本发明涉及一种制作陶瓷材料的方法,尤其是涉及一种石墨烯辅助室温闪烧陶瓷材料的方法。
背景技术:
闪烧(flashsintering)是给陶瓷坯体施加电场(7.5~1000v/cm)和温度场(炉子的温度以一定的速率上升),当炉子温度达到某一特定值(低于烧结温度,此温度为闪烧的引发温度,简称“闪烧温度”)发生烧结,伴随能量密度迅速上升达到极值(可达10~1000mw/mm3)。过程中伴随样品电导率非线性的增加,从发生闪烧到完成烧结只需要小于1分钟的时间。[rajetal.inapatentnous9,334,194(2011)]此方法与传统烧结相比,可以在较低的温度,极短的时间完成烧结。烧结后的样品往往具有晶粒细小的特点。闪烧最初仅适用于具有ntc效应(随着温度的上升电阻下降)的离子导体陶瓷材料,后来发展到绝缘体(al2o3)、半导体(sic)以及金属导体(铝合金)。尽管闪烧温度相比传统烧结已经很低,但还是有大量的研究关注在如何降低闪烧引发温度,甚至室温下发生闪烧(室温烧结可以降低成本和节能,简化烧结设备—直接去除炉子这一传统烧结必须的设备)。比如,室温在管式炉通含水气的氢气闪烧氧化锌[jiuyuannie,etal.water-assistedflashsintering:flashingznoatroomtemperaturetoachieve~98%densityinseconds[j].scriptamaterialia,142(2018)79-82.],室温闪烧铝合金[brandonmcwilliams,etal.sinteringaluminumalloypowderusingdirectcurrentelectricfieldsatroomtemperatureinseconds[j].jmatersci,(2018)53:9297–9304]。其中,第一种方法,对设备的要求并没有降低,而且氧化锌的烧结温度本身并不高;第二种方法,烧结的是金属材料,金属材料的导电性很高,此方法不适合大部分导电率比较低的无机非金属材料。因此,以上方法不具有普适性,要寻求一种简单并且对大部分陶瓷材料都有效果的室温闪烧的方法。
技术实现要素:
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种石墨烯辅助室温闪烧陶瓷材料的方法。
本发明的目的可以通过以下技术方案来实现:
一种石墨烯辅助室温闪烧陶瓷材料的方法,在石墨烯增强陶瓷复合材料两端施加高电场,限制在相对较低的电流,利用石墨烯的高导电率的特性,在室温条件下发生闪烧。利用石墨烯产生的温度提供闪烧的引发温度,让坯体导通,利用通电产生的焦耳热,导致陶瓷坯体的温度迅速提高到烧结温度,坯体迅速收缩,在很短的时间内(1min)完成烧结,该方法采用以下步骤:
将石墨烯分散到溶剂中,混合得到石墨烯溶液;
将陶瓷粉体加入到所述石墨烯溶液中混合均匀,去除溶剂得到复合粉体;
复合粉体成型成坯体,室温条件下,在坯体两端施加电场,在小于60s的时间内完成闪烧。
进一步的,所述电场强度20~1000v/cm;更进一步的,电场强度为20~1000v/cm。
进一步的,所述电流密度40~500ma/mm2;更进一步的,电流密度为40~500ma/mm2。
进一步的,施加电场通电后,电流的增加速度先控制在小于1ma/s,缓慢增加的时间称为‘孕育期’,此段时间和场强有关,持续1~30s,中期电流以10~1000ma/s的速度迅速增加,持续1-10s,最终电流达到最大值进入稳定期,保持5~20s材料烧结致密。
进一步的,所述石墨烯为石墨烯微片、氧化石墨烯或还原氧化石墨烯,所述溶剂为去离子水、乙醇、dmf或nmp。
进一步的,所述石墨烯溶液的浓度为0.02-8mg/ml。
进一步的,所述陶瓷粉体为ysz、半导体或绝缘体。
更加进一步的,所述半导体包括碳化硅,所述绝缘体包括氧化铝。
进一步的,陶瓷粉体经球磨在石墨烯溶液中混合均匀,在烘箱中去除溶剂。
进一步的,所述复合粉体中石墨烯含量为1-10wt%。
进一步的,所述坯体的形状为狗骨头形、长条形、圆柱形或圆片形,在压好的坯体两端施加电场,坯体在电场方向的长度为1-50cm。
与现有技术相比,本发明具有以下优点:
(1)室温闪烧,速度快,节省了炉子升温时间和这期间消耗的能量。传统烧结陶瓷的方法是通过炉子辐射传热给坯体,需要几十分钟甚至几个小时,效率远低于闪烧直接坯体自身产生焦耳热的加热方式,所以闪烧只需要几分钟就可以烧结坯体。
(2)室温烧结除了可以降低成本和节约能源,更重要的是可以极大地简化烧结设备,省去炉子这一无论传统烧结还是闪烧工艺都必不可少的设备。坯体需要炉子加热来提供一定的热量来使其达到闪烧的引发温度,而本发明是通过坯体内均匀分散的石墨烯通电产生的热量代替炉子的热量。
(3)这种方法的石墨烯填料的添加量很低,相比其他需要大量添加的导电填料,不会对烧结有太大的不利影响。这和石墨烯这种材料具有超大比表面积以及高导电率的特性有关。
附图说明
图1为实施例1制备得到产品的照片;
图2为实施例1中场强、电流密度随时间的变化图;
图3为实施例1中能量密度以及样品收缩率随时间的变化图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
一种石墨烯辅助室温闪烧陶瓷材料的方法,采用以下步骤:
(1)称取一定量的石墨烯(石墨烯微片、氧化石墨烯或者还原氧化石墨烯),分散于适当的溶剂(去离子水、乙醇、dmf或者nmp)中,采用搅拌20-180min,获得均匀的石墨烯溶液,控制其浓度为0.02-8mg/ml;
(2)将一定量的陶瓷粉体(离子导体,如ysz,半导体,如碳化硅,绝缘体,如氧化铝)加入到配制好的石墨烯溶液中,用球磨的方法混合均匀,球磨速度为100-1000r/min,球磨时间2-24h,在烘箱中除去溶剂,得到复合粉体(最终石墨烯含量为质量分数1-10wt%);
(3)取适量配制好的复合粉体加入到模具中,压制成狗骨头形、长条形、圆柱形或者圆片形,在压好的坯体两端施加电场,坯体在电场方向的长度为1-50cm;
(4)在室温条件下,烧结坯体所需的电场强度要求大于20v/cm,电流密度大于40ma/mm2,通电以后电流会先缓慢增加后迅速增加,最终电流达到最大值,实现陶瓷材料的烧结,整个过程用时小于60s。
以下是更加详细的实施案例,通过以下实施案例进一步说明本发明的技术方案以及所能够获得的技术效果。
各实施例中使用的球磨机是南京南大仪器有限公司生产的行星球磨机。电热鼓风干燥箱是浙江杭州蓝天化验仪器厂生产的dhg9040ha型电热鼓风干燥箱。压片机是合肥科晶公司生产的。电源是鼎华公司生产的量程为电压0-1000v和电流0-1a。
实施例1:
一种石墨烯辅助室温闪烧陶瓷材料的方法,采用以下步骤:
(1)称取一定量的上海碳源汇谷新材料科技有限公司生产的氧化石墨烯,分散于去离子水中,采用搅拌60min,获得均匀的氧化石墨烯溶液,溶液的浓度为2mg/ml;
(2)将一定量的ysz(钇稳定的氧化锆)粉体加入到配制好的氧化石墨烯溶液中,用行星球磨的方法混合均匀,球磨速度为300r/min,球磨时间12h,在烘箱中除去溶剂,得到ysz和氧化石墨烯的复合粉体,最终氧化石墨烯含量为质量分数2wt%;
(3)取0.8g配制好的复合粉体加入到模具中,压制成狗骨头形,如图1所示。坯体的尺寸是20×3×2mm3,铂丝通过两端的孔用来施加场强。在压好的坯体两端施加电场,坯体在电场方向的长度为20mm;
(4)在室温条件下,烧结坯体所需的电场强度60v/cm,电流密度160ma/mm2,施加电场通电后,电流的增加速度先控制在小于1ma/s,缓慢增加持续30s,中期电流以10ma/s的速度迅速增加,持续10s,最终电流达到最大值进入稳定期,保持20s材料烧结致密,实现陶瓷材料的烧结,整个过程用时60s。
实施例2:
一种石墨烯辅助室温闪烧陶瓷材料的方法,采用以下步骤:
(1)称取一定量的石墨烯微片,分散于乙醇中,采用搅拌120min,获得均匀的石墨烯溶液,溶液的浓度为4mg/ml;
(2)将一定量的氧化铝粉体加入到配制好的石墨烯溶液中,用行星球磨的方法混合均匀,球磨速度为300r/min,球磨时间12h,在烘箱中除去溶剂,得到氧化铝和石墨烯的复合粉体,最终石墨烯含量为质量分数5wt%;
(3)取0.8g配制好的复合粉体加入到模具中,压制成狗骨头形,坯体的尺寸是20×3×2mm3,在压好的坯体两端施加电场,坯体在电场方向的长度为30mm;
(4)在室温条件下,烧结坯体所需的电场强度70v/cm,电流密度100ma/mm2,施加电场通电后,初期电流以小于1ma/s的速度缓慢增加,持续10s,中期电流以1000ma/s的速度迅速增加,持续10s,最终电流达到最大值进入稳定期,保持10s材料烧结致密,实现陶瓷材料的烧结,整个过程用时30s。
实施例3:
一种石墨烯辅助室温闪烧陶瓷材料的方法,采用以下步骤:
(1)称取一定量的通过抗坏血酸还原的还原氧化石墨烯,分散于乙醇中,采用搅拌60min,获得均匀的还原氧化石墨烯溶液,溶液的浓度为4mg/ml;
(2)将一定量的碳化硅粉体加入到配制好的还原氧化石墨烯溶液中,用行星球磨的方法混合均匀,球磨速度为300r/min,球磨时间12h,在烘箱中除去溶剂,得到碳化硅和还原氧化石墨烯的复合粉体,最终还原氧化石墨烯含量为质量分数2wt%;
(3)取0.8g配制好的复合粉体加入到模具中,压制成狗骨头形,坯体的尺寸是20×3×2mm3,在压好的坯体两端施加电场,坯体在电场方向的长度为20mm;
(4)在室温条件下,烧结坯体所需的电场强度100v/cm,电流密度160ma/mm2,施加电场通电后,初期电流以小于1ma/s的速度缓慢增加,持续5s,中期电流以800ma/s的速度迅速增加,持续10s,最终电流达到最大值进入稳定期,保持5s材料烧结致密,实现陶瓷材料的烧结,整个过程用时20s。
图2和图3为本发明中场强、电流密度、能量密度以及样品收缩率随时间变化的曲线图。从图中可以看出,本发明施加了高的场强(60v/cm),电流开始缓慢增加,随后迅速上升,达到预设值(160ma/mm2),样品在此时开始收缩,经过20秒便收缩了25%,完成烧结。
实施例4
一种石墨烯辅助室温闪烧陶瓷材料的方法,采用以下步骤:
(1)称取一定量的石墨烯微片,分散于去离子水中,搅拌20min,获得均匀的石墨烯溶液,溶液的浓度为0.02mg/ml;
(2)将一定量的ysz粉体加入到配制好的石墨烯溶液中,用行星球磨的方法混合均匀,球磨速度为100r/min,球磨2h,在烘箱中除去溶剂,得到ysz和石墨烯的复合粉体,最终石墨烯含量为质量分数1wt%;
(3)取0.8g配制好的复合粉体加入到模具中,压制成长条形,坯体的尺寸是20×3×2mm3,在压好的坯体两端施加电场,坯体在电场方向的长度为20mm;
(4)在室温条件下,烧结坯体所需的电场强度80v/cm,电流密度100ma/mm2,施加电场通电后,初期电流以小于1ma/s的速度缓慢增加,持续1s,中期电流以500ma/s的速度迅速增加,持续5s,最终电流达到最大值进入稳定期,保持14s材料烧结致密,实现陶瓷材料的烧结,整个过程用时30s。
实施例5
一种石墨烯辅助室温闪烧陶瓷材料的方法,采用以下步骤:
(1)称取一定量的氧化石墨烯,分散于乙醇中,采用搅拌180min,获得均匀的氧化石墨烯溶液,溶液的浓度为8mg/ml;
(2)将一定量的氧化铝粉体加入到配制好的氧化石墨烯溶液中,用行星球磨的方法混合均匀,球磨速度为1000r/min,球磨时间24h,在烘箱中除去溶剂,得到氧化铝和氧化石墨烯的复合粉体,最终氧化石墨烯含量为质量分数10wt%;
(3)取0.8g配制好的复合粉体加入到模具中,压制成圆柱形,在压好的坯体两端施加电场,坯体在电场方向的长度为20mm;
(4)在室温条件下,烧结坯体所需的电场强度200v/cm,电流密度100ma/mm2,施加电场通电后,初期电流以小于1ma/s的速度缓慢增加,持续30s,中期电流以1000ma/s的速度迅速增加,持续5s,最终电流达到最大值进入稳定期,保持15s材料烧结致密,实现陶瓷材料的烧结,整个过程用时50s。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。