专利名称:金属氧化物的制法、形成用该金属氧化物的金属氧化物薄膜用靶子材料及其制法、以及金 ...的制作方法
用靶子材料及其制法、以及金属氧化物薄膜的制法本发明涉及一种组成的控制性良好的金属氧化物的制法、通过激光沉积法能高效制造适当组成的金属氧化物薄膜的靶子材料及该靶子材料的制法、以及用该靶子材料形成所述金属金属氧化物薄膜的方法。
作为制造金属氧化物最常采用的方法是把碳酸盐或氧化物等固相原料按所要求的金属氧化物组成比进行混合,通过焙烧得到金属氧化物的固相法。但是,由于这种方法是混合固相物并进行焙烧的方法,因此若从微观角度看,则很自然是不均匀相,特别是在合成要求原料物质高度均匀性的多组分氧化物中,不可避免生成不同相造成的组成偏差。为了得到均匀的原料物质,需要从最初原料在均匀的状态下进行合成。作为这样的方法,有颇为人们瞩目的液相法,该方法是以溶胶-凝胶法及其沉淀法为代表的化学方法。
但是,这些液相法,即使最初溶液是均匀的,可是由于金属化合物的种类不同,水解速度及溶度积等也不同,因此在其后的水解、中和或生成沉淀等的过程中,即使所得的粉体为微粒子,也不容易避免所谓体系不均匀化的实质问题。作为解决这种问题的方法,曾提出有通过在水相中在金属离子和柠檬酸等的多元羧酸间形成金属络合物,并且在其中加入乙二醇等的多元醇作为交联剂进行酯聚合的凝胶状的络合聚合物的方法。
但是,这种方法,在酯聚合过程中,由于从金属络合物析出金属也可能产生偏析,并且在使用这些物质为最初原料时,必须微细地粉碎焙烧凝胶所得的焙烧物,存在提高制造成本或操作变复杂等问题。
另外,虽然也提出过其它各种最初原料的合成法,但是任何一种由于操作烦杂并提高制造成本而缺乏通用性。
近年来,人们开发一种由金属螯合络合物合成陶瓷的方法。值得注意的是,这种方法具有抑制金属组成偏差的可能性。但是,在这种方法中,还没发现能以分子水平均匀地混合固体状态的各金属螯合络合物的合适的方法,还没有充分地表现用金属螯合络合物的优越性。
另外,在已实用化的金属氧化物粉体的制法中,控制所得到的粉体的形态及粒径几乎是不可能的。
另一方面,作为多组分金属氧化物薄膜的制造方法,已知有通过在气相使原料反应并在固相使之析出得到目的化合物的化学气相法(CVD法)和在固体原料(靶子)中注入物理能使之汽化并且在基板上使之再分布成氧化薄膜的物理气相法(CVD法)。其中,CVD法由于原料的种类不同而蒸汽压不同,在中间反应中具有容易析出不同相的缺点,并且作为合成多组分金属氧化物薄膜的方法也难控制其组分。另一方面,在PVD法中的代表性的溅射法,虽然通用性好,但是当长时间使用同一靶子,则由于靶子化合物组成变化,所以也有非常难控制组成的缺点。
为了改善组成控制性的问题,开发出通过激光照射组合靶子材料并且在基板上使之再取向的激光沉积法(激光烧蚀)。但是,目前所使用的靶子材料具有如离子键或共价键等强键,因此,需要强激光能量,另外有时作为巨大粒子(降落沤)落到基板上,因此也有容易造成所得薄膜不均匀(表面变粗)的问题。
作为解决这种问题的办法,通过在靶子和基板之间设置隔壁也能抑制向基板的落下沤的沉积。但是这种方法是物理方法,因此很难说能从根本上解决问题。说起来用PVD法所得到的薄膜不过是再配置靶子材料,由于靶子的质量直接反映到氧化物薄膜上,因此必须准备高质量的靶子。但是,作为靶子材料将所用的高质量的多组分金属氧化物的主体作为均匀物进行合成是非常困难的,并且由于需要很多时间和操作,该工序限制了速度,并且在成本方面也非常不利。
本发明鉴于上述情况,其目的是提供一种在比较低的焙烧温度下也容易得到对任何的组成中可适当地控制组成的金属氧化物的方法。另外,本发明的另一目的是提供一种能更迅速地并以低能和低成本形成可适当地控制组成并且表面平滑性良好的高质量的金属氧化物薄膜、特别是多组分的金属氧化物薄膜的方法、提供一种以分子水平均匀的靶子材料、以及能简便地制造这样的靶子材料的方法、以及提供一种用这种靶子材料形成可控制上述的组成的金属氧化物薄膜的有用的方法。
为了实现上述目的,本发明的金属氧化物的制法主要是指使用含有无定形的有机金属螯合络合物的粉末作为原料的方法。作为在这里所使用的无定形的有机金属螯合络合物,通过把原料金属和有机螯合形成剂按规定的金属组成混合并调制成澄清透明的有机金属螯合络合物水溶液后,喷雾干燥该水溶液能够得到。
作为上述有机螯合形成剂最好为在200℃以下的温度下不热分解的氨基羧酸类螯合剂。
而且,当调制上述金属螯合络合物,特别是多组分的金属螯合络合物时,对于各金属混合按当量以上的螯合剂使全部原料金属完全地形成络合盐后,成为澄清透明的水溶液的方法是理想的。另外,作为金属在使用受到空气氧化等容易变成金属氧化物或者容易变成高价金属离子的金属时,在上述有机金属螯合络合物水添加还原剂和/或抗氧化剂并防止金属离子的氧化是理想的,例如在含钛作为原料金属的场合,通过加入还原剂对稳定钛(Ⅲ)是有效的。
在本发明中所使用的上述无定形的有机金属螯合络合物为无定形状,具有按分子水平均匀的组成,而且如在后述的实施例所说明的那样,与已往的氧化物薄膜制造原料相比能在特别低的温度下进行焙烧。
另外,所谓本发明的金属氧化物薄膜形成用靶子材料,其特征是指将含有上述无定形的有机金属螯合络合物的粉末成型片剂状的材料,在制造这种靶子材料时,最好采用通过将原料金属和有机螯合形成剂混合成规定的金属组成,调制澄清透明的有机金属螯合络合物水溶液并且喷雾干燥该水溶液,得到以分子水平所混合的有机金属螯合络合物的无定形的粉末后,加压成型该粉末成片剂状的方法。
在这种情况下,作为有机螯合形成剂最好所使用的形成剂为在200℃以下的温度不热分解的氨基羧酸类螯合剂。另外,也可以采用对各金属按当量以上混合螯合剂使所有的原料金属完全地形成络合盐之后,成为澄清透明的水溶液的方法。另外,作为原料金属,在使用受到空气氧化等容易变成金属氧化物或者容易变成高价金属离子的金属的场合,与上述相同,在有机螯合络合物水溶液中添加还原剂和/或抗氧化剂防止金属离子氧化是理想的,例如,作为原料金属含有钛时,通过加入还原剂对稳定钛(Ⅲ)是有效的。
而且,若用上述靶子材料,通过激光沉积法,采用形成薄膜的方法,则在任何成分中,容易控制金属氧化物薄膜的组成,而且也能更迅速并且以低能量和低成本得到没有缺欠的表面平滑性良好的金属氧化物薄膜。
因此,这种方法,例如,对形成YBa2Cu3O7-δ薄膜或SrTiO3薄膜那样的多组分金属氧化物系的高温超导薄膜等是极其有效的。
下面对附图进行简单的说明。
图1为在实施例1作为金属氧化物粉体的制造原料所用的无定形粉末的X射线衍射光谱。图2为在实施例1作为金属氧化物粉末的制造原料所用的无定形粉末的SEM照片。图3为在实施例1所得的金属氧化物粉末的X射线衍射光谱。
图4为在比较例所得的金属氧化物粉末的X射线衍射光谱。图5为表示在实验中所用的激光沉积装置的概要说明图。图6为在实施例2所得的金属氧化物薄膜的X射线衍射光谱。图7为在比较例2所得的金属氧化物薄膜的X射线衍射线光谱。
图8为在实施例3所得的金属氧化物粉末的X射线衍射光谱。图9为在比较例3所得的金属氧化物粉末的X射线衍射光谱。图10为在实施例4所得的金属氧化物粉末的X射线衍射光谱。图11为在比较例4所得的金属氧化物粉末的X射线衍射光谱。
图12为在实施例4及比较例4中所使用的金属螯合络合物粉末及在450℃下焙烧该粉末所得的金属氧化物的SEM照片。图13为在实施例4及比较例4中,在600℃或800℃下焙烧金属螯合络合物粉末所得的金属氧化物的SEM照片。图14为在实施例4及比较例4中,在1000℃焙烧金属螯合络合物粉末所得到的金属氧化物的SEM照片。
图15为在实施例5中所得的金属氧化物薄膜的X射线衍射光谱。
本发明的实施例本发明是由上述的构成组成的,总之是把含有无定形的有机金属螯合络合物的粉末作为金属氧化物的生成原料的方法。含有这样的无定形螯合络合物的粉末与采用前述的以往的氧化物的制造方法相比,通过在相对低的温度(与以前的方法相比,例如在100-250℃的低温)下进行焙烧,能变成金属氧化物。
在本发明作为原料的使用的无定形状的有机金属螯合络合物,如后述的实施例(参照图1)所表明的,用X射线衍射分析表示所入射X射线的散射的晕圈图形,在晶体结构上为非晶体物质。也就是说,若通过由均相的液相喷雾干燥法瞬间干燥上述金属螯合络合物,则直接保持均相成为固相,即使是多组分的有机金属螯合络合物,各络合物也成为以分子水平均匀地混合的物质,成为没取晶体状态的各分子直接凝聚的非晶体物质(在微观上通常能看到在结构内所残余的有规性上的差异,但若与上述的以往技术相比,则其有规性其极小的,能明显地与晶体物质的络合物区别)。
而且,通过喷雾干燥所得到的有机金属螯合络合物粉末(以下称为无定形的粉体)约为球形(参照图2),若进行焙烧,则能得到保持焙烧前的形状状态的陶瓷(金属氧化物)粉末。因此,控制喷雾干燥的粉末化条件,并调整无定形粉体的形状,则使任意地调整所得的金属氧化物粉体的形状成为可能。
另外,由该无定形粉体所制作的金属氧化物粉体,最初如上所述的略显球形没有方向性,因此,若用该粉体为最初原料成形,与使用其他形状的原料时相比,能均匀并且极大地提高填充率。因此,由本发明所得到的金属氧化物粉末,例如在合成YAG(Yttriam Alminium Garnet)或如稳定化氧化锆的高密度陶瓷中是极其有用的。
还有,将由上述金属螯合络合物所构成的无定形粉体加压成块状,进行焙烧得到块状的金属氧化物,或者也可以将焙烧所得的金属氧化物粉末加压成块状。并且,把上述无定形粉体作为最初原料,通过混合其它的原料后进行焙烧,也可以得到新的组成的金属氧化物。
另外,若将含有上述无定形的有机金属螯合络合物的粉末形成片剂状的靶子材料,则通过激光照射在组合状态可容易吹散,当使之在被加热的基板上落下并直接地被热分解,则通过晶体取向外延的生长可容易地形成所希望的金属氧化物薄膜。
下面,详细地说明上述无定形的有机金属螯合络合物的制造方法。首先,精确秤取构成规定金属组成的金属原料,使之与有机螯合形成剂反应调制澄清透明的有机金属螯合络合物水溶液。该反应在水溶性溶剂中在温度20-100℃,最好在50-70℃的范围进行。水溶液的浓度按固体部分调整为5-30重量%,最好为10-20重量%。另外,有机螯合形成剂的使用量对于总金属离子若过量则任意量都可,但是理想的为1.0-1.5摩尔倍。在金属螯合络合物或有机螯合形成剂没有完全溶解时,加入氨或氨络物使之完全溶解。
可是,在制造功能性金属氧化物的情况下首要的问题是混入不纯金属。特别是,即使在有机螯合络合物中钠盐或钾盐等在热分解工序后也残留在薄膜内并成为使薄膜的组成失常的主要原因,所以应该避免使用。另外,对含氯、硫或磷的无机酸、无机酸盐(盐酸、硫酸、磷酸或这些酸的盐等)及有机物(硫醇式化合物等),由于同样的理由也不应当使用。除这些以外的物质(不含有氯、硫或磷等的有机物、硝酸、硝酸盐、氨等),由于在热分解以至焙烧工序中完全被分解,因此根据需要也可以适当加入,但是大量加入,则由于所加入的有机物中的杂质也有能污染的物质,所以限制在所需要的最小量是理想的。
作为在本发明所用的有机螯合物形成剂,可列举如乙二胺四醋酸、1,2-环己烷二胺四醋酸、二羟乙基氨基醋酸、二氨基丙醇四醋酸、二乙胺五醋酸、乙二胺二醋酸、乙二胺二丙酸、羟基乙二胺三醋酸、乙二醇醚二胺四醋酸、六甲撑二胺四醋酸、乙二胺二(对羟苯基)醋酸、羟乙基亚氨二醋酸、亚氨基二醋酸、1,3-二氨丙基四醋酸、1,2-二氨丙基四醋酸、氮川三乙酸、氮川三丙酸、三乙四胺六醋酸、乙二胺二琥珀酸、1,3-二氨丙基二琥珀酸、谷氨酸-N,N-二醋酸、天冬氨酸-N,N-二醋酸等的水溶性的氨基羧酸类螯合物,可以用这些的单体、低聚物或聚合物。
但是,使用游离酸类及铵盐或者氨盐,并且考虑与各金属的螯合生成常数、螯合络合物的稳定性、以及螯合络合物在水或碱的水溶液中的溶解性等,选择适于所使用的各原料金属的螯合形成剂是理想的。
另一方面,作为在本发明所使用的金属原料,可使用碳酸盐、硝酸盐、氢氧化物、氧化物等各种各样的原料,但是特别理想的是反应性或在反应后不残留剩余的离子的碳酸盐。另外,在上述金属原料缺乏反应性的场合,或者例如,不取钛那样的碳酸盐、硝酸盐、氢氧化物的形态并且氧化物使用非常稳定的金属场合,用氯化物或硫酸盐,首先合成有机螯合络合物溶液,通过析出晶体预先制作高纯度的有机螯合络合晶体、并以该晶体作为原料使用是理想的。
另外,根据金属的种类,也有由于接触空气在水溶液中金属离子受到氧化变成金属氧化物,低价的金属离子变成高价的金属离子,并造成对水溶液中的溶解性及稳定性的障碍。例如,在用钛作为金属成分之一的情况,使用有机螯合的钛(Ⅲ)络合物,但是在水溶液中由于与空气接触,钛(Ⅲ)离子被氧化,在水相成不稳定的钛(Ⅳ),并且也有受到氧化变成氧化钛的情况,因此,在使用具有这样性质的金属原料的情况下,在处理体系中加入还原剂或抗氧化剂在防止金属氧化的同时,谋求金属离子的稳定化后,使各原料金属与螯合形成剂的当量比一致使其它的金属离子形成络合盐完全成为澄清透明的水溶液,制作有机金属螯合络合物水溶液是理想的。在采用这样的方法时,作为所用的还原剂(或抗氧化剂),例如可列举抗坏血酸、异抗坏血酸、乙二酸、肼等。
如上述所调制的有机金属螯合络合物水溶液,通过下面的干燥进行粉体化。作为通过干燥由液相得到固相的方法,一般有真空干燥或薄膜干燥等各种干燥方法,但是由于在上述任何一种干燥过程中偏析出特有的金属盐,所以,在微观上难于得到均匀的粉末。因此,在本发明中,为了避免这样的问题,通过瞬间干燥采用能得到均匀的无定形粉末的喷雾干燥法是理想的。
喷雾干燥的运转条件,依据溶液的浓度或溶液处理速度、喷雾空气量、热风供给量等可适当地设定,但是干燥温度通常以有机物不分解的范围为上限,并把能充分干燥的范围作为下限。从这种考虑,干燥温度为100-200℃是理想的,而最好为140-180℃的范围。另外,若考虑这种的干燥温度,则在本发明所用的上述氨基羧酸类螯合剂,至少在200℃以下的温度不热分解是理想的。
由喷雾干燥所得的无定形粉末,根据其用途,可以直接以粉末状,或形成块状或薄膜等任意的形状,通过例如在500-800℃的比较低的温度下焙烧,能得到任意形状的金属氧化物。
另外,将所述有机金属螯合络合物粉末形成片剂状的靶子材料,通过激光沉积法等将金属氧化物薄膜作为制造的原料是极其有用的。作为形成片剂状的方法,若能为确保片剂的强度,则无特别的限定,但是最好是冷加压法(CIP法),这时理想的成型压力为200-1000kg/m3。对于形状考虑到片剂的强度或激光照射的加热后的冷却效率,则成薄的圆筒状是理想的。
把这种片剂作靶子材料使用,在氧气气氛中照射激光,则由于各自的有机金属螯合络合物与离子键或共价键相比,分子间的化学键是非常缓和的键,因此容易成为微小且均匀的组合,将其沉积到被加热的基板上,则由于有机物直接被热分解,所以金属元素(成分)通过晶体取向外延形成薄膜状的金属氧化物晶体。
另外,由于其它原因,即使发生降落沤的情况,由于有机物的热分解的体积减少非常之大,所以能最小限度地抑制对薄膜的影响。为了计划所得到的金属氧化物薄膜,没发现异常粒子成长,可以确认表面平滑性优异。另外,按这种方法,如后述实施例所示能迅速且以低成本形成YBa2Cu3O7-δ薄膜(式中,δ为由理想的晶体结构的氧缺欠量)或SrTiO3薄膜等的高质金属氧化物薄膜。
如上所述的本发明作为合成金属氧化物用的原料物质,通过使用含有无定形的有机螯合络合物的粉末,在比较低的焙烧温度能容易地得到粉末状、块状、薄膜状等任意的形状的金属氧化物,而且这些氧化物是来至使用无定形的上述有机螯合络合物使控制极高的组成成为可能。并且,上述螯合络合物粉末以的希望的方法能加工成颗粒或块状等任意的形状,通过预先加工螯合络合物粉末后进行焙烧能得到任意形状的金属氧化物。
其中,把含有上述螯合络合物粉末成型片剂状,若作为适用于激光沉积法等的片状材料使用,通过晶体取向外延的生长可容易地得到在高度的组成控制性下表面平滑性优越的金属氧化物薄膜,在以往制作困难的高质量的金属氧化物薄膜,特别是多组分的金属氧化物薄膜的制作中能发挥很大的作用。
特别是,可用于对用多组分的金属氧化物的代表的高温超导金属氧化物电子设备应用的开发技术,例如约瑟夫森元件、超导量子干涉元件(SQUID)的开发、以及薄膜光调制/光开关元件、压电元件、热电器件、表面弹性波(SAW)元件、光磁性存储薄膜、透明导电膜等的应用。
本发明的金属氧化物的制造方法,能广泛有效地用于制造上述的多组分的金属氧化物,特别是薄膜状的多组分的金属氧化物。也可作为形成由单一金属组分构成的金属氧化物或薄膜的方法的应用技术。
以下通过实施例对本发明给予更具体的说明,但是下述实施例并不限定本发明,在其前后适当所得的范围进行适当地变化也可以实施,当然这些都应包含在本发明的技术范围内。
实施例1在500ml烧杯中加入乙二胺四醋酸53.611g(0.18×1.02mol)和水,使总量为400g,搅拌下加热,在液温60℃搅拌下不要溢出地依次慢慢地投入二水合碳酸钇(钇含量40.9%)6.522g(钇0.03mol)、碳酸钡(钡含量69.0%)11.939g(钡0.06mol)、碳酸铜(碱性)(铜含量55.5%)10.305g(铜0.09mol)。
在60℃下保持30分钟,冷却到室温后加氨水35.8g,反应液pH8.4,完全溶解。在该溶液中加水使总量为500g,得到深兰色澄清透明的混合有机金属螯合络合物水溶液。
用喷雾干燥机在干燥温度150℃,以溶液处理速度350ml/小时,使该水溶液干燥,并使之粉末化,得到混合有机金属螯合络合物的无定形粉末55g。
图1示出该粉末X射线衍射图,示出由入射X射线的散射的晕圈图形,可以知道在晶体结构上是无定形(非晶体)物质。图2为该粉末的SEM照片,可以看到略呈球形。
用向大气开放型电炉在600℃、700℃、750℃或800℃通过3小时焙烧所得的无定形粉末,得到金属氧化物粉末。
比较例1
分别精确秤取EDTA钇铵11.85g(0.03mol)、EDTA钡二铵27.68g(0.06mol)及EDTA铜二铵34.88g(0.09mol),在研钵中进行充分地机械混合。用向大气开放式电炉在600℃、700℃、750℃或800℃通过5小时焙烧所得的无定形粉末得到金属氧化物粉末。
评价试验1将在上述实施例1及比较例1所得的各金属氧化物粉末的X射线衍射光谱示于图3和图4。对比这些图可知,在实施例1中在750℃出现YBa2Cu3O7-δ相,在800℃成YBa2Cu3O7-δ相单相,而在比较例1,在800℃出现YBa2Cu3O7-δ相,但检测出BaCO3及CuO相的不同相,而且即使提高到850℃也不没有得到作为YBa2Cu3O7-δ相单相。
实施例2将与上述实施例1同样所得的混合有机金属螯合络合物的无定形粉末在成型压力1000kg/m2下进行冷加压成型,制作直径10mm,厚度5mm的圆筒状压丸作为靶子材料。
比较例2将与上述比较例1同样所得的络合物混合粉末在成型压力1000kg/m2下进行冷加工成型,制作直径10mm,厚度5mm的圆筒状压丸作为靶子材料。
评价试验2使用在上述实施例2及比较例2所得的各靶子材料,用图5所示的装置,在SrTiO3(100)单晶基板上析出YBa2Cu3O7-δ薄膜。
图5为表示在该实验中所使用的激光沉积装置的慨要说明图,图中1为靶子支承台、2为靶子、3为油旋转泵、4为真空室、5为氧气导入口、6为KrF受激准分子激光器、7为导入激光用石英窗、8为基板加热台、9为SrTiO3(100)单晶基板、10为氧气瓶、11为流量计、12为加热器、13为温度控制装置。
使用上述靶子材料,用图5的装置按下述过程形成金属氧化物薄膜。首先,在靶子支承台1上装上靶子2,通过油旋转泵3使真空室4内减压到10-2Torr。然后,由氧气导入口5以流量2ml/分导入氧气,并使氧气分压保持为0.15Torr成为恒定。通过导入激光用石英窗以功率密度0.3J/cm2,反复频率7Hz将NdYAG激光器6(第4高频λ=260nm)照射到靶子2上,通过基板加热台8加热到850℃,在SrTiO3(100)单晶基板9上析出YBa2Cu3O7-δ薄膜。另外,靶子支承台1用液体N2不断进行冷却。靶子2与基板9之间的距离设定为30mm,使析出时间为20分钟,观察薄膜的变化。
对于所生成的各金属氧化物薄膜进行X射线衍射的晶体结构分析。将实施例2及比较例2所得的各薄膜的X射线衍射光谱示于图6、7。
如图6所示,在实施例2所得的薄膜在600℃的焙烧温度成为YBa2Cu3O7-δ相的单相,另外在(00c)能测定晶面指数,因此,所得的薄膜在C轴方向被取向,并能确认薄膜晶体取向外延的生长。另外,用原子间力显微镜观察所生成的薄膜的表面,可以确认能得到表面平滑性优异的薄膜。
与此相对,在比较例2所得的薄膜,如图7所示,在焙烧温度750℃,没有生成YBa2Cu3O7-δ相,通过提高焙烧温度到800℃,成为YBa2Cu3O7-δ相单相,并在轴方向取向,薄膜晶体取和外延生长,用原子间力显微镜所观察的薄膜表面为缺欠平滑性表面。
实施例3以200ml烧标中加入乙二胺四醋酸11.680g(0.04mol)和水,使总量为150ml,搅拌并加热,在液温60℃搅拌下以不溢出而慢慢地投入碳酸锶4.429g(0.03mol)。
在60℃保持30分钟,冷却到室温后,边搅拌边依次投入L(+)一抗坏血酸5.28(0.03mol)、乙二胺四醋酸-铵钛(Ⅲ)盐(钛含量12.8%)11.222g(钛0.03mol)。在该溶液中加入氨水6.5g,则为pH4.5完全溶解。然后再加水使总量为200g,得到暗红褐色澄清透明的混合有机金属螯合络合物水溶液。通过喷雾干燥机在干燥温度140℃、以溶液处理速度200ml/小时干燥该溶液并粉末化,得到混合有机金属螯合络合物的无定形粉末18g。
通过用开放型电炉在500℃或600℃焙烧3小时所得的无定形粉末,得到金属氧化物粉末。
比较例3
分别精确秤量EDTA锶铵13.43g(0.03mol)及EDTA钛(Ⅲ)铵11.40g(0.03mol),在研钵中充分进行机械混合。通过用向大气开放型的电炉在700℃、750℃或800℃焙烧12小时所得的络合物混合粉末,得到金属氧化物粉末。
评价试验3将上述实施例3及比较例3所得的各金属氧化物粉末的X射线衍射光谱示于图8、9。对比这些图可知,在实施例3中,在500℃成为SrTiO3相的单相。而在比较例3的情况下在700℃出现SrTiO3相,但还检测出SrCO3的不同相,提高焙烧温度到800℃,也不能得到作为SrTiO3相的单相。
实施例4在1升的烧杯中加入乙二胺四醋酸119.88g(0.40×1.02mol)和水,使总量为700g后,搅拌并加热,在液温60℃边搅拌边以不溢出而慢慢地投入三水合碳酸钇(钇含量43.0%)83.22g(钇0.40mol)。
在60℃保持30分钟,冷却到室温后,加氨水27g,则成pH8.0完全溶解,加水使总量为1000g,得到无色澄清透明的混合有机金属螯合络合物水溶液。用喷雾干燥机在干燥温度150℃、以溶液处理速度500ml/小时干燥该溶液并粉末化,得到混合有机金属螯合络合物的无定形粉末112g。
通过用管式炉以空气或氧气流量0.9ml/分,在450℃、600℃、800℃或1000℃焙烧5小时所得的无定形粉末,得到氧化钇(三氧化二钇)粉末。
比较例4通过将EDTA钇铵,用管式炉以空气或氧气流量0.9ml/分,在450℃、600℃、800℃或1000℃焙烧5小时,得到氧化钇(三氧化二钇)粉末。
评价试验4把在上述实施例4及比较例4所得的各氧化钇粉末的X射线衍射光谱示于图10、11,而将各原料粉末与各温度的焙烧粉末的SEM照片示于图12、13和14。
由图10、11可知,按实施例4,则在空气气氛下450℃焙烧的产物中也能检测出Y2O3的峰,可知在氧气气氛下的焙烧成晶体性好的氧化钇。另外,通过图12-14也可确认,通过实施例所得的焙烧粉末的形状也几乎为球状,可以确认保持了原料粉末的形状。而比较例4,在450℃焙烧的粉末Y2O3的峰只有痕迹的程度,在该温度下氧化钇几乎不生成。另外,焙烧粉末的形状以板状呈现具有方向性的晶体状。
实施例5使用与上述实施例3同样所得的无定形粉末,在成型压力1000kg/m2下进行冷加压成型,制作直径10mm、厚度5mm的圆筒状压丸作为靶子。
使用上述所得的靶子材料通过上述图5所示的装置并按下述过程形成金属氧化物。
即,将靶子2装在靶子支承台1上,通过油旋转泵3将真空室4内减压到0.01Torr。然后,从氧气导入口5以流量2ml/分导入氧气,调整氧气分压为0.15Torr后,经激光导入用石英窗7以功率密度0.5J/cm2,反复频率1Hz将KrF受激准分子激光6器(λ=248nm)照射到靶子2上,在由基板加热台8加热到800℃的SrTiO3(100)单晶基板9上析出SrTiO3薄膜。另外,靶子支承台1所述实施例1同样用液体N2经常冷却。另外,靶子2与基板9之间的距离设定为30mm,析出时间为2-30分钟,观察薄膜的变化。
对于所生成的薄膜,进行由X射线衍射的晶体结构分析。其结果如图15所示,由于SrTiO3薄膜在(00c)能测定晶面指数,因此可以确认所得的薄膜沿C轴方向取向,薄膜晶体取向外延生长。另外,用原子间力显微镜观察所生成的薄膜的表面,其表面平滑性优异,并可以确认异常成长粒子的大小与析出时间无关没有变化。
本发明由上述所构成,若采用该方法,则在任何构成组成中,能容易进行金属氧化物的组成控制,同时,能以更低温度、短时间和高效率迅速地进行焙烧。特别是,若使用将含有上述有机金属螯合络合物的粉末形成片状的靶子材料,则能以更迅速且低能量,低成本地形成表面平滑性良好的高质量多组分的金属氧化物薄膜。
特别是,采用本发明形成多组分的金属氧化物薄膜,则能实现高度的组成控制,并且通过晶体取向外延的生长,使低能量、低成本并且迅速和容易地提供表面平滑性良好的高质量多组分金属氧化物成为可能,本发明的应用范围涉及非常广泛。
权利要求
1.一种金属氧化物的制法,其特征在于作为原料使用含有无定形的有机金属螯合络合物的粉末。
2.根据权利要求1所述的制法,所述无定形的有机金属螯合络合物是通过将原料金属和有机螯合形成剂按规定的金属组成进行混合,调制澄清透明的有机金属螯合络合物水溶液后,通过喷雾干燥该水溶液所得到的。
3.根据权利要求2所述的制法,所述有机螯合形成剂是氨基羧酸类螯合剂,并且在200℃以下的温度不热分解。
4.根据权利要求2或3所述的制法,所述金属按当量以上混合螯合剂使所有的原料金属完全地形成络合盐成为澄清透明的水溶液。
5.根据权利要求2-4中任意项所述的制法,在所述有机金属螯合络合物水溶液中含有还原剂和/或抗氧化剂防止金属离子的氧化。
6.根据权利要求1-5中任意项所述的制法,所述有机金属螯合络合物物为多组分的有机金属螯合络合物。
7.根据权利要求1-6中任意项所述的制法,在低温焙烧所述无定形的有机金属螯合络合物。
8.一种形成金属氧化物薄膜用靶子材料,其特征在于是把含有无定形的有机金属螯合络合物的粉末来成型片状的材料。
9.一种靶子材料的制法,其特征在于当制造权利要求8所述的靶子材料时,通过将原料金属和有机螯合形成剂按规定的金属组成进行混合,调制澄清透明的有机金属螯合络合物水溶液,并喷雾干燥该水溶液,得到以分子水平所混合的有机金属螯合络合物的无定形的粉末后,加压成型该粉末成片状。
10.根据权利要求9所述的制法,所述有机螯合形成剂为氨基羧酸类螯合剂,并且在200℃以下的温度不热分解。
11.根据权利要求9或10所述的制法,对各金属按当量以上混合螯合剂使所有的原料金属完全地形成络合盐成澄清透明的水溶液。
12.根据权利要求9-11中任意项所述的制法,在所述有机金属螯合络合物水溶液中含有还原剂和/或抗氧化剂防止金属离子的氧化。
13.根据权利要求9-12中任意项所述的制法,所述有机金属螯合络合物为多组分的有金属螯合络合物。
14.一种金属氧化物薄膜的形成法,其特征在于使用权利要求8所述的靶子材料,适用激光沉积法形成金属氧化物薄膜。
15.根据权利要求14所述的形成法,所述有机金属螯合络合物为多组分的有机金属螯合络合物。
16.根据权利要求14或15所述的形成法,所述金属氧化物薄膜为YBa2Cu3O7-δ薄膜。
17.根据权利要求14或15所述的形成法,所述金属氧化物薄膜为SrTO3薄膜。
全文摘要
一种金属氧化物的制法是将原料金属与有机螯合剂按规定的金属组成混合并调制澄清透明的有机金属螯合络合物水溶液后,将通过喷雾干燥该水溶液所得到的含无定形的有机金属螯合络合物的粉末焙烧,得到金属氧化物,或用将含上述络合物的粉末成型片状的靶子材料形成金属氧化物薄膜。按上述制法,能提供组成控制性好且粒子形状控制容易的金属氧化物,同时,用激光沉积法能得到可高效制造适宜组成的金属氧化物薄膜的靶子材料。
文档编号C01B13/18GK1298368SQ99805350
公开日2001年6月6日 申请日期1999年4月16日 优先权日1998年4月24日
发明者斋藤秀俊, 大盐茂夫, 佐藤良, 南部信义, 中村淳, 古川正法 申请人:中部吉利斯德股份有限公司, 斋藤秀俊