15394313发布日期:2018-09-08 01:49阅读:299来源:国知局

本发明属于3d打印技术领域,涉及一种3d打印用料、其制备方法和用途。



背景技术:

3d打印(3dprinting)技术又称三维打印技术,是一种以数字模型文件为基础,运用粉末状或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。它无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。诸如灯罩、身体器官、珠宝、根据球员脚型定制的足球靴、赛车零件、固态电池以及为个人定制的手机、小提琴等产品都可以用该技术制造出来。

3d打印技术实际上是一系列快速原型成型技术的统称,其基本原理都是叠层制造,由快速原型机在x-y平面内通过扫描形式形成工件的截面形状,而在z坐标间断地作层面厚度的位移,最终形成三维制件。目前市场上的快速成型技术分为3dp技术、sla(全称service-levelagreement)立体光固化技术、sls(全称selectivelasersintering)选择性激光烧结技术、dmls(全称directmetallaser-sintering)直接金属激光烧结技术及fdm(全称fuseddepositionmodeling)熔融层积成型技术等。

3d打印技术最早应用在塑料材料上。fdm熔融层积成型技术是目前主要方式,它是将热熔性材料加热融化,同时三维喷头在计算机的控制下,根据截面轮廓信息,将材料选择性地涂敷在工作台上,快速冷却后形成一层截面。一层成型完成后,机器工作台下降一个高度(即分层厚度)继续成型,直至形成整个实体造型。其成型材料种类多,成型件精度较高、价格便宜,主要适用于成型小塑料件。然而这种方式产生的塑料产品强度低并不能满足客户的要求。为了增加产品的强度,改善产品的性能,dmls技术采用合金粉体材料为原料,利用金属经聚焦后之能量激光将原料熔融后进行3d打印迭层。其具有高精度、高强度,速度快,成品表面光滑等特点,一般应用于航空航天以及工业用配件制造行业,可用于高阶模具设计等。但激光烧结设备复杂,制备过程能耗高,综合考虑产品分辨率、设备费用、产品外观要求及量产能力等因素,目前仍无法大量普及应用且不适合高熔点的非金属材料使用。所以目前非金属材料的3d打印方式一般是使用sla(全称service-levelagreement)立体光固化技术来满足目前工业的需求,此工艺需要经过成型、脱脂、烧结等制程。而且使用浆料状态故其产品的烧结收缩率偏大,热变形也大。

cn106270510a中公开了一种利用塑料3d打印机打印制造金属/合金零件的方法,该方法包括烧结原材料前处理、原材料包覆、粉末还原、3d打印、脱脂、烧结等步骤。cn106426916a中公开了一种3d打印方法,包括:混合粉末状待加工材料及粉末状尼龙材料;采用选择性激光烧结技术熔化所述尼龙材料以粘结所述待加工材料形成生坯;加热所述生坯进行热脱脂以使所述尼龙材料挥发;加热所述生坯至所述待加工材料的烧结温度以对所述生坯进行烧结;将所述生坯的环境温度降至室温以得到致密零件。上述两种方法虽然都将粉末注塑成型和3d打印技术相结合,但是其喂料模式均为粉状或颗粒状,主要存在以下缺点:使用粉状或颗粒状的原料进行3d打印时,需要将原料由下至上逐层在全区铺展涂布,大大增加了喂料量,造成了材料的浪费。在熔融过程中由于热区过大,材料之间易熔融交联,使用激光加热熔解结合时,因高分子材料的熔点低而易造成周边材料也被加热熔融,进而影响其产品精度及外观。同时粉体状或颗粒状喂料的形态不规则,因此无法进行有效均匀的涂布,易造成产品表面厚度不均。

cn104669407a公开了陶瓷打印的方式是在每一层石蜡上添加陶瓷粉体,这种方式容易造层分析及产品接合强度问题。随后有浆料陶瓷粉体的模式被提出,进而演化至光固化浆料模式。光固化浆料为维持其高流动性以达到快速稳定铺排工作台面,其陶瓷粉体固含量偏低,导致后制程烧结收缩率偏高使得产品容易变形。

cn105728729a公开了一种金属/陶瓷粉末成形方法,包括步骤如下:将热塑性粘结剂与金属粉末或者陶瓷粉末混合,并挤出成型用于熔融沉积型3d打印机的打印材料。但是,该成型方法得到的打印材料的粉体固含量无法提升,只能达到14%~15%,且使用该打印材料打印出的产品的高温烧结收缩率高达47%~48%,而正常cim中的高温烧结收缩率在20%~30%,随着黏结剂的增多产品在高温烧结容易变形扭曲,因此不利于量产。

cn106984805a公开了一种3d打印用喂料及其制备方法和应用,所述喂料为高分子粘结剂包裹的金属粉体,呈线状。所述线状喂料经由3d打印机打印出预设形状的生坯后,依次经过脱脂、烧结,可得到结构复杂、精度高的金属产品。但是,该制备方法无法用于非金属材料,因为金属粉体粒度分布d90在20~25μm(指粒径在20~25μm以下的颗粒占总物料的90wt%),而非金属粉体粒度分布d90在0.5~1.0μm(粗粒径的非金属粉体得到的3d打印用料会导致产品存在烧结致密性问题,密度会偏低,机械性能也会降低),所以单位重量下的非金属粉体的总体表面积远大于金属粉体的总体表面积,在相同的高分子粘结剂的含量下非金属材料的流动性远低于金属材料的流动性。在此情况下无法将非金属材料制备成高固含量的线材,进而用于3d打印。因此,使非金属材料可以运用此工艺技术来达到与金属材料相同的效果是业者努力的方向。



技术实现要素:

针对现有技术存在的不足,本发明的目的在于提供一种3d打印用料、其制备方法和用途,所述3d打印用料中非金属材料的固含量显著提升,其得到的3d打印产品高温烧结尺寸收缩小且变异少,产品良率提升;同时避免了现有粉末注射成型技术与3d打印技术光敏树酯结合时,因喂料固化形态而导致的原料浪费、设备复杂昂贵和精度不足等问题,其制备方法简单,可广泛用于3d打印。

本发明如无特殊说明,所述vol%是指体积百分含量,wt%是指质量百分含量。

为达此目的,本发明采用以下技术方案:

本发明的目的之一在于提供一种3d打印用料,所述3d打印用料为线状,按体积百分含量,包括如下组分:

非金属材料16~82%;

第一粘结剂17.9~83%

第二粘结剂0.1~1%。

所述3d打印用料中非金属材料的体积百分含量为16~82%,如16%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或82%等;第一粘结剂的体积百分含量为17.9~83%,如17.9%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或82%等;第二粘结剂的体积百分含量为0.1~1%,如0.2%、0.3%、0.5%、0.8%或0.9%等。

本领域技术人员公知,所述3d打印用料中的组分总的体积百分含量之和应为100%。

所述3d打印用料中非金属材料的固含量显著提升,其得到的3d打印产品高温烧结尺寸收缩小且变异少,产品良率提升;同时避免了现有粉末注射成型技术与3d打印技术光敏树酯结合时,因喂料固化形态而导致的原料浪费、设备复杂昂贵和精度不足等问题。

本领域技术人员公知,所述第一粘结剂和第二粘结剂在制备打印件后的脱脂及高温烧结过程中能够脱除。

本发明提供的3d打印用料应用于3d打印时,可以根据打印件每层所需的用料量进行供料,节省了原料;同时可以通过选择不同线径以及控制加热温度来控制产品表面的精度;且所述3d打印用料采用普通的热电偶加热即可熔融,不需要昂贵的光固化打印机设备。

所述线状3d打印用料的直径为0.1~5mm,如0.1mm、0.5mm、1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm或5mm等,优选为1~3mm,更优选为1.75mm。

所述非金属材料的粒度分布d90为0.5~1.0μm(指粒径为0.5~1.0μm以下的颗粒占总物料的90wt%),如0.6μm、0.7μm、0.8μm或0.9μm等。

优选地,所述非金属材料选自氧化物陶瓷材料、碳化物陶瓷材料、氮化物陶瓷材料或石墨材料中的任意一种或至少两种的组合,典型但非限制性的组合如氧化物陶瓷材料与碳化物陶瓷材料,氧化物陶瓷材料与氮化物陶瓷材料,碳化物陶瓷材料与石墨材料。

所述氧化物陶瓷材料优选为氧化铝陶瓷、氧化锆陶瓷或压电陶瓷中的任意一种或至少两种的组合,典型但非限制性的组合如氧化铝陶瓷与氧化锆陶瓷,氧化铝陶瓷、氧化锆陶瓷和压电陶瓷。

所述碳化物陶瓷材料优选为碳化硅陶瓷、碳化钨陶瓷、碳化钒陶瓷、碳化钛陶瓷、碳化钽陶瓷或碳化硼陶瓷中的任意一种或至少两种的组合,典型但非限制性的组合如碳化硅陶瓷与碳化钨陶瓷,碳化钒陶瓷、碳化钛陶瓷与碳化钽陶瓷,碳化硼陶瓷,碳化硅陶瓷、碳化钨陶瓷与碳化钒陶瓷。

所述氮化物陶瓷材料优选为氮化铝陶瓷、氮化硅陶瓷、氮化硼陶瓷、氮化钛陶瓷或氮化铬陶瓷中的任意一种或至少两种的组合,典型但非限制性的组合如氮化铝陶瓷与氮化硅陶瓷,氮化硼陶瓷、氮化钛陶瓷与氮化铬陶瓷。

所述压电陶瓷,如钛锆酸铅(pzt)陶瓷系列、钛酸锶铋(sbt)陶瓷系列。

优选地,所述第一粘结剂选自塑基粘结剂和/或蜡基粘结剂。

所述塑基粘结剂的主填充剂优选为聚甲醛(pom),所述蜡基粘结剂的主填充剂优选为石蜡(pw)。

优选地,所述第二粘结剂选自热固性高分子材料和/或热塑性高分子材料,优选为热固性高分子材料。

优选地,所述热固性高分子材料选自酚醛树脂、脲醛树脂、三聚氰胺树脂、不饱和聚酯树脂、环氧树脂、有机硅树脂或聚氨酯中的任意一种或至少两种的组合。典型但非限制性的组合如酚醛树脂、脲醛树脂与三聚氰胺树脂,不饱和聚酯树脂与环氧树脂,有机硅树脂与聚氨酯。

优选地,所述热塑性高分子材料选自聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚碳酸酯、聚酰胺、丙烯酸类塑料、聚砜或聚苯醚中的任意一种或至少两种的组合。典型但非限制性的组合如聚丙烯与聚氯乙烯,聚苯乙烯、聚甲醛与聚碳酸酯,聚酰胺与丙烯酸类塑料,聚砜与聚苯醚。所述热塑性高分子材料还可以是其它聚烯烃及其共聚物。

本发明的目的之二在于提供一种如上所述的3d打印用料的制备方法,所述制备方法包括如下步骤:

(1)将配方量的非金属材料与配方量的第二粘结剂混合后进行造粒,得到粒料;

(2)将所述粒料与配方量的第一粘结剂混合,得到混合料;

(3)将所述混合料挤出,得到所述3d打印用料。

步骤(1)所述非金属材料的粒度分布d90为0.5~1.0μm(指粒径为0.5~1.0μm以下的颗粒占总物料的90wt%),如0.6μm、0.7μm、0.8μm或0.9μm等。

步骤(1)得到的粒料的粒度分布d90为30~100μm(指粒径为30~100μm以下的颗粒占总物料的90wt%),如40μm、45μm、50μm、55μm、62μm、67μm、69μm、70μm、75μm、80μm、90μm或95μm等,优选为30~50μm。

优选地,步骤(1)所述造粒为喷雾干燥造粒,所述喷雾干燥造粒可以快速安全有效得到所要的粒度分布粉体。

优选地,步骤(2)所述混合包括混炼。

优选地,所述混炼时混炼机的腔体温度为165~220℃,优选为175~200℃,如170℃、175℃、180℃、185℃、190℃、195℃或210℃等,进一步优选为185℃;

优选地,所述混炼的时间为0.5~2h,如0.6h、0.8h、1h、1.2h、1.5h、1.8h或2h等,优选为1h。

作为优选的技术方案,所述3d打印用料的制备方法包括如下步骤:

(1)将配方量的粒度分布d90为0.5~1.0μm的非金属材料与配方量的第二粘结剂混合后进行喷雾干燥造粒,得到粒度分布d90为30~100μm的粒料;

(2)将所述粒料与配方量的第一粘结剂进行混炼,混炼时腔体的温度为165~220℃,混炼时间为0.5~2h,得到混合料;

(3)将所述混合料挤出,得到所述3d打印用料。

本发明提供的3d打印用料的制备方法首先将d90在0.5~1.0μm的超细非金属粉体进行预处理制程,使其粉体可以形成较大团状且其总体表面积大幅减少,之后再将其与第一粘结剂混合均匀,挤出,得到高固含量的线状3d打印用料。经过上述含有第二粘结剂的溶剂的预处理,才能在相同的第一粘结剂含量下得到高固含量及高韧性的线状3d打印用料。

本发明的目的之三在于提供一种3d打印方法,所述3d打印方法使用如上所述的3d打印用料。

作为优选的技术方案,所述3d打印方法包括如下步骤:

(1)以3d打印用料为原料,经由3d打印机打印出预设形状的生坯;

(2)将生坯进行脱脂,得到褐坯;

(3)将褐坯进行烧结,得到成型件。

步骤(2)所述脱脂使得80%以上的总粘结剂(第一粘结剂和第二粘结剂的总量)可以脱离产品,其脱脂量越高,在后段烧结制程的开裂不良会大幅降低,如82wt%、85wt%、88wt%、89wt%、90wt%、92wt%或95wt%等。

优选地,步骤(2)所述脱脂选自热脱脂、水脱脂、催化脱脂或溶剂脱脂中的任意一种或至少两种的组合,典型但非限制性的组合如热脱脂与水脱脂,催化脱脂与溶剂脱脂,热脱脂、水脱脂与催化脱脂。

优选地,所述催化脱脂的催化剂为硝酸和/或草酸。

优选地,步骤(3)所述烧结的温度为1200~1500℃,如1210℃、1220℃、1230℃、1240℃、1250℃、1300℃、1350℃、1400℃、1450℃或1480℃等,优选为1300~1450℃。

优选地,步骤(3)所述烧结的时间为2~3h,如2h、2.1h、2.2h、2.3h、2.4h、2.5h、2.6h、2.7h、2.8h、2.9h或3h等。

优选地,步骤(3)所述烧结后还进行后加工,本领域技术人员可根据实际情况对烧结件进行后加工,后加工的方式可自主选择。

作为优选的技术方案,所述3d打印方法包括如下步骤:

(1)以3d打印用料为原料,经由3d打印机打印出预设形状的生坯;

(2)将生坯进行脱脂,脱除80wt%以上的总粘结剂,得到褐坯;

(3)将褐坯进行烧结,得到烧结件,烧结的温度为1200~1500℃,时间为2~3h,将烧结件进行后加工,得到成型件。

本发明提供的3d打印方法将粉末注射成型技术与3d打印技术相结合,得到一种线状的高固含量非金属3d打印用料,将其应用于3d打印时,可以根据打印件每层所需的用料量进行供料,节省了原料;同时可以通过选择喂料的不同线径以及控制加热温度来控制产品表面的精度;且本发明制备的喂料采用普通的热电偶加热即可熔融,不需要昂贵的光固化打印机设备。

本发明的目的之四在于提供一种提高3d打印用料中非金属含量的方法,所述方法采用如上所述的3d打印用料。

优选地,所述方法包括如下步骤:

(1)将配方量的非金属材料与配方量的第二粘结剂混合后进行造粒,得到粒料;

(2)将所述粒料与配方量的第一粘结剂混合,得到混合料;

(3)将所述混合料挤出,得到非金属材料的体积百分含量不小于16%的3d打印用料。所述3d打印用料中非金属材料的体积百分含量可达到82%。所述3d打印用料中非金属材料的体积百分含量为16~82%,如16%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%等。

本发明所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。

与现有技术相比,本发明的有益效果为:

(1)本发明提供的3d打印用料中非金属材料的固含量显著提升,其得到的3d打印产品高温烧结尺寸收缩小且变异少,产品良率提升10~30%;同时避免了现有粉末注射成型技术与3d打印技术光敏树酯结合时,因喂料固化形态而导致的原料浪费、设备复杂昂贵和精度不足等问题。

(2)本发明提供的3d打印用料可以通过控制不同线径以及控制加热温度来控制3d打印层的厚度进而提高产品表面的精度及产品的质量。

(3)本发明提供的3d打印用料可通过简单的热电偶进行加热熔融处理,不需要复杂且昂贵的激光加热设备,减少了能耗,降低了生产成本,可广泛用于3d打印。

(4)本发明提供的3d打印用料的制备方法显著提升了3d打印用料中非金属材料的固含量,能够使得非金属含量达到82wt%,方法简单,易行;

(5)本发明提供的3d打印方法将粉末注射成型技术和3d打印技术相结合,可以快速打印制作复杂的产品,缩短开发流程,实现量产普及化。

附图说明

图1为本发明一种实施方式提供的3d打印工艺流程图。

具体实施方式

下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。

一种3d打印方法,如图1所示,包括如下步骤:

(1)制备线状3d打印用料,以3d打印用料为原料,经由3d打印机打印出预设形状的生坯;

(2)将生坯进行脱脂,脱除第一粘结剂的80wt%以上,得到褐坯;

(3)将褐坯进行烧结,得到烧结件,烧结的温度为1200~1500℃,时间为2~3h,将烧结件进行后加工,得到成型件。

进一步地,所述制备线状3d打印用料包括如下步骤:

(1)将粒度分布d90为0.5~1.0μm的非金属材料与第二粘结剂混合后进行喷雾干燥造粒,得到粒度分布d90为30~100μm的粒料;

(2)将所述粒料与第二第一粘结剂进行混炼,混炼时腔体的温度为165~220℃,混炼时间为0.5~2h,得到混合料;

(3)将所述混合料挤出,得到所述3d打印用料。

实施例1

一种高固含量非金属3d打印用料,其为线状,按体积百分含量包括44vol%氧化锆陶瓷粉、55.5vol%的第一粘结剂和第二粘结剂0.5vol%。

所述高固含量非金属3d打印用料的制备方法包括如下步骤:

(1)将粒度分布d90为0.5~1.0μm的氧化锆陶瓷粉与第二粘结剂(酚醛树酯溶液)混合后进行喷雾干燥造粒,以120℃的温度干燥,获得半固化态的粉团颗粒,其粒度分布d90为30~100μm;

(2)将氧化锆陶瓷粉与第一粘结剂混合,所述第一粘结剂包括:聚甲醛85wt%、骨干高分子11wt%、增塑剂1wt%、抗氧化剂0.5wt%、热稳定剂0.5wt%、增韧剂1wt%、润滑剂高分子1wt%;将所述原料加入密炼机中,在180℃下混炼1h;

(3)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为1.75mm的线状材料,冷却后得到所述高固含量非金属3d打印用料,将所述线状料卷绕为盘状备用。

利用所述高固含量非金属3d打印用料的打印方法包括如下步骤:

(1)将所述线状喂料作为原料,经由3d打印机打印出预设形状的生坯;

(2)将步骤(1)得到的生坯在110℃下,使用硝酸为介质脱脂4h,脱除第一粘结剂,得到褐坯;

(3)将步骤(2)得到的褐坯置于高温大气炉中,在1450℃下烧结3h,冷却后得到氧化锆陶瓷产品。

所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

实施例2

一种高固含量非金属3d打印用料,其为线状,按体积百分含量包括40vol%氧化锆陶瓷粉、59.2vol%的第一粘结剂和第二粘结剂0.8vol%。

所述高固含量非金属3d打印用料的制备方法包括如下步骤:

(1)将粒度分布d90为0.5~1.0μm的氧化锆陶瓷粉与第二粘结剂(酚醛树酯溶液)混合后在温度为120℃条件下进行喷雾干燥造粒,得到半固化态的粉团,其粒度分布d90为30~100μm的粒料;

(2)将氧化锆陶瓷粉与第一粘结剂混合,所述第一粘结剂包括:聚甲醛85wt%、骨干高分子11wt%、增塑剂1wt%、抗氧化剂0.5wt%、热稳定剂0.5wt%、增韧剂1wt%、润滑剂高分子1wt%;将所述原料加入密炼机中,在180℃下混炼1h;

(3)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为1.75mm的线状材料,冷却后得到所述高固含量非金属3d打印用喂料,将所述线状喂料卷绕为盘状备用。

利用所述高固含量非金属3d打印用料的打印方法包括如下步骤:

(1)将所述线状喂料作为原料,经由3d打印机打印出预设形状的生坯;

(2)将步骤(1)得到的生坯在110℃下,使用硝酸为介质脱脂4h,脱除第一粘结剂后得到褐坯;

(3)将步骤(2)得到的褐坯置于高温大气炉中,在1450℃下烧结3h,冷却后得到氧化锆陶瓷产品。

所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

实施例3

一种高固含量非金属3d打印用料,其为线状,按体积百分含量包括50vol%氧化铝–氧化锆陶瓷粉和49vol%的第一粘结剂和第二粘结剂1.0vol%。

所述高固含量非金属3d打印用料的制备方法包括如下步骤:

(1)将粒度分布d90为0.5~1.0μm的氧化铝-氧化锆陶瓷粉与第二粘结剂(酚醛树酯溶液)混合后进行喷雾干燥造粒,以120℃的温度干燥,获得半固化态的粉团颗粒,其粒度分布d90为30~100μm的粒料;

(2)将氧化铝-氧化锆陶瓷粉与第一粘结剂混合,所述第一粘结剂包括:聚甲醛85wt%、骨干高分子11wt%、增塑剂1wt%、抗氧化剂0.5wt%、热稳定剂0.5wt%、增韧剂1wt%、润滑剂高分子1wt%;将所述原料加入密炼机中,在180℃下混炼1h;

(3)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为1.75mm的线状材料,冷却后得到所述高固含量非金属3d打印用喂料,将所述线状喂料卷绕为盘状备用。

利用所述高固含量非金属3d打印用料的打印方法包括如下步骤:

(1)将所述线状喂料作为原料,经由3d打印机打印出预设形状的生坯;

(2)将步骤(1)得到的生坯在110℃下,使用硝酸为介质脱脂4h,脱除第一粘结剂后得到褐坯;

(3)将步骤(2)得到的褐坯置于高温大气炉中,在1500℃下烧结3h,冷却后得到氧化铝增韧氧化锆陶瓷产品。

所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

实施例4

一种高固含量非金属3d打印用料,其为线状,按体积百分含量包括16vol%石墨材料、83.4vol%的第一粘结剂和第二粘结剂0.6vol%。

所述高固含量非金属3d打印用料的制备方法包括如下步骤:

(1)将粒度分布d90为0.5~1.0μm的石墨材料与第二粘结剂(酚醛树酯溶液)混合,在120℃的条件下进行喷雾干燥造粒,获得半固化态的粉团颗粒,其粒度分布d90为30~100μm的粒料;

(2)将石墨材料与第一粘结剂混合,所述第一粘结剂包括:聚甲醛及石腊合计85wt%、骨干高分子11wt%、增塑剂1wt%、抗氧化剂0.5wt%、热稳定剂0.5wt%、增韧剂1wt%、润滑剂高分子1wt%;将所述原料加入密炼机中,在165℃下混炼2h;

(3)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为0.1mm的线状材料,冷却后得到所述高固含量非金属3d打印用料,将所述线状料卷绕为盘状备用。

利用所述高固含量非金属3d打印用料的打印方法包括如下步骤:

(1)将所述线状喂料作为原料,经由3d打印机打印出预设形状的生坯;

(2)将步骤(1)得到的生坯在110℃下,使用石化剂为溶剂脱脂24h,脱除第一粘结剂,得到褐坯;

(3)将步骤(2)得到的褐坯置于高温真空炉中,在1850℃下烧结3h,冷却后得到石墨产品。

所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

实施例5

一种高固含量非金属3d打印用料,其为线状,按体积百分含量包括82vol%氮化硅陶瓷粉体、17.9vol%的第一粘结剂和第二粘结剂0.1vol%。

所述高固含量非金属3d打印用料的制备方法包括如下步骤:

(1)将粒度分布d90为0.5~1.0μm的氮化硅陶瓷粉体与第二粘结剂(酚醛树酯溶液)混合,在120℃的条件下进行喷雾干燥造粒,获得半固化态的粉团颗粒,其粒度分布d90为30~100μm的粒料;

(2)将氮化硅陶瓷粉体与第一粘结剂混合,所述第一粘结剂包括:聚甲醛85wt%、骨干高分子11wt%、增塑剂1wt%、抗氧化剂0.5wt%、热稳定剂0.5wt%、增韧剂1wt%、润滑剂高分子1wt%;将所述原料加入密炼机中,在220℃下混炼0.5h;

(3)利用挤出机将步骤(1)混炼后得到的材料挤出为直径为5mm的线状材料,冷却后得到所述高固含量非金属3d打印用料,将所述线状料卷绕为盘状备用。

利用所述高固含量非金属3d打印用料的打印方法包括如下步骤:

(1)将所述线状喂料作为原料,经由3d打印机打印出预设形状的生坯;

(2)将步骤(1)得到的生坯在110℃下,使用硝酸为介质脱脂4h,脱除第一粘结剂,得到褐坯;

(3)将步骤(2)得到的褐坯置于高温真空炉中,在1800℃下烧结2.5h,冷却后得到氮化硅陶瓷产品。

所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

实施例6

一种高固含量非金属3d打印用料,其组分及制备方法除将50%氧化铝-氧化锆陶瓷粉替换为55%碳化硅陶瓷粉体,并适应性调整第一粘结剂的体积百分含量外,其余与实施例3相同。

使用上述方法得到的3d打印用料,利用实施例3所述打印方法成型氧化铝增韧氧化锆陶瓷产品。所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

实施例7

一种3d打印用料的制备方法除步骤(1)得到粒度分布d90为5~20μm的粒料外,其余与实施例3相同。

使用上述方法得到的3d打印用料,利用实施例3所述打印方法成型氧化铝增韧氧化锆陶瓷产品。所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

实施例8

一种3d打印用料的制备方法除步骤(1)得到粒度分布d90为120~180μm的粒料外,其余与实施例3相同。

使用上述方法得到的3d打印用料,利用实施例3所述打印方法成型氧化铝增韧氧化锆陶瓷产品。所述成型件的性能为:因增加粉团结构降低总粉体表面积,故粉团容易结成团状,且其高分子膜厚度增加使其喂料的流动性高(>mfi1200),卷成线盘状,其韧性高,适合自动送料加工。

对比例1

一种3d打印用料的制备方法,除不进行第二粘结剂的预处理,即直接将50vol%氧化铝-氧化锆陶瓷粉与50vol%的第一粘结剂混合外,其余与实施例3相同。

使用上述方法得到的3d打印用料,利用实施例3所述打印方法成型氧化铝增韧氧化锆陶瓷产品。所述成型件的性能为:因超细粉体总表面积高,故在定量的高分子含量下不容易结成团状,且其高分子膜厚度薄,导致喂料的流动性差(<mfi200),其韧性差易断裂无法拉成线盘状。

对实施例1-8得到的3d打印产品的尺寸收缩及产品良率进行测试,结果为:实施例1-8得到的3d打印产品相较于现有技术得到的3d打印产品,其高温烧结尺寸收缩小且变异少,产品良率提升10~30%。

将实施例1-8中的第二粘结剂替换为其它热固性高分子材料如,酚醛树脂、脲醛树脂、三聚氰胺树脂、不饱和聚酯树脂、环氧树脂、有机硅树脂或聚氨酯中的任意一种或至少两种的组合;或替换为其它的热塑性高分子材料,如聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚碳酸酯、聚酰胺、丙烯酸类塑料、聚砜或聚苯醚中的任意一种或至少两种的组合。制得的3d打印产品相较于现有技术得到的3d打印产品,高温烧结尺寸收缩小且变异少,产品良率提升10~30%。

申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1