一种基于电解剥离制备n型碲化铋粉末的方法与流程

文档序号:35695900发布日期:2023-10-11 18:59阅读:46来源:国知局
一种基于电解剥离制备n型碲化铋粉末的方法与流程

本发明属于粉末制备领域,具体涉及一种基于电解剥离制备n型碲化铋粉末的方法。


背景技术:

1、基于热电材料的热电转换技术是应对能源危机和环境污染的重要技术手段,在余热回收、汽车尾气发电、体温发电、物联网微能量电池、rtg电池等新能源领域,以及车载冰箱、电子元器件冷却、光器件精准控温等微区热管理领域应用前景广阔。bi2te3基合金是迄今为止室温附近热电性能最好、唯一商用的热电材料。传统商用bi2te3基合金大都为定向凝固技术制备的类单晶材料,其力学强度较弱,有效最小可切割尺寸仅0.8mm,难以满足热电器件微型化的需求。粉末冶金工艺,通过引入微纳结构,可显著提高其力学强度和热电性能。然而,在粉末冶金工艺中,首当其冲的是制粉工艺。

2、传统机械制粉工艺像球磨法和机械破碎等存在一系列的缺陷,例如,机械制粉过程中,由于机械变形,材料内会产生大量的晶格缺陷,诱导产生严重的类施主效应,不利于热电性能的提升;通过机械粉碎方法生产的粉末其粒径分布很宽(从纳米级到几十微米级),很难制备出粒度均一的粉末,这使得材料内部的缺陷极难控制,很容易导致性能不稳定、难以重复的问题;机械制粉过程中,粉末晶界还会不可避免的引入杂质被污染和氧化,这又会进一步恶化其热电性能;机械制粉的生产过程也会造成环境的污染。因此寻求一种非机械破碎、高效无污染的制粉工艺来生产n型碲化铋粉末是很有必要的。


技术实现思路

1、本发明提供一种基于电解剥离制备n型碲化铋粉末的方法,能够解决传统机械制粉工艺为碲化铋材料带来的类施主效应、粉末粒度不均匀、粉末易引入杂质被污染等问题。

2、为解决上述问题,本发明提供的技术方案如下:

3、本发明实施例提供一种基于电解剥离制备n型碲化铋粉末的方法,所述制备方法包括:

4、步骤s1,用1000目砂纸打磨n型碲化铋晶片,然后用乙醇超声清洗;

5、步骤s2,准备好直流电源,与电源正极连接电源线分成两路;

6、步骤s3,乙醇清洗后的n型碲化铋晶片用第一电极夹固定,两个石墨电极分别用第二电极夹和第三电极夹固定;

7、步骤s4,将步骤s3中的第一电极夹、第二电极夹和第三电极夹固定在电极固定架上,第二电极夹和第三电极夹分别固定在第一电极夹的左右两边;

8、步骤s5,电源正极分出的两路电源线分别夹在第二电极夹和第三电极夹上,电源负极引出的电源线夹在第一电极夹上;

9、步骤s6,配制1.3mol/l的nacl溶液作为电解液,将第一电极夹固定的碲化铋晶片样品浸入电解液中,将第二电极夹和第三电极夹固定两个石墨电极也浸入电解液中;

10、步骤s7,调整电源电压大小为3.5~4.5v,电解时间为1~3min,通过电场驱动钠离子嵌入n型碲化铋晶片中的晶胞的te-te层间,致使晶格坍塌开裂,导致n型碲化铋纳米颗粒从晶片上整体剥离脱落,从而形成粉末;

11、步骤s8,电解结束后,收集从n型碲化铋晶片上剥离下来留在电解液中的n型碲化铋粉末,并进行清洗、过滤、干燥,即得所需的高纯n型碲化铋粉末。

12、根据本发明一可选实施例,步骤s4中的两个石墨电极分别位于碲化铋晶片的两端,且与碲化铋晶片之间保持相同的距离。

13、根据本发明一可选实施例,步骤s6还包括烧杯,将电解液填充到烧杯中,将第一电极夹固定的碲化铋晶片样品浸入烧杯中的电解液中,将第二电极夹和第三电极夹固定的两个石墨电极插入烧杯中的电解液中。

14、根据本发明一可选实施例,步骤s6中将碲化铋晶片的3/4部分浸入nacl水溶液。

15、根据本发明一可选实施例,步骤s6中的两个石墨电极中一个石墨电极作为电解反应中的阳极,另一个石墨电极作为备用电极。

16、根据本发明一可选实施例,步骤s7中的纳米颗粒的粒径为10~50nm。

17、根据本发明一可选实施例,第一电极夹、第二电极和第三电极夹的材料为铝、铜、钼、镍中的一种材料。

18、根据本发明一可选实施例,步骤s4中的电极固定架包括胶框和位于贯穿胶框的通孔,所述第一电极夹、所述第二电极和所述第三电极夹的导电轴穿过所述通孔与对应的电源线电性连接。

19、根据本发明一可选实施例,所述胶框的材料为白色绝缘材料,且所述胶框包括与电解液接触的搭接部、位于所述搭接部之上的凸台部和贯穿所述凸台部的胶管,所述胶管的一端与搭接部连接,所述通孔设置在所述胶管内。

20、有益效果:本发明实施例提供一种基于电解剥离制备n型碲化铋粉末的方法,本发明采用电解工艺,通过电场驱动钠离子嵌入n型碲化铋晶片(bitese)的晶胞的te-te层间,致使晶格坍塌开裂,导致n型碲化铋(bitese)纳米颗粒从晶片上整体剥离脱落,细化成n型碲化铋材料颗粒,克服了传统机械制粉工艺为碲化铋材料带来的类施主效应,且颗粒尺寸均匀,仅借助直流电源,设备简单、操作方便、速率可控;还有采用的氯化钠电解液价格低廉、清洁,生产成本低,且不会对环境造成污染。



技术特征:

1.一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,所述制备方法包括:

2.根据权利要求1所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,步骤s4中的两个石墨电极分别位于碲化铋晶片的两端,且与碲化铋晶片之间保持相同的距离。

3.根据权利要求1所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,步骤s6还包括烧杯,将电解液填充到烧杯中,将第一电极夹固定的碲化铋晶片样品浸入烧杯中的电解液中,将第二电极夹和第三电极夹固定的两个石墨电极插入烧杯中的电解液中。

4.根据权利要求3所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,步骤s6中将碲化铋晶片的3/4部分浸入nacl水溶液。

5.根据权利要求1所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,步骤s6中的两个石墨电极中一个石墨电极作为电解反应中的阳极,另一个石墨电极作为备用电极。

6.根据权利要求1所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,步骤s7中的纳米颗粒的粒径为10~50nm。

7.根据权利要求1所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,第一电极夹、第二电极和第三电极夹的材料为铝、铜、钼、镍中的一种材料。

8.根据权利要求7所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,步骤s4中的电极固定架包括胶框和位于贯穿胶框的通孔,所述第一电极夹、所述第二电极和所述第三电极夹的导电轴穿过所述通孔与对应的电源线电性连接。

9.根据权利要求8所述的一种基于电解剥离制备n型碲化铋粉末的方法,其特征在于,所述胶框的材料为白色绝缘材料,且所述胶框包括与电解液接触的搭接部、位于所述搭接部之上的凸台部和贯穿所述凸台部的胶管,所述胶管的一端与搭接部连接,所述通孔设置在所述胶管内。


技术总结
本发明提供一种基于电解剥离制备n型碲化铋粉末的方法,采用电解工艺,通过电场驱动钠离子嵌入n型碲化铋晶片中的晶胞的Te‑Te层间,致使晶格坍塌开裂,导致n型碲化铋纳米颗粒从晶片上整体剥离脱落,细化成n型碲化铋材料颗粒,克服了传统机械制粉工艺为碲化铋材料带来的类施主效应,且该制备方法中的细化n型碲化铋材料中的颗粒尺寸均匀,仅借助直流电源,设备简单、操作方便、速率可控;还有采用的氯化钠电解液价格低廉、清洁,生产成本低,且不会对环境造成污染。

技术研发人员:胡晓明,马燕,胡浩,赵吕龙,樊希安
受保护的技术使用者:武汉赛格瑞新材料有限公司
技术研发日:
技术公布日:2024/1/15
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1