荧光染料和肿瘤亲和的四吡咯的加合物的制作方法

文档序号:3475715阅读:284来源:国知局
专利名称:荧光染料和肿瘤亲和的四吡咯的加合物的制作方法
背景技术
对早期瘤形成变化的检测从结果的观点上看是很重要的,因为一旦发生侵袭癌和癌症转移,治疗就变得很困难。目前,切除活组织然后进行组织学检测被认为是诊断早期瘤形成的变化和癌的“黄金标准”。有时候,进行细胞学检查,即通过表面或者排泄细胞分析而非通过切除活组织进行检查。这些技术是强有力的诊断工具,因为提供了有关于组织的细胞和亚细胞结构高分辨率的空间和形态学信息。通过利用染色和处理可以提高组织病理学检测的对比度和特异性。然而,这两种诊断程序均需要物理除去样品继之以在实验室中处理组织。这些过程需要比较高的成本,因为需要样品的运送处理,并且重要的诊断信息不能立即获得。
荧光技术具有进行体内诊断组织,无需切除样品并且进行处理的潜在优势,并且最近几年中,已经开发了荧光光谱法用于癌症的诊断。利用分光镜剂的红外成象(IRI)具有优于体外及其他体内技术的若干优点,原因在于该技术是非侵入性的,并且在适当条件下可以实现深度穿透并且获得定量结果,而且与切除活组织检查或者细胞学检查相比可以实现对目的器官更全面的诊察。此外,在检验荧光材料的过程中,在一个实验动物体内既可以获得吸收的完全分布图,还可以获得分光镜剂所需的保留和消除方面的信息,因此降低了临床前试验所需的试验动物的数目。
红外成象技术所需的理想的分光镜剂的必要条件如下所述i)其优选定位在肿瘤细胞中;ii)具有较高的荧光利用率;iii)在病人体内不会产生光毒性或者其他的副作用;iv)便于合成;v)应该是化学纯的;以及vi)具有长波发射以便可以检测深位的肿瘤。
包括二氢卟酚,菌绿素及其他基于卟啉的衍生物,包括其类似物以及衍生物的卟啉最近发现具有作为用于疾病诊疗的光动力化合物的优选用途,所述疾病尤其是某些癌症及其他过度增生性疾病,诸如黄斑变性。这些化合物也可用于治疗牛皮癣以及乳头状瘤病。
这样的衍生物包括这些化合物的二聚物以及三聚物。可使用的衍生物还包括这些化合物的环变体;条件是这些化合物中心的十六个侧接的4氮杂环保持完整。因此,叶绿酸,紫红素以及脱镁叶绿甲酯酸及其衍生物包括在“卟啉,二氢卟酚以及菌绿素及其衍生物和类似物”的范围内。这样的衍生物包括这些环状结构上取代基的修饰。
目前有大量有关这一学科的文章发表,例如,″Use of theChlorophyll Derivative Purpurin-18,for Synthesis of Sensitizers for Use inPhotodynamic Therapy″,Lee et al.,J.Chem.Soc,1993,(19)2369-77;″Synthesis of New Bacteriochlorins And Their Antitumor Activity″,Pandey et al.,Biology and Med.Chem.Letters,1992;″PhotosensitizingProperties of Bacteriochlorophyllin a and Bacteriochlorin a,TwoDerivatives of Bacteriochlorophyll a″,Beems et al.,Photochemistry andPhotobiology,1987,v.46,639-643;″Photoradiation Therapy.II.Cure ofAnimal Tumors With Hematoporphyrin and Light″,Dougherty et al.,Journal of the National Cancer Institute,July 1975,v.55,115-119;″Photodynamic therapy of C3H mouse mammary carcinoma withhematoporphyrin di-esters as sensitizers″,Evensen et al.,Br.J.Cancer,1987,55,483-486;″Substituent Effects in Tetrapyrrole Subunit Reactivityand Pinacol-Pinacolone RearrangementsVIC-Dihydroxychlorins andVIC-Dihydroxybacteriochlorins″Pandey et al.,Tetrahedron Letters,1992,v.33,7815-7818;"Photodynamic Sensitizers from ChlorophyllPurpurin-18 and Chlorin P6″,Hoober et al.,1988,v.48,579-582;″Structure/Activity Relationships Among Photosensitizers Related toPheophorbides and Bacteriopheophorbides″,Pandey et al.,Bioorganic andMedicinal Chemistry Letters,1992,v2,491-496;″Photodynamic TherapyMechanisms″,Pandey et al.,Proceedings Society of Photo-OpticalInstrumentation Engineers(SPIE),1989,v 1065,164-174;以及″FastAtom Bombardment Mass Spectral Analyses of Photofrin II and itsSynthetic Analogs″,Pandey et al.,Biomedical and Environmental MassSpectrometry,1990,v.19,405-414。这些文章在此处引入作为背景技术的参考。
在这个领域世界范围内也已经申请并且授权了许多有关这些光动力化合物的专利。例如参考以下引入作为参考的美国专利4,649,151;4,866,168;4,889,129;4,932,934;4,968,715;5,002,962;5,015,463;5,028,621;5,145,863;5,198,460;5,225,433;5,314,905;5,459,159;5,498,710和5,591,847。
这些化合物之一,“Photofrin”在美国,加拿大和日本已经获得了批准。其它的这些化合物也已经至少得到带有一定制约的批准,例如BPD用于治疗黄斑变性,其它的正处于临床试验中,或者正在考虑用于这样的试验中。
如上所述,以及在这里引入作为背景技术参考的上述文章和专利的描述和说明,在这里使用的术语“卟啉,二氢卟酚和菌绿素”是指包括的其衍生物和类似物。
已经发现这样的化合物具有优选积聚在肿瘤内,而非大多数正常细胞和器官内,除肝脏和脾脏的显著特性。而且,可以杀伤许多这样的肿瘤,因为该化合物可以通过光激活从而对肿瘤产生毒性。
这样的化合物被优选吸收到癌细胞中,并且在其优选的波长吸光度近红外(NIR)吸收感光后破坏癌细胞。此外,这样的化合物在比优选吸收波长更长的波长放射辐射,这样的光可以穿透组织的几个厘米深。因此可以从测量散射光传播检测并且测定皮下组织的光敏剂浓度。因此基于NIR吸收度,荧光,以及与PDT药物及其他荧光增白剂相关的荧光衰减动力学,可以认为散射的NIR光可用于检测患病的皮下组织并且对其成像。已经显示频域光子迁移技术(FDPM)连同加强影像的电荷耦合装置(CCD)可用于利用荧光造影剂体内检测患病组织。如上所述基于卟啉的化合物是发很强烈荧光的化合物,因此该特性已经被用于研究其作为光学成象剂的用途。使人遗憾地,这些化合物没有显示适于该目的的在吸收和发射之间充分的偏移(“Stoke′s偏移”),因此这样的化合物不能提供用于检测的优良手段,即,这样的化合物的荧光发射波长接近于其优选的吸光度的波长,引起检测干扰。
已经研究了一种方法来修饰卟啉结构,使其在较长的波长发射,例如描述于美国专利6,103,751,″Carotene Analogs of Porphyrins,Chlorins and Bacteriochlorins as therapeutic and Diagnostic Agents″。使人遗憾地,向卟啉添加叶红素部分的效果很小,因此其用于治疗的治疗学效果是不切实际的,很清楚这样的结构不能被修饰成不损失重要的性能就能换取发射波长的改善。
然而,许多在可检波的波长发荧光的化合物是已经被研究并被用来诊断几乎每一种癌症,特别是发现人体内早期的瘤形成变化的已知化合物。然而,由于包括以下的若干因素这样一种方法具有值得注意的难处缺少显著的优选肿瘤吸收度,毒性以及缺少充分的穿透度,无论是因为发荧光化合物的活化还是已经充分穿透在肿瘤或者生物体外被检测的发射。此外,这样的化合物虽然也许具有检测的可能性,但是不具有破坏肿瘤及其他增生性组织的功能。
因此需要一种满足如下条件的生理用化合物1.相对于正常组织优选定位于肿瘤组织中,2.具有高荧光利用率,
3.不应该是有毒的,光毒的,致癌的或者致畸形的,4.应该便于合成,5.应该是化学纯的,6.具有600到800nm范围的长波长吸收以便可以检测深位的肿瘤,7.将破坏通过活化其定位的肿瘤,以及8.具有与其优选吸收波长充分隔开(偏移)的发射波长以便阻止显著的干扰,以致可以通过体内荧光光谱法容易地检测肿瘤。
发明简述发明包括具有如下特性的化合物相对于正常组织在肿瘤组织中具有优选定位,在约660和900nm之间的波长具有优选的电磁能吸收,以及在从优选吸收偏移至少+30nm以及优选至少+50nm的波长发荧光。该化合物当在其优选吸收波长感光时更进一步优选破坏在其中吸收该化合物的肿瘤组织。在本发明优选的实施方案中,该化合物是肿瘤亲和的四吡咯化合物与荧光染料的结合物,更优选,荧光染料是诸如吲哚花氰绿的吲哚胺染料。肿瘤亲和的四吡咯化合物优选为选自二氢卟酚,菌绿素,紫红素及其衍生物的卟啉衍生物(总称“卟啉”),并且通常具有如下的通式结构 其中R1是取代的或者未取代的-CH=CH2,-CHO,COOH,或
其中R9=-OR10,其中R10是1到8个碳原子的低级烷基,或者-(CH2-O)17CH3;R2,R2a,R3,R3a,R4,R5,R5a,R7,以及R7a独立地是氢,低级烷基,取代的低级烷基,低级烷撑或者取代的低级烷撑或者相邻碳原子上的2个R2,R2a,R3,R3a,R5,R5a,R7以及R7a基团可以一起形成共价键或者相同碳原子上的2个R2,R2a,R3,R3a,R5,R5a,R7以及R7a基团可以形成二价侧基的双键;R2以及R3可以一同形成包含氧,氮或者硫的5或者6员杂环;R6是-CH2-,-NR11-,其中R11是取代或者未取代的低级烷基,或者低级烷撑;或者R6是共价键;R8是-(CH2)2CO2R12,其中R12是取代或者未取代的低级烷基,低级烷撑或者-NH2。
通常,至少R1,R2a,R3,R3a,R4,R5,R5a,R7,R7a,R8,R9,R10,R11或者R12之一被在从约800到约900nm的波长发荧光的染料取代。
荧光染料可以是引起结合物在800到约900nm.的波长优选放射(发荧光)的无毒染料。这样的染料通常具有至少2个谐振环结构,经常是发色团,通过共轭双键的中间体谐振结构连接在一起,芳烃碳环,谐振杂环或其组合。
这样的染料的实例包括双吲哚染料,其中2个吲哚或者修饰的吲哚环结构在其32和21碳原子处分别通过上述的中间体谐振结构连接在一起。这样的染料一般通称三碳菁型(tricarboclyanine)染料。这样的染料通常具有至少1个,通常至少2个使染料溶于水的亲水取代基。这样的水溶性促进该结构进入生物体及其细胞结构并降低毒性的可能性,因为在脂肪组织中贮存水平的下降并且从该系统快速的消除。中间体谐振结构通常含有大量的通常是共轭双键的双键碳原子并且可能还包含不饱和的碳环或者杂环。这样的环可以结合到卟啉结构同时并不显著地干扰中间结构的谐振。
本发明还包括使用本发明的化合物通过注射到生物体内,给予充分的时间使其优选吸收在肿瘤组织中,将吸收的化合物在其优选吸收波长感光并检测从优选吸收的化合物发射的位置对肿瘤组织进行定位的检测肿瘤的方法,本发明还包括通过注射到生物体,给予充分的时间优选吸收到肿瘤组织中,并将吸收的化合物在其优选吸收波长感光来破坏肿瘤组织治疗肿瘤组织的方法。应该理解,根据本发明对肿瘤组织的破坏可以通过检测方法的一部分得以实现。


本发明的特性和操作方式参考附图在下文发明详述中得到更全面的描述,其中图1是结合物5的UV-可见光谱图;图2是当在660nm激发时结合物5的体外荧光光谱;图3是由相对荧光显示的在注射后24小时肿瘤和皮肤对结合物5的相对吸收的图;图4显示了注射后3-4天结合物5的相对吸收的图;图5显示了相对于单独的indocuzanine?类似物,结合物5的肿瘤吸收;图6显示了在注射后24小时,不同注射浓度的结合物5的体内荧光;图7显示了使用不同浓度的结合物5经光动力治疗来治疗肿瘤的疗效;图8显示了相对于已知的线粒体探针,在线粒体中结合物5的光敏剂定位;和图9显示了注射后24小时不同剂量的结合物5对移植的RIF肿瘤的体内疗效。
发明详述“在约660和900nm之间的波长的优选电磁能吸收”是指在从约300到900nm的UV波段内有660和900nm之间的峰吸光度,其是该波段内其他峰吸光度的至少两倍并且通常至少3倍。“在从优选吸收偏移至少+30nm并且优选至少+50nm的波长发荧光”是指来源于优选吸收波长激发的发射(荧光)波长从峰吸光度波长向上至少偏移30并且优选至少50nm。根据本发明虽然不是必需的,该化合物当在其优选吸收波长感光时更进一步优选破坏在其中吸收该化合物的肿瘤组织。人们相信是由于在优选吸收该化合物的癌症组织内定位形成的单线态氧才发生这样的情况。
如前所述,在本发明优选的实施方案中,该化合物是肿瘤亲和的四吡咯化合物与荧光染料的结合物。这样的染料尤其包括双吲哚,三碳菁型染料,诸如吲哚胺染料,其在从约300到900nm的UV波长范围中或者在该范围附近具有优选的吸光度并且在从约600到约900nm具有发射。这样的染料的实例是吲哚花氰绿。其他合适的双吲哚型染料的通式结构如下 其中R1d,R2d,R3d,和R4d是氢,磺酰基,氨基,羧基,羟基或者烷基;条件是R1d和R3d以及R2d和R4d可以一起形成环烯基,芳香或者杂环结构;R5d和R6d独立地是氢,烷基或者取代的烷基,其中取代基是羧基,磺酰基,羟基,酰胺基,氨基,烷基酯或者卤素或其酸性盐;并且R7d是共轭的双键碳链,或者是选自芳基,不饱和的环烷基的谐振环,以及谐振的不饱和杂环,该谐振环可以用卤素,氨基或者羧基取代,并且n是0到3的整数。在上述结构的优选染料中,R7d是 其中X是卤素。
用于本发明的染料的具体实例如下吲哚花氰绿(双吲哚,即三碳菁型染料);吲哚花氰绿820nm类似物CAS172616-80-7(R7d是 );固绿FCF(FD & C绿3,三苯甲烷染料);舒泛蓝(三苯甲烷染料)以及亚甲基蓝(噻嗪染料)。
肿瘤亲和的四吡咯化合物优选为卟啉衍生物(包括卟啉相关的化合物,不管实际上是否来源于卟啉),通常选自二氢卟酚,菌绿素和菌紫素。优选的卟啉衍生物通常具有以下的通式结构 其中R1是取代的或者未取代的-CH=CH2,-CHO,COOH,或 其中R9=-OR10,其中R10是1到8个碳原子的低级烷基,或者-(CH2-O)nCH3;R2,R2a,R3,R3a,R4,R5,R5a,R7,以及R7a独立地是氢,低级烷基,取代的低级烷基,低级烷撑或者取代的低级烷撑或者相邻碳原子上的2个R2,R2a,R3,R3a,R5,R5a,R7以及R7a基团可以一起形成共价键或者相同碳原子上的2个R2,R2a,R3,R3a,R5,R5a,R7以及R7a基团可以形成二价侧基的双键;R2以及R3可以一同形成包含氧,氮或者硫的5或者6员杂环;R6是(-CH2-),-NR11-,其中R11是取代或者未取代的低级烷基,或者低级烷撑;或者R6是共价键;R8是-(CH2)2CO2R12,其中R12是氢或者取代或者未取代的,低级烷基,低级烷撑碱或者碱土金属离子,或者在从约300到900nm的UV波长范围中或者该范围附近具有优选的吸光度,并且在从约600到约900nm具有发射的染料部分,或者R8是-(CH2)2COR12a,其中R12a是-NR2R2a,其中R2和R2a如前所述,并且还可能包含在从约300到900nm的UV波长范围中或者该范围附近具有优选的吸光度,并且在从约600到约900nm具有发射的染料部分。
通常,至少R1,R2a,R3,R3a,R4,R5,R5a,R7,R7a,R8,R9,R10,R11或者R12之一被在从约800到约900nm的波长发荧光的染料部分取代。当R12是氢,-NH2,或者-NHR13,其中R13是1到6个碳原子的低级烷基时,这样的取代通常发生在R8处。
本发明还包括使用本发明的化合物通过注射到生物体内,给予充分的时间使其优选吸收在肿瘤组织中,将吸收的化合物在其优选吸收波长感光并检测从优选吸收的化合物发射的位置对肿瘤组织进行定位的检测肿瘤的方法,本发明还包括通过注射到生物体,给予充分的时间优选吸收到肿瘤组织中,并将吸收的化合物在其优选吸收波长感光来破坏肿瘤组织来治疗肿瘤组织的方法。应该理解,根据本发明对肿瘤组织的破坏可以通过作为检测方法的附加物得以实现。
本发明的化合物可以从在上述背景技术中论述的包括紫红素,二氢卟酚和菌绿素的基本上所有的卟啉很容易地制备而来;条件是这样的化合物具有游离羧基或者游离的羧酸酯基或者游离的羧酸盐基团,(通称“羧基官能团”)适于与如上描述的适当的染料结构结合。在本发明背景技术中论述的大多数卟啉具有这样的基团。反过来,希望染料具有或者修饰后具有活性胺位点,该位点对发荧光性能没有决定性作用,因此染料可以在游离胺处与羧基功能团反应形成本发明的卟啉结合物。这样的染料还可能或者任选地具有活性酸位点,例如,为磺酸或者羧酸部分的形式,可以与卟啉结构上的碱性取代基起反应。
本发明许多结合物的通式结构为
其中R13是氢或者甲基;R8是-COR17,其中R17是-OH,-ORn-NHRn,其中Rn是1到8个碳原子的低级烷基,或R17是如前所述的染料部分;R14,R15和R16独立地是氢,甲基或者乙基;R1和R2独立地是-R9,-OR9,-C(R12)(O),-C(R12)2OR9,-CH=CHR9,或-(CH2)R10;R3是-R9,-OR9,-C(R12)(O),-C(R12)2OR9,-CH=CHR9或-(CH2)R10或者连同R3是=O;R2a是-R9,-OR9,-C(R12)(O),-C(R12)2OR9,-CH=CHR9或-(CH2)R14或者连同R3a是化学键;R3a是-R9,-OR9,-C(R12)(O),-C(R12)2OR9,-CH=CHR9或-(CH2)R10或者连同R2a是化学键或者连同R3是=O;R4是R9,或-OR9;R9每次出现独立地是氢或者从1到10个碳原子的低级烷基如前所述的染料部分;R10是氨基酸残基;R11是-R9,-R10,或-C(O)NHR9;R4a和R4b每次出现独立地是氢或者1到4个碳原子的低级烷基或者一起可以是-C(R9)2C(Y)-,-C(O)O(O)C-,-C(NR9)O(O)C-,或-C(O)N(R11)-C(O)-,并且Y是=O,=S,或2H-;条件是该化合物包含至少一个如前所述的染料部分。
本发明的优选化合物可以由以下通式代表
其中的取代基如前所述。
显示如前所述根据本发明利用HPPH和吲哚花氰绿820nm类似物(1)制备优选的化合物的示意图的实例如下所示,其中碳原子a-d,f-g和m-o上的取代基通常是氢也可能是低级烷基
本发明具体的优选化合物为
本发明一般的优选化合物可以简单地表示如下 光敏剂卟啉,二氢卟酚,菌绿素,酞菁,广义的卟啉。
R=烷基,磺酸或者包含改变碳单元的碳链的羧基。
R2=有和没有氟化取代基的多种芳香系统。
本发明其他优选的光敏剂化合物可以表示如下
R=COOHR1=CONH-(CH2)n-光敏剂R=R1=CONH-(CH2)n-光敏剂光敏剂卟啉,二氢卟酚,菌绿素,酞菁,广义的卟啉R2=卤素R3=烷基,磺酸或者包含改变碳单元的碳链的羧基R=CONH(CH2)nNH-叶酸如图1所示,结合物5的UV-可见吸收光谱在分别对应于焦脱镁叶绿甲酯酸-a(HPPH)4的3-(1′-己氧基乙基)衍生物和修饰的长波长吸收染料3的408,660和830nm显示特征吸收谱带,同样图2显示了在665,710和860nm的宽发射光谱带,表明含有2个发色团(HPPH和染料)的结合物与单个分子的性质类似。
经体内反射光谱法确定结合物5的肿瘤吸收。为了这些实验,对患有RIF肿瘤的C3H小鼠注射5.0μmole/kg的结合物5并且在不同的时间间隔获取体内吸收光谱。从图3可以看出,在注射后24小时结合物5在肿瘤中显示出比皮肤更显著的吸收。在注射后3-4天(图4),从皮肤清除了结合物,同时没有显著降低肿瘤内的浓度。相比之下,吲哚花氰绿类似物(1),在这里为ICG,在相同剂量(5.0μmole/kg)单独在皮肤中产生比肿瘤(患有肿瘤的C3H小鼠)更高水平的吸收,并且与HPPH-ICG结合物5相比,ICG类似物单独显示显著地低水平的肿瘤吸收(图5)。在注射后4-5小时,从肿瘤和皮肤迅速清除了ICG染料(1)。这些结果清楚地显示在结合物5中,HPPH不仅作为向肿瘤递送具有所需的光物理特性的染料的介质,而且也作为通过与单独的染料或者光敏剂相比通过改变结合分子的总体光动力特性将染料保持在肿瘤表面上的介质。
通过在不同浓度(10,5.0和2.5μmole/kg)的体内荧光光谱分析确定结合物5的体内荧光光谱。结果概括在图6中。在典型的实验中,将结合物5在10,5.0和2.5μmoles/kg的剂量注射到每只小鼠体内(三只患有RIF肿瘤的小鼠一组)。注射后24小时,激发660nm的吸收峰值而且记录最长的波长发射(从830-890nm的谱带)。在不同浓度,产生的荧光具有相等的强度可能是由于饱和效应。
为了测量光敏效率,将RIF肿瘤皮下植入5-7周龄雌性C3H小鼠的腋下。当肿瘤生长到4到5mm3大小时,在不同剂量注射结合物5(0.5,1.0,1.5和2.5μmole/kg)。注射后24小时,用665nm波长(HPPH的体内吸收谱带),135J/cm2能量的光处理肿瘤,并且每天观察小鼠。从图7中概括的结果,可以看出在2.5μmole/kg(肿瘤显影剂量)的剂量,结合物5产生100%的肿瘤治愈率。在较低的剂量,观察到有限的光敏效率。
通常,基于卟啉的化合物显示不同的定位分布,至少某种程度上取决于结构,亲油性和带电荷的情况。在溶酶体和线粒体中的定位据报道是占主要地位的;然而,通常发现主要定位于线粒体中的光敏剂是更有效的。因此,24小时温育后,HPPH-ICG结合物5(2.5μmole/kg)的定位的位点比得上已知的线粒体探针(MITO-TRACKER绿(400nM)在RIF肿瘤细胞(众所周知的肿瘤细胞系)中的定位。图8中显示的结构清楚表明结合物5定位在线粒体中,是光动力治疗(PDT)的细胞损坏更加敏感的位点。图8中的A显示了化合物5在线粒体中的定位。图8中的B显示了已知的线粒体探针的定位,C显示了A和B的重叠。
这些结果显示基于肿瘤亲和的卟啉的光敏剂可用作将染料递送到肿瘤的介质,这些光敏剂可以不是肿瘤特异性的,但是要在IR光谱区显示强烈的发射。尤其是与异花青衍生物结合的HPPH特异性定位在肿瘤内,可以通过荧光进行检测,同时维持使肿瘤在感光后被破坏的性能。该结果预示了与其他具有相似的吸收和发射性能的染料结合的其他基于卟啉光敏剂的性能。因此该方法提供了产生多种结合物的手段,其中光敏剂部分可以被一系列长波长肿瘤亲和光敏剂,例如purpurinimides和显示700-800nm范围内的长波长吸收的菌绿素。与化合物5相比,这些其他的结合物提供了在较长的波长吸收(700-800nm,代替HPPH的660nm)激发分子和在超过860nm检测发射的能力。这是由本发明的结合物提供的独特的优点。另外,本发明的化合物具有通过植入较少数的纤维来递送合适波长的光治疗较大肿瘤的优点。
根据本发明开发的肿瘤亲和光学成象剂本身是非常先进的,而且本发明化合物的双重功能特性第一次提出了诊断继之以靶向光动力治疗的良机,从而将2个程式组合成单个低成本的“检查和治疗”方法。
以下实施例阐明了合成本发明的化合物的优选方法。
合成ICG类似物3将市售获得的染料1(60mg)和4-氨基硫代苯酚2(60mg)溶于干燥DMF中并搅拌过夜。除去溶剂后,经硅石柱色谱法利用MeOH/CH2Cl2(1∶3)作为洗脱溶剂纯化残余物并获得约60%产率的中间体3。UV-vis830nm(甲醇中)(ε=207,000)。1H NMR(CHCl3),δ(ppm)9.0(d,2H5 H-a),8.2(d,2H,H-b),8.0(t,4H,H-c),7.62(d,4H,H-d),7.48(2d重叠成三重态,2H,H-e),7.12(d,2H,H-f),6.70(d,2H,H-g),6.35(d,2H,H-h),4.30(t,4H,H-i),2.95(t,4H,H-j),2.80(m,4H,H-k),2.00(m,10H,H-l的4H),m,n,o的6H,1.90(s,12H,H-p),1.30(s,H-q).3(C52H56N3NaO6S3)的MS分析937,实测值938合成HPPH-ICG结合物5将脱镁叶绿甲酯酸(HPPH)4(100mg)的己醚衍生物和DCCI(110mg)溶于DMF(1ml)中。搅拌10分钟后,添加3(60mg)的DMF(2ml)和DMAP(10mg)的溶液。搅拌反应混合物24小时后,用用水(2×100ml)洗涤的二氯甲烷(100ml)稀释。经无水硫酸钠干燥有机相。从滤液除去溶剂后获得的残余物经色谱法利用MeOH/CH2Cl2(1∶3)作为洗脱溶剂进行纯化,并获得约65%产率的所需结合物5。UV-vis,在H2O中848nm(∈=975,47),664nm(∈=53,800),413nm(∈=101′456)。UV-vis,在MeOH中;833nm(∈=207,455),660nm(∈=53,856),408nm(∈-95,222)。1HNMR(CHCL3),δ(ppm)9.47(s,meso-H的1H,在HPPH部分中),8.46(s,1H,在HPPH部分中的meso-H),8.35(br-s,3H,meso-H的1H,在HPPH中,H-a的2H),7.50(m,5H,H-b的1H,H-c的4H),7.30(m,3H,H-b的1H,H-e的2H),7.20(s,2H,H-f),7.05(s,4H,H-d),6.85(s,2H,H-g),6.61(s,2H,H-h),5.70(br,3H,H-31的1H,H-17的1H,H-18的1H),4.54(br-双重态,1H,H-132),4.22(br,2H,H-i),3.66(br,2H,H-i),3.52(br,1H,H-132),3.20(br,9H,HPPH部分的5H7-CH3的3H,31-OCH2(CH2)4CH3的2H,H-j的4H),3.03(m,4H,H-k),2.90(s,1H,-CONH-),2.72(br,7H,8-CH2CH3的2H,17-CH2CH2CO-的2H,2-CH3的3H),2.55(br,5H,17-CH2CH2CO-的2H,12-CH3的3H),1.88(br,3H,3-CHCH3),1.72-0.72(多个多重态,36个质子,染料部分的22HH-p的12H,H-1的4H,H-m,n,o的6H,;HPPH部分的14H18-CH3的3H,8-CH2CH3的3H,31-OCH2(CH2)4CH3的8H),0.62(m,3H,31-OCH2(CH2)4CH3。结合物5(C91H102N7NaO9S3)的MS1555.7,实测值1556.7。
权利要求
1.化合物,相对于正常组织在肿瘤组织中具有优选定位,在约660和900nm之间的波长具有优选的电磁能吸收,以及在从优选吸收偏移至少+30nm的波长发荧光。
2.权利要求1的化合物,其中偏移至少+50nm。
3.权利要求1的化合物,其中该化合物是肿瘤亲和的四吡咯化合物与荧光染料的结合物。
4.权利要求3的化合物,其中荧光染料是吲哚胺染料。
5.权利要求3的化合物,其中的肿瘤亲和的四吡咯化合物选自二氢卟酚,菌绿素以及卟啉。
6.权利要求5的化合物,其中的染料是吲哚胺染料。
7.权利要求5的化合物,其中的染料是吲哚花氰绿。
8.具有下列通式结构的四吡咯-荧光染料复合物 其中R1是取代的或者未取代的-CH=CH2,-CHO,COOH,或 其中R9=-OR10,其中R10是1到8个碳原子的低级烷基,或者-(CH2-O)nCH3;R2,R2a,R3,R3a,R4,R5,R5a,R7,以及R7a独立地是氢,低级烷基,取代的低级烷基,低级烷撑或者取代的低级烷撑或者相邻碳原子上的2个R2,R2a,R3,R3a,R5,R5a,R7以及R7a基团可以一起形成共价键或者相同碳原子上的2个R2,R2a,R3,R3a,R5,R5a,R7以及R7a基团可以形成二价侧基的双键;R2以及R3可以一同形成包含氧,氮或者硫的5或者6员杂环;R6是-CH2-,-NR11-,其中R11是取代或者未取代的低级烷基,或者低级烷撑;或者R6是共价键;R8是-(CH2)2CO2R12,其中R12是取代或者未取代的低级烷基,低级烷撑或者-NH2,其中R1,R2a,R3,R3a,R4,R5,R5a,R7,R7a,R8,R9,R10,R11或者R12至少之一被在从约800到约900nm的峰发射波长发荧光,并且具有低于其峰发射至少30nm的峰值吸收的染料取代。
全文摘要
本申请涉及一种化合物,相对于正常组织在肿瘤组织中具有优选定位,在约660和900nm之间的波长具有优选的电磁能吸收,以及在从优选吸收偏移至少+30nm以及优选至少+50nm的波长发荧光。该化合物当在其优选吸收波长感光时更进一步优选破坏在其中吸收该化合物的肿瘤组织。在本发明优选的实施方案中,该化合物是肿瘤亲和的四吡咯化合物与荧光染料的结合物,更优选荧光染料是诸如吲哚花氰绿的吲哚胺染料。肿瘤亲和的四吡咯化合物优选为选自二氢卟酚,菌绿素,紫红素及其衍生物的卟啉衍生物。
文档编号C07D487/22GK1984915SQ200580024006
公开日2007年6月20日 申请日期2005年7月13日 优先权日2004年7月16日
发明者拉温德拉·K·潘迪, 陈亦晖, 威廉·波特, 艾伦·奥塞罗夫 申请人:健康研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1