专利名称:用于烷烃易位的双催化剂体系的制作方法
技术领域:
本发明受美国政府国家科学基金会(批准号CHE-0434568)资助。美国政府对本发明享有一定权利。
相关申请
本申请要求2005年7月8日提交的美国临时专利申请序号60/697,667的权益,其通过全文引用结合到本文中。
发明领域 本发明涉及转化烷烃为更高分子量烷烃和燃料如柴油的方法以及可用于这类方法的催化剂体系和装置。
背景技术:
对燃料需求的增长以及原油供应的潜在减少(或至少自原油生产燃料的生产能力的限制或不稳定性)已激发了人们对于自替代资源生产燃料的越来越多的兴趣。
煤、天然气和生物质可按已知的技术转化为合成气(通常由氢气和一氧化碳组成)。合成气可再通过众所周知的Fischer-Tropsch(费-托)催化技术转化为液态烃。参见例如M.Dry,High quality diesel via theFischer-Tropsch process-A review(通过Fischer-Tropsch工艺生产高品质柴油的综述),J.Chem.Technol.Biotechnol.7743-50(2001)。但Fischer-Tropsch催化产生烷烃的混合物,其许多是较低分子量的而不适合用作液态烃燃料如汽油和柴油。
双催化剂体系的一些实例见述于R.Burnett and T.Hughes,Mechanism and Poisoning of the Molecular Redistribution Reaction ofAlkanes with a Dual-Functional Catalyst System(使用双官能团催化剂体系进行烷烃分子重分布反应的机理和中毒),J.Catalysis 31,55-64(1973)(也参见授予Chen的美国专利6,566,568)中。这些技术尚未被广泛实施。因此需要转化较低分子量烷烃为可用作液态烃燃料的较高分子量烷烃的新方法。
发明概述 本发明的第一方面为转化至少一种第一烷烃为至少一种低分子量烷烃(任选也含其他较低和/或较高分子量的烷烃)和至少一种高分子量烷烃的混合物的方法,所述方法包括使第一烷烃在包含第一催化剂(即氢转移催化剂)和第二催化剂(即易位催化剂)的双催化剂体系的存在下反应产生低和高分子量烷烃的混合物。
在前述的一些实施方案中,本发明提供了转化至少一种低分子量烷烃和至少一种高分子量烷烃为至少一种中间分子量烷烃的方法,所述方法包括使至少一种低分子量烷烃和至少一种高分子量烷烃在包含第一催化剂(即氢转移催化剂)和第二催化剂(即易位催化剂)的双催化剂体系的存在下反应产生所述至少一种中间分子量的烷烃。
在一些实施方案中,所述第一烷烃或起始烷烃可通过合成气的Fischer Tropsch催化生产。燃料如柴油和汽油可自所述高或低分子量烷烃产物生产(取决于第一烷烃的分子量(如Fischer Tropsch反应的液态/蜡产物))。
反应步骤可以任何适宜的形式进行,包括作为间歇反应或连续反应和作为非均相反应(即用固定化的催化剂)、作为均相反应(即用溶解的催化剂)或作为混合体系(即用一种固定化的催化剂和一种溶解的催化剂)进行。
本发明的第二方面为一种组合物,所述组合物包含以下组分的组合(i)固定化于固体载体上的氢转移催化剂和(ii)固定化于固体载体(其可与其上固定氢转移催化剂的固体载体相同或不同)上的易位催化剂。
本发明的前述和其他目的及方面在本文的附图和下面给出的说明书中有更详细的描述。
附图简述
图1为本发明的装置的示意图。
图2为实施例7的工艺的反应产物的气相色谱,说明了较高分子量烷烃的存在及产生。
图3A为实施例12的工艺的反应产物的气相色谱。
图3B为图3A的色谱的区域的扩展。
图3C为图3A的色谱的区域的扩展。
图4气相色谱,示意了(tBuPCP)IrHn与Mo-Schrock在正己烷中于125℃密封管内连续反应23小时的产物的分布。TBA=2,2-二甲基丁烷(来自3,3-二甲基-1-丁烯的氢化),Mes.=均三甲苯(内标),TAB=叔戊基苯(来自3-甲基-3-苯基-1-丁烯的氢化(失去Mo上的2-甲基-2-苯基亚丙基配体),DIPA=2,6-二异丙基苯胺。 优选实施方案详述 下面对本发明予以更详细的描述。本说明书非意在给出可实施本发明的所有不同方式的详细种类或可加到本发明上的所有特征。例如,一个实施方案所示的特征可结合进其他实施方案中,一个特定的实施方案所示的特征可自该实施方案中删除。此外,根据本公开,对本文中所提出的实施方案的许多变体和添加对本领域技术人员来说将是显而易见的而不偏离本发明。因此,下面的说明书意在说明本发明的一些特定的实施方案而非意在穷举其所有改变、组合和变体。
本文中所引用的所有美国专利的公开均通过引用全文结合到本文中。
1.第一烷烃供给。用来实施本发明的第一烷烃可为单一烷烃或含待反应的指定烷烃或烷烃系列的烷烃混合物。第一烷烃可以按已知的技术如分馏、裂化、重整、脱氢等(包括其组合),由来自任何适宜的源的烃原料组合物提供。在本文中有进一步描述的一种适宜的源为Fischer-Tropsch反应体系的产物,但这决非对本发明的限制。
本发明尤其可用于转化通过Fischer Tropsch反应产生的较低分子量烷烃为更可用作内燃机燃料如汽油和柴油的较高分子量烷烃。
通过Fischer-Tropsch催化生产包含来自合成气的烷烃的烃组合物是众所周知的,可按已知的技术,在Fischer-Tropsch催化剂存在下,使合成气在反应器中反应进行。可使用任何适宜的催化剂,包括但不限于铁和钴催化剂。参见例如授予Roberts和Kilpatrick的美国专利6,217,830;也参见美国专利6,880,635、6,838,487、6,201,030、6,068,760、5,821,270、5,817,701、5,811,363、5,620,676和2,620,347。
合成气自含碳的或有机材料如煤(包括细煤粉)、天然气、甲烷、精制油脚、植物材料如木材或其他生物质和其组合的生产是众所周知的,可按已知的技术进行。在一些实施方案中,这类生产涉及含碳的或有机材料在有限量的氧存在下,在高温和任选高压下的部分氧化,所述反应优选在所述材料与其他试剂如蒸汽、二氧化碳或各种其他材料一并进给其中的反应器中进行。参见例如美国专利4,959,080;也参见美国专利4,805,561。
2.氢转移催化剂。可用来实施本发明的氢转移催化剂是已知的,见述于例如美国专利5,744,667、5,585,530、5,461,182、5,227,552和3,321,545中。负载于沸石和氧化铝上的铂、铑和钌催化剂的其他实例见述于R.G.Pellet,Journal of Catalysis 177,40-52(1998)和S.Naito及M.Tanimoto,J.Mol.Catal.AChemical 141,205-214(1999)中。
其他实例为铱催化剂,包括但不限于美国专利5,780,701和如下文献中所述的那些 Goettker-Schnetmann,I.,White,P.,Brookhart,M.,“IridiumBis(Phosphinite)p-xPCP Pincer ComplexesHighly Active Catalysts forthe Transfer Dehydrogenation of Alkanes(铱二(次亚膦酸酯)p-xPCP钳形络合物用于烷烃转移脱氢的高活性催化剂)”J.Am.Chem.Soc.2004,126,1804-1811;Crabtree,R.H.;Mellea,M.F.;Mihelcic,J.M.;Quirk,J.M.“Alkane dehydrogenation by iridium complexes(铱络合物催化烷烃脱氢)”J.Am.Chem.Soc.1982,104,107-13;Felkin,H.;Fillebeen-Khan,T.;Holmes-Smith,R.;Lin,Y.“Activation ofcarbon-hydrogen bonds in saturated hydrocarbons.The selective,catalyticfunctionalization of methyl groups by means of a soluble iridiumpolyhydride system(饱和烃中碳-氢键的活化。甲基通过可溶性铱多氢化物体系的选择性催化官能化)”Tetrahedron Lett.1985,26,1999-2000;Burk,M.J.;Crabtree,R.H.“Selective catalytic dehydrogenation ofalkanes to alkenes(烷烃到烯烃的选择性催化脱氢)”J.Am.Chem.Soc.1987,109,8025-32;Maguire,J.A.;Goldman,A.S.“EfficientLow-Temperature Thermal Functionalization of Alkanes.Transfer-Dehydrogenation Catalyzed by Rh(PMe3)2(CO)Cl in SolutionUnder High Pressure Dihydrogen Atmosphere(烷烃的高效低温热官能化。溶液中高压二氢气氛下Rh(PMe3)2(CO)Cl催化的转移脱氢)”J.Am.Chem.Soc.1991,113,6706-6708;Maguire,J.A.;Petrillo,A.;Goldman,A.S.“Efficient Transfer-Dehydrogenation of Alkanes Catalyzed byRhodium Trimethylphosphine Complexes Under DihydrogenAtmosphere(二氢气氛下铑三甲基膦络合物催化的烷烃的高效转移-脱氢)”J.Am.Chem.Soc.1992,114,9492-9498;Gupta,M.;Hagen,C.;Flesher,R.J.;Kaska,W.C.;Jensen,C.M.“A highly active alkanedehydrogenation catalyststabilization of dihydrido Rh and Ir complexesby a P-C-P pincer ligand(一种高活性烷烃脱氢催化剂P-C-P钳形配体对二氢Rh和Ir络合物的稳定化)”Chem.Commun.1996,2083-2084;Wang,K.;Goldman,M.E.;Emge,T.J.;Goldman,A.S.“Transfer-Dehydrogenation of Alkanes Catalyzed by Rhodium(I)Phosphine Complexes(铑(I)膦络合物催化的烷烃的转移-脱氢)”J.Organomet.Chem.1996,518,55-68;Gupta,M.;Hagen,C.;Kaska,W.C.;Cramer,R.E.;Jensen,C.M.“Catalytic Dehydrogenation ofCycloalkanes to Arenes by a Dihydrido Iridium P-C-P Pincer Complex(二氢合铱P-C-P钳形络合物催化下环烷烃向芳烃的催化脱氢)”J.Am.Chem.Soc.1997,119,840-841;Gupta,M.;Kaska,W.C.;Jensen,C.M.“Catalytic Dehydrogenation of Ethylbenzene and THF by a DihydridoIridium P-C-P Pincer Complex(二氢合铱P-C-P钳形络合物催化下乙基苯和THF的催化脱氢)”Chem.Commun.1997,461-462;Xu,W.;Rosini,G.P.;Gupta,M.;Jensen,C.M.;Kaska,W.C.;Krogh-Jespersen,K.;Goldman,A.S.“Thermochemical Alkane Dehydrogenation Catalyzed inSolution Without the Use of a Hydrogen Acceptor(溶液中催化的热化学烷烃脱氢不使用氢受体)”Chem.Commun.1997,2273-2274;Liu,F.;Pak,E.B.;Singh,B.;Jensen,C.M.;Goldman,A.S.“Dehydrogenationof n-Alkanes Catalyzed by Iridium“Pincer”Complexes.RegioselectiveFormation of Alpha-Olefins(铱“钳形”络合物催化的正烷烃脱氢。α-烯烃的区域选择性形成)”J.Am.Chem.Soc.1999,121,4086-4087;Liu,F.;Goldman,A.S.“Efficient thermochemical alkane dehydrogenationand isomerization catalyzed by an iridium pincer complex(铱钳形络合物催化的高效热化学烷烃脱氢和异构化)”Chem.Commun.1999,655-656;Jensen,C.M.“Iridium PCP pincer complexeshighly activeand robust catalysts for novel homogeneous aliphatic dehydrogenations(铱PCP钳形络合物用于新型均相脂族脱氢的高活性催化剂)”Chem.Commun.1999,2443-2449;Krogh-Jespersen,K.;Czerw,M.;Summa,N.;Renkema,K.B.;Achord,P.D.;Goldman,A.S.“On the Mechanism of(PCP)Ir-catalyzed Acceptorless Dehydrogenation of AlkanesaCombined Computational and Experimental Study((PCP)Ir-催化的无受体烷烃脱氢机理计算和实验研究)”J.Am.Chem.Soc.2002,124,11404-11416;and Zhu,K.;Achord,P.D.;Zhang,X.;Krogh-Jespersen,K.;Goldman,A.S.“Highly Effective Pincer-Ligated Iridium Catalystsfor Alkane Dehydrogenation.DFT Calculations of RelevantThermodynamic,Kinetic,and Spectroscopic Properties(用于烷烃脱氢的高效钳形配位铱催化剂。相关热力学的DFT计算和光谱性质)”J.Am.Chem.Soc.2004,126,13044-13053。
在优选的实施方案中,氢转移催化剂为如上所述的铱钳形络合物催化剂,其也见述于授予Nagy的美国专利6,982,305。这类催化剂的实例包括但不限于式(I)化合物
其中 各R独立地为H或C1-C30烃基; 各R1独立地为C1-C30烃基;和 各X独立地选自O和CH2。
3.烯烃易位催化剂。已知有多种烯烃易位催化剂,包括非均相催化剂和均相催化剂。具体实例包括但不限于基于Re的催化剂如[≡SiO-Re(≡CtBu)(=CHtBu)(CH2tBu)](Copéret,C.New J.Chem.2004,28.1-10;Thieuleux,C.;Copéret,C.;Dufaud,V.;Marangelli,C.;Kuntz,E.;Basset,J.M.J.Mol.Catal.AChemical 2004,213,47-57;Chabanas,M.;Baudouin,A.;Copéret,C.;Basset,J.J.Am.Chem.Soc.2001,123,2062);[Re(CO)3OH]4/SiO2(Copéret,C.New J.Chem.2004,28.1-10);Re2O7/中孔(mesoporous)Al2O3(Balcar,H.;Hamtil,R.;Zilkova,N.;Cejka,J.Catal.Lett.2004,97(1-2),25-29;Oikawa,T.;Ookoshi,T.;Tanaka,T.;Yamamoto,T.;Onaka,M.Microporous andMesoporous Materials 2004,74,93-103);Re2(CO)10/Al2O3(Mol,J.C.;Moulijn,J.A.Adv.Catal.1975,24,131);Re2O7/Al2O3(Mol,J.C.;Moulijn,J.A..Adv.Catal.1975,24,131;Grubbs,R.H.Alkene andAlkyne Metathesis Reactions(烯烃和炔烃易位反应).InComprehensive Organometallic Chemistry;Wilkinson,G.,Ed.PergamonPress Ltd.New York,1982;p 499;Mol,J.C.;Visser,F.R.;Boelhouwer,C.J.Catal.1970,17,114;Satio,K.;Yamaguchi,T.;Tanabe,K.Bull.Chem.Soc.Jpn.1979,52,3192);Re2O7/Al2O3/SiO2(Mol,J.C.Catal.Today 1999,289-299);Re2O7/Al2O3/MtxOy(Mt=过渡金属)(Nakamura,R.;Echigoya,E.Chem.Lett.1977,10,1227);Re2O7/沸石(Hamdan,H.;Ramli,Z.Studies in Surface Science and Catalysis 1997,957);Re2O7/Al2O3/SnR4(R=Me,Et,Bu)(Mol,J.C.Catal.Today 1999,289-299;Finkel′shtein,E.Sh.;Ushakov,N.V.;Portnykh,E.B.J.Mol.Catal.1992,76,133);CH3ReO3/Al2O3/SiO2(Herrmann,W.A.;Wagner,W.;Flessner,U.N.;Volkhardt,U.;Komber,H.Angew.Chem.Int.Ed.Eng.1991,30(12),1636-1638;Mathew,T.M.;du Plessis,J.A.K.;Prinsloo,J.J.J.Mol.Catal.1999,148,157);和ReO3/SiO2(Tsuda,N.;Fujimori,A.J.Catal.1981,69,410);基于Mo的催化剂如MoO3/HMS(HMS=六方中孔氧化硅)(Ookoshi,T.;Onaka,M.Chem Commun.1998,2399-2400);MoO3/SiO2(Olefin Metathesis and MetathesisPolymerization;Ivin,K.J.,Mol,J.C.,Eds.;2nd ed.,1996,p 496);MoO3/Al2O3(Olefin Metathesis and Metathesis Polymerization;Ivin,K.J.,Mol,J.C.,Eds.;2nd ed.,1996,p 496;Thomas,R.;Moulijn,J.A.J.Mol.Catal.1982,15,157;Gruenert,W.;Stakheev,A.Yu.;Feldhaus,R;Anders,K;Shpiro,E.S.;Minachev,Kh.M.J.Catal.1992,135,287;Copéret,C.New J.Chem.2004,28.1-10);MoO3/Al2O3/Sn(CH3)4(Handzlik,J.;Ogonowski,J.Catal.Lett.2002,83,287);MoOx/-TiO2(Tanaka,K.;Miyahara,K.Chem.Commun.1980,666);MoO3/TiO2/SnMe4(Pariya,C.;Jayaprakash,K.N.;Sarkar,A.Coord.Chem.Rev.1998,168,1-48);MoO3/CoO/Al2O3(Grubbs,R.H.;Swetnick,S.J.J.Mol.Catal.1980,8,25;Turner,L.;Howman,E.J.;Bradshaw,C.P.C.J.Catal.1967,7,269;Alkema,H.J.;Van Helden,R.Chem.Abstr.1968,69,95906;Mol,J.C.;Moulijn,J.A.Adv.Catal.1975,24,131;Grubbs,R.H.Alkene and Alkyne Metathesis Reactions(烯烃和炔烃易位反应).In Comprehensive Organometallic Chemistry;Wilkinson,G.,Ed.Pergamon Press Ltd.New York,1982;p 499);MoO3/Cr2O3/Al2O3(Mol,J.C.;Moulijn,J.A.Adv.Catal.1975,24,131);Mo(CO)6/SiO2(Brenner,A.;Hucul,D.A.;Hardwick,S.J.Inorg.Chem.1979,18,1478);Mo(CO)6/γ-Al2O3(Olsthoorn,A.A.;Moulijn,J.A.J.Mol.Catal 1980,8,147;Farona,M.F.;Tucker,R.L.J.Mol.Catal1980,8,25;Mol,J.C.;Moulijn,J.A.Adv.Catal.1975,24,131);(-C3H5)4Mo/SiO2/Al2O3(Yermakov,Y.I.;Kuznetzov,B.N.;Grabovski,Y.P.;Startzev,A.N.;Lazutkin,A.M.;Zakharov,V.A.;Lazutkina,A.I.J.Mol.Catal.1976,1,93);(π-C3H5)4Mo/Al2O3(Iwasawa,Y.;Ogasawara,S.;Soma,M.Chem.Lett.1978,1039);[≡SiO-Mo(≡CtBu)(CH2tBu)2](Copéret,C.New J.Chem.2004,28.1-10);[≡SiO-Mo(=NH)(=CHtBu)(CH2tBu)](Copéret,C.New J.Chem.2004,28.1-10);Mo(CHCMe2Ph)(N-2,6-iPr2C6H3)[OCMe(CF3)2]2/MCM-41(Balcar,H.;Zilkova,N.;Sedlacek,J.;Zednik,J.J.Mol.Catal.2005,232,53);and MoClx/PbMe4/SiCl4(Bykov,V.I.;Butenko,T.A.;Finkel′shtein,E.Sh.Pat.SU 1664786);基于W的催化剂如WO3/SiO2(Schubert,M.;Gerlach,T.;Hesse,M.;Stephan,J.;Bohm,V.;Brodhagen,A.;Poplow,F.Pat.U.S 2004260135);WO3/Al2O3(De Vries,J.L.K.F.;Pott,G.T.Rec.Trav.Chim.Pays-Bas 1977,96,M115);W/Al2O3/HY沸石(Huang,S.;Liu,S.;Xin,W.;Bai,J.;Xie,S.;Wang,Q.;Xu,L.J.Mol.Catal.AChemical 2005,226,61-68);(π-C4H7)4W/SiO2(Startsev A.N.;Kuznetsov,b.N.;Yermakov,Y.I.React.Kinet.Catal.Lett.1976,3,321);WO3/SiO2/MgO(Mazurek,H.;Sofranko,J.A.Pat.US 4788376);WO3/ZrO2(Yoshinaga,Y.;Kudo,M.;Hasegawa,S.;Okuhara,T.Applied Surface Science 1997,121/122 339);H3PW12O40(Hudec,P.;Prandova,K.Collection of Czechoslovak Chemical Communications1995,60(3),443);(聚苯乙烯基联吡啶)W(CO)4(Tamagaki,S.;Card,R.J.;Neckers,D.C.J.Am.Chem.Soc.1978,100,6635-6639);[≡SiO-W(≡CtBu)(CH2tBu)2](Copéret,C.New J.Chem.2004,28.1-10);(tBuO)2W=CtBu]/SiO2(Weiss,K.;Lssel,G.Angew.Chem.Int.Ed.Eng.1982,28(1),62-64);[(新戊基)2W=CtBu]/SiO2(Weiss,K.;Lssel,G.Angew.Chem.Int.Ed.Eng 1982,28(1),62-64);[Cl2W=CtBu]/SiO2(Weiss,K.;Lssel,G.Angew.Chem.Int.Ed.Eng.1982,28(1),62-64);WCl6/SiO2/1,1,3,3-(CH3)4-二硅杂环丁烷(Shouvalova,O.V.;Bespalova,N.B.;Nieczypor,P.;Mol,J.C.NATO Science Series,IIMathematics,Physics and Chemistry(NATO科学从书II数学、物理和化学)(2003),122(Novel Metathesis Chemistry(新型易位化学)),173);芳氧基钨/NbOx/SiO2/iBuAlCl2(Verpoort,F.;Bossuyt,A.;Verdonck,L.Chem.Commun.1996,417);Schrock W卡宾/SiO2(Weiss,K.;Hoffmann,K.Mathematical and Physical Sciences 1989 355);[Ru(聚合物-CH2OCOCF2CF2CF2COO)(CF3CO2)(=CH-o-iPrOC6H4)(IMesH2)(Krause,Jens O.;Nuyken,Oskar;Wurst,Klaus;Buchmeiser,Michael R.Chem.Eur.J.2004,10,777);和固体负载型无膦亚烷基钌(Connon,S.J.;Blechert,S.Bioorganic & Medicinal Chemistry Letters 2002,12(14)1873)。
在一些实施方案中优选以Schrock催化剂作为易位催化剂。参见例如美国专利6,852,900、6,660,813、6,538,131、6,380,420和5,942,638。
在一些实施方案中次优选以Grubb催化剂作为易位催化剂。
在一些实施方案中,易位催化剂至少为如下之一种或其混合物钼酸、三氯化钌、三氯化钌三水合物、三溴化钌、三碘化钌、六氯化钨、六溴化钨、六碘化钨、氯化钼、溴化钼、碘化钼、氧化钌、氧化钨、氯化钽、溴化钽、碘化钽、氧化钽、卤化钨的四烷基或四芳基锡络合物、卤化钼、卤化钽、卤化铼、卤化钌、氧化钼如氢化锂铝活化氧化钼、氧化铼、氧化钴包括氧化钴-氧化钼、五氯化铼、五溴化铼、五碘化铼,卤化铑、卤化钨、卤化钼、卤化钌的三烷基铝和二烷基铝氯化物络合物。参见例如美国专利5,324,616;也参见美国专利6,727,396和5,672,803。
在一些实施方案中,无或未结合有机配体的这类金属催化剂是优选的。
特别优选的烯烃易位催化剂包括但不限于Schrock催化剂、钼催化剂、氧化钨催化剂和氧化铼催化剂,其优选负载于固体载体上,这将在下面讨论。
4.双催化剂体系和方法。本发明通过使至少一种如上所述的第一烷烃在(i)如上所述的第一氢转移催化剂和(ii)如上所述的第二易位催化剂的存在下反应,产生至少一种较低分子量烷烃和至少一种较高分子量烷烃的混合物实施。反应条件不是关键性的,但通常反应步骤在大气压或高压下,于高温(如50、100或150℃至200、250或300℃或以上,但在一些实施方案中温度不超过300、250或200℃)下进行一、五或十分钟至一或二小时以上。取决于反应器的设计,反应可连续进行或以间歇反应进行,其均可按已知的技术实施。反应可为均相反应(即催化剂无载体)或非均相反应(即催化剂偶合或固定化于固体载体上),同样可按已知的技术实施。
在一些实施方案中,所述第一烷烃可为式CnH2n+2的直链或支链化合物,其中n为3-10。所述至少一种高分子量烷烃可为式CmH2m+2的直链或支链化合物,其中m为4-40的整数。
在其他实施方案中,所述第一烷烃是更高分子量的(如FischerTropsch蜡)。在这样的实施方案中,较低分子量的反应产物可用作燃料中的“高分子量”烷烃,而更高分子量的产物进入再循环或经历裂化或其他适宜的反应。
在一些实施方案中,所述第一烷烃以Fischer-Tropsch反应产物或其一部分的液体形式供给反应中。在这样的实施方案中,所述至少一种第一烷烃是直链的,且所述烷烃含在包含烷烃和烯烃的混合组合物中,烷烃对烯烃的比率较高,例如重量比为至少10∶1、50∶1、100∶1或200∶1或以上。
在一些实施方案中,反应通过包含或加入氢受体引发即在氢受体的存在下进行。在一些实施方案中,氢受体的量优选不高到能有害地与催化剂结合而减慢反应速度。在这类实施方案中,氢受体与所述氢转移催化剂的摩尔比优选不高于10∶1。在一些实施方案中,催化剂自身可用作氢受体,例如铱催化剂如(PCP)IrPhH或络合物如(钳形)Ir(乙烯)(其中“钳形”指上面第2部分中所引用参考文献中所示类型的多齿配体或现有技术中已知的其他这类配体)。
当包含时,任何适宜的氢受体均可用。在一些实施方案中优选烯烃氢受体。氢受体的实例包括但不限于降冰片烯、叔丁基乙烯、乙烯、丙烯、CH2=CH(CH2)nCH3(其中n为1-25)等。注意,氢受体可另外加入系统中或为经历反应的组合物中所固有(例如,烯烃可已经存在于Fischer-Tropsch反应的产物中)。
当一种或另一种或两种催化剂偶合或固定化于固体载体上时,所述载体可为多孔的或无孔的,呈任何适宜的形式,自任何适宜的材料如氧化铝、二氧化硅、二氧化钛、硅藻土(kieselguhr)、硅藻土(diatomaceous earth)、膨润土、粘土、氧化锆、氧化镁、沸石、炭黑、活性碳、石墨、氟化碳、有机聚合物、金属、金属合金和其组合按已知的技术形成。参见例如美国专利6,908,873。催化剂(包括铱钳形催化剂)可按已知的技术固定化,固定化的铱钳形催化剂络合物的一个实例由式(II)代表
其中 各R独立地为H或C1-C30烃基; 各R1独立地为C1-C30烃基; 各X独立地选自O和CH2; L为任何适宜的连接基,包括芳族、脂族和混合的芳族和脂族连接基;和 S为如上所述的固体载体。
在一些实施方案中,优选将支链的较高分子量烷烃的产生减到最少,以便使通过反应产生的至少一种较高分子量烷烃包含直链烷烃与支链烷烃的摩尔比为至少500∶1、更优选摩尔比为至少1000∶1的混合物。
在一些实施方案中,其中氢转移催化剂固定化于固体载体上且反应在溶剂中进行,所述方法可还包括自所述溶剂分离游离的氢转移催化剂的步骤。这类分离可通过任何适宜的方法进行,如向溶剂中加入额外的吸附剂以吸附其他游离氢转移催化剂。任何适宜的吸附剂均可用,包括但不限于氧化铝、二氧化硅、二氧化钛、硅藻土(kieselguhr)、硅藻土(diatomaceous earth)、膨润土、粘土、氧化锆、氧化镁、沸石、炭黑、活性碳、石墨、氟化碳、有机聚合物、金属、金属合金和其组合。不希望受任何特定理论的束缚,认为加入的游离载体将吸附别的将以别的方式干扰(优选也固定化的)易位催化剂的活性的游离的氢转移催化剂。
本发明的方法的一个实施方案在下面的方案1中示意性地示出,其中以铱催化剂作为氢转移催化剂。
方案1 5.其他工艺步骤、装置和设施。通过本发明的方法生产的较低和较高分子量的烷烃(特别是较高分子量的液态烷烃)可按已知的技术用作燃料和溶剂和/或可通过已知的技术经进一步加工以产生燃料。例如,较高分子量的烷烃可通过蒸馏从较低分子量的烷烃分离,较高分子量的烷烃用作燃料,较低分子量的烷烃可直接使用或返回和回收用于进一步的合成。如果需要,也可全部按已知的技术进行产生液态烃燃料如汽油或柴油的其他加工方法如重整、与其他烃或其他精炼流共混和/或加入添加剂(如含氧有机化合物如MTBE、乙醇、ETBE等;燃料添加剂如着火改进剂、稳定改进剂、腐蚀抑制剂、洗涤添加剂、低温流动改进剂、燃烧改进剂、亮度减弱剂/辐射猝灭剂、抗微生物/抗真菌添加剂、抗静电剂、和其他常规的喷气燃料添加剂及其混合物)。参见例如美国专利6,896,708和6,880,635;也参见美国专利6,884,916、6,881,235、6,863,802、6,858,047、6,767,372、6,565,617、6,551,502、6,533,924、6,527,816、6,540,797、6,890,364和6,833,064。
实施本发明的方法的装置在图1中示意性地示出。含碳的或有机材料如煤、甲烷、天然气或生物质经由线路11供给合成气生成器12,在这里,其经空气、纯氧、蒸汽和/或甲烷部分氧化产生合成气,所有这些均可按已知技术进行。合成气通过线路13离开发生器12,然后(任选但优选)通过洗涤器和/或过滤器14至少部分除去不希望有的化合物如HCN、NH3和/或含硫气体。任何适宜的洗涤器、过滤器或净化系统均可使用。参见例如美国专利2,863,527、4,088,735、4,155,985、3,975,178、3,956,460、4,007,129、4,058,376、4,189,307和4,271,133。
合成气通过线路15离开任选的过滤器和/或洗涤器14进入Fischer-Tropsch反应器16。任何适宜的Fischer-Tropsch反应器均可用,包括淤浆和非淤浆(固定床或流化床)反应器(如循环流化床反应器、沸腾或固定流化床反应器、淤浆相鼓泡床反应器或淤浆鼓泡塔反应器等)。反应器可含任何适宜的Fischer-Tropsch催化剂。适宜的反应器和催化剂的特定实例在上文以及上面列举的专利中有指出,所述专利通过引用结合到本文中。一个或多个含Fischer-Tropsch反应的反应产物的进料线路17a、17B和17C离开反应器(如轻馏分经由线路17a、中等馏分经由线路17b、重馏分如蜡经由线路17c)。各进料线路17a-17c可由阀18a-18c控制,从而经由线路19向双催化剂反应器20提供受控的输入。(或者,线路17a-17c或其任意组合可直接通到反应器20而不是经由公用线路19进给)。
例如,Fischer-Tropsch反应器的中等分子量馏分可经由线路18b收回,双催化剂反应器20可经由线路17a和阀18a供给F-T反应的轻质馏分、经由线路17c和阀18c供给F-T反应的重质或蜡馏分或经由其组合供给任何适宜比例的轻和重质馏分的混合物。
双催化剂反应器20可具有任何适宜的样式或构造,如上面关于Fischer-Tropsch反应器的部分中所描述的那些。双催化剂反应的产物然后经线路21带走以用作燃料或用作任何其他适宜的用途。
应理解,图1的装置是以示意的形式给出的。其他部件如用于自反应器回收产物以便进一步反应的回流线路、用于分离反应产物的组分以便进一步加工的分离或蒸馏装置、用于加入或混合其他组分或添加剂的其他进料线路等也可包括于其中,这对于本领域技术人员将是显而易见的。线路可合并或阀可移位或调换位置,分离可通过蒸馏而不是分馏获得,等等。
本文中所述的双催化剂反应将第一烷烃转化为较高和较低分子量的烷烃(“较高”和“较低”系相对于第一烷烃而言)。在上述燃料合成方法中,通常认为双催化剂反应的较高分子量产物是需要的。但Fischer-Tropsch反应也产生更高分子量的蜡产物,当这类蜡通过本发明的反应被进一步加工时,较低分子量的产物被用来生产燃料而较高分子量的产物被用来再循环(或其他用途)。
因此,本发明也提供了自合成气通过Fischer-Tropsch反应生产液态烃燃料如柴油或汽油的方法,其中所述燃料包含至少一种高分子量烷烃,其中所述Fischer-Tropsch反应的至少部分产物包含蜡,且其中所述蜡的分子量比所述高分子量烷烃的还要高,其中,至少部分所述蜡通过在包含(i)氢转移催化剂和(ii)产生所述至少一种高分子量烷烃的易位催化剂的双催化剂体系的存在下,被转化为所述至少一种高分子量烷烃(这里,“高分子量烷烃”为双催化剂反应的较低分子量产物)。
注意,自F-T反应产生的非常低分子量的烷烃也可被供给到双催化剂体系中以辅助自高分子量蜡生产较低分子量烷烃(或相对于所述非常低分子量的烷烃而言“中等”分子量的烷烃)。
如上面图1中所述的装置可经改型以实施这类方法,做法是将其构造为将Fischer Tropsch反应器16的蜡产物输送至双催化剂反应器18中。
虽然按单一烷烃如“第一烷烃”“低分子量烷烃”“高分子量烷烃”“蜡”和特定链长的烷烃对本发明进行了描述,但应理解在本发明的大多数实施方案中的产物烷烃以及许多实施方案中的反应物烷烃代表具有不同碳数(其大多数可能在所指示的范围内)的多种烷烃的分布而非单一化合物。因此,在本文中以链长或链长范围指定烷烃的场合,所述烷烃可包括(就本发明而言)(i)指定链长的单一烷烃(单独或与其他的组合),或(ii)具有与指定链长对应的平均或中间链长的多种烷烃的混合物。
下面通过非限制性的实施例对本发明加以描述。在这些实施例中,所有操作均用标准的Schlenk和手套箱技术进行。氩气经BASFR3-11柱(Chemalog)和4分子筛净化。甲苯和戊烷流经活性氧化铝柱。己烷购自Aldrich,经CaH2干燥,经多次冷冻-抽吸-融化循环脱气并于氩气下贮存。无水癸烷购自Aldrich,经脱气并于氩气下贮存。高铼酸铵购自Aldrich并不经处理直接使用。γ-氧化铝和[Mo(C10H12)(C12H17N)[OC(CH3)(CF3)2]2购自Strem并不经处理直接使用。{C6H3-2,6-[OP(t-Bu)2]2}Ir(H)(Cl)、{C6H3-2,6-[OP(t-Bu)2]2}Ir(H)2、{C6H3-2,6-[CH2P(t-Bu)2]2}Ir(H)2、{4-OMe-C6H2-2,6-[CH2P(t-Bu)2]2}Ir(H)2和{4-OMe-C6H2-2,6-[CH2P(i-Pr)2]2}Ir(H)2按文献程序制备(Gottker-Schnetmann,I.;White,P.;Brookhart,M.J.Am.Chem.Soc.2004,126,1804-1811;Gottker-Schnetmann,I.;White,P.S.;Brookhart,M.Organometallics 2004,23,1766-1776;Gupta,M.;Hagen,C.;Flesher,R.J.;Kaska,W.C.;Jensen,C.M.Chem.Commun.1996,17,2083-2084;Mohammad,H.A.Y.;Grimm,J.C.;Eichele,K.;Mack,H.-G.;Speiser,B.;Novak,F.;Quintanilla,M.G.;Kaska,W.C.;Mayer,H.A.Organometallics 2002,21,5775-5784;Zhu,K.;Achord,P.D.;Zhang,X.;Krogh-Jespersen,K.;Goldman,A.S.J.Am.Chem.Soc.2004,126,13044-13053)。NMR谱用Bruker DRX 400和AMX 300MHz仪器记录并以残余的protio溶剂为参比。31P{1H}NMR化学位移用85%的H3PO4作外标。GC分析在带二甲聚硅氧烷柱的Agilent 6850系列GC上进行(Agilent HP-1)。
实施例1 {C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)的合成 称取{C6H3-2,6-[OP(t-Bu)2]2}Ir(H)(Cl)(1.5g,2.4mmol)和NaO-t-Bu(277mg,2.89mmol)于经火焰干燥的Schlenk烧瓶中并置于氩气流下。用注射器向烧瓶中加入甲苯(40mL),所得悬浮体在室温下搅拌10分钟。溶液用乙烯鼓泡1-2小时。溶液再通过Celite硅藻土垫层插管过滤,挥发物在真空下蒸发,所得红色固体在真空下干燥过夜得到867mg纯净产物(产率59%)。
1H NMR(C6D6)δ1.24(t,J=6.8Hz,36H),3.10(t,J=2.4Hz,4H),6.91-6.94(m,2H),7.01-7.06(m,1H).13C NMR(C6D6)δ28.93(m,12C),36.13(s,2C),41.92(t,J=11.2Hz,4C),103.98(t,J=6.0Hz,2C),127.45(s),145.19(t,J=8.5Hz),168.17(t,J=8.4Hz,2C).31P{1H}NMR(C6D6)δ181.7(s). C24H43O2P2Ir计算值C,46.65;H,7.03;实测值C,46.64;H,7.15。
实施例2 负载于氧化铝上的(C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)的合成 称取{C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)(150mg,0.242mmol)和γ-氧化铝(2.50g,24.5mmol;先在500℃下煅烧)于Schlenk烧瓶中并置于氩气流下。用注射器加入戊烷(10mL),悬浮体在室温下轻轻搅拌2小时。过滤铁锈色的固体并用戊烷洗涤直至洗涤液呈无色,真空干燥得到2.49g负载的催化剂(产率94%)。
实施例3 负载于氧化铝上的Re2O7的合成 下面的程序自文献程序(Mol,J.C.Catal.Today 1999,51,289-299)改编而来。在小瓶中将1.20g(4.47mmol)NH4Re2O4溶解于30mL蒸馏水中。将该溶液加到10g(98mmol)γ-Al2O3中。悬浮体用手打旋约一分钟,然后在室温下无扰动地静置30分钟。重复此打旋和静置循环直至全部水均为氧化铝所吸收。固体物在120℃的烘箱中干燥过夜,然后在550℃和氧气流下煅烧3小时,再在Ar气流下煅烧3小时。在Ar气流下冷却到室温后,将固体物放进干燥箱中并贮存于其中。 实施例4-5 使用均相转移脱氢和烯烃易位催化剂的反应程序 实施例4 烷烃易位{C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)和 Schrock催化剂[Mo(C10H12)(C12H17N)[OC(CH3)(CF3)2]2 向烧瓶中加入13mg(0.021mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)、2.7μL(0.021mmol)叔丁基乙烯(作为氢受体)、26mg(0.034mmol)六氟化Schrock催化剂([Mo(C10H12)(C12H17N)[OC(CH3)(CF3)2]2)、2mL(15.3mmol)己烷和8.8μL(0.063mmol)均三甲苯(作为内标)。烧瓶用Teflon塞在氩气氛下封紧,溶液在125℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数。数据在下表中给出。
实施例4a加入1当量的氢受体
总转换数=[(C7×C8×C9×C10)×2]+C11及以上 实施例4b加入0当量的氢受体
总转换数=[(C7×C8×C9×C10)×2]+C11及以上 实施例5 烷烃易位{C6H3-2,6-[OP(t-Bu)2]2}Ir(H)2和 Schrock催化剂[Mo(C10H12)(C12H17N)[OC(CH3)(CF3)2]2 用下面的试剂按与上述相同的程序进行13mg(0.021mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(H)2、5.4μL(0.042mmol)叔丁基乙烯、26mg(0.034mmol)六氟化Schrock催化剂([Mo(C10H12)(C12H17N)[OC(CH3)(CF3)2]2)、2mL(15.3mmol)己烷和8.8μL(0.063mmol)均三甲苯。数据在下表中给出。
总转换数=[(C7×C8×C9×C10)×2]+C11及以上 实施例6-10 使用均相转移脱氢催化剂和非均相烯烃易位催化剂的反应程序 以癸烷用于以Re2O7/Al2O3作为易位催化剂的反应中(实施例6-11);有时观察到了高至C34的烷烃产物。为简略起见,这里给出了总转换数以及观察到的烷烃产物的范围。 实施例6 烷烃易位{C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)和Re2O7/Al2O3 向烧瓶中加入13mg(0.021mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)、2.7μL(0.021mmol)叔丁基乙烯(作为氢受体)、535mg负载于氧化铝上的Re2O7(6%重量的Re)、2.5mL(12.8mmol)癸烷和10.2mg(0.063mmol)六甲基苯(作为内标)。铱络合物自身立即吸附到Re2O7氧化铝载体上,这可从无色溶液和铁锈色固体看出。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。数据在下表中给出。
实施例6a加入1当量的氢受体
总转换数=C7+C8+C9+C11+C12+C13+[(C14×C15×C16×C17×C18)×2]+C19及以上 实施例6b加入0当量的氢受体
总转换数=C7+C8+C9+C11+C12+C13+[(C14×C15×C16×C17×C18)×2]+C19及以上 实施例7 烷烃易位{C6H3-2,6-[OP(t-Bu)2]2}Ir(H)2和Re2O7/Al2O3 用下面的试剂按与上述相同的程序进行13mg(0.021mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(H)2、5.4μL(0.042mmol)叔丁基乙烯、535mg负载于氧化铝上的Re2O7(6%重量的Re)、2.5mL(12.8mmol)癸烷和10.2mg(0.063mmol)六甲基苯。数据在下表2及后面的表中给出。
总转换数=C7+C8+C9+C11+C12+C13+[(C14×C15×C16×C17×C18)×2]+C19及以上 实施例8 烷烃易位{C6H3-2,6-[CH2P(t-Bu)2]2}Ir(H)2和Re2O7/Al2O3 用下面的试剂按与上述相同的程序进行13.5mg(0.0230mmol){C6H3-2,6-[CH2P(t-Bu)2]2}Ir(H)2、5.4μL(0.042mmol)叔丁基乙烯、535mg负载于氧化铝上的Re2O7(6%重量的Re)、2.5mL(12.8mmol)癸烷和10.2mg(0.063mmol)六甲基苯。
总转换数=C7+C8+C9+C11+C12+C13+[(C14×C15×C16×C17×C18)×2]+C19及以上 实施例9 烷烃易位{4-OMe-C6H2-2,6-[CH2P(t-Bu)2]2}Ir(H)2和Re2O7/Al2O3 用下面的试剂按与上述相同的程序进行14.5mg(0.0235mmol){4-OMe-C6H2-2,6-[CH2P(t-Bu)2]2}Ir(H)2、5.4μL(0.042mmol)叔丁基乙烯、535mg负载于氧化铝上的Re2O7(6%重量的Re)、2.5mL(12.8mmol)癸烷和10.2mg(0.063mmol)六甲基苯。数据在下表中给出。
总转换数=C7+C8+C9+C11+C12+C13+[(C14×C15×C16×C17×C18)×2]+C19及以上 实施例10 烷烃易位{4-OMe-C6H2-2,6-[CH2P(i-Pr)2]2}Ir(H)2和Re2O7/Al2O3 用下面的试剂按与上述相同的程序进行12.1mg(0.0215mmol){4-OMe-C6H2-2,6-[CH2P(i-Pr)2]2}Ir(H)2、5.4μL(0.042mmol)叔丁基乙烯、535mg负载于氧化铝上的Re2O7(6%重量的Re)、2.5mL(12.8mmol)癸烷和10.2mg(0.063mmol)六甲基苯。数据在下表中给出。
总转换数=C7+C8+C9+C11+C12+C13+[(C14×C15×C16×C17×C18)×2]+C19及以上 实施例11 使用非均相转移脱氢和烯烃易位催化剂 {C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)/Al2O3和Re2O7/Al2O3的反应程序 作为替代,称取221mg负载于氧化铝上的{C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)(6%重量的Ir)于含288mg负载于氧化铝上的Re2O7(12%重量的Re)、2.5mL(12.8mmol)癸烷和11.4mg(0.070mmol)六甲基苯(作为内标)的烧瓶中。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数。数据在下表中给出。
总转换数=C7+C8+C9+C11+C12+C13+[(C14×C15×C16×C17×C18)×2]+C19及以上 实施例12 使用 {C6H3-2,6-[P(tBu)2]2}Ir(Hn)和 Mo(=CHCMe2Ph)(=NC6H4(iPr)2)(OC(CF3)2(Me))2的烷烃易位反应的 实施例 所有操作均用标准的Schlenk和手套箱技术在氩气氛下进行。{C6H3-2,6-[P(tBu)2]2}Ir(Hn)按报道的程序合成。Mo(=CHCMe2Ph)(=NC6H4(iPr)2)(OC(CF3)2(Me))2购自Strem Chemicals并不经处理直接使用。无水正己烷购自Aldrich并贮存于氩气下。叔丁基乙烯购自Aldrich,在Na-K合金上蒸馏,经冷冻抽吸融化循环脱气并贮存于氩气下。
物理性质测定。1H、31P{1H}、19F和13C{1H}-NMR(反转门控,5秒延迟)用400MHz Varian NMR波谱仪以均三甲苯-d12作外锁进行记录。1H和13C{1H}-NMR以正己烷作参比,正己烷再以TMS作参比。31P-NMR以PMe3作外标。GC分析用带25m×0.2mm×0.5μm膜厚HP-1交联甲基硅酮毛细管柱的Thermo Focus GC仪器进行。
实验。将{C6H3-2,6-[P(tBu)2]2}Ir(Hn)(12mg,0.0204mmol)、Mo(=CHCMe2Ph)(=NC6H4(iPr)2)(OC(CF3)2(Me))2(25mg,0.0326mmol)和叔丁基乙烯(5.3μl,0.0408mmol)于氩气氛下加到正己烷(2ml,15.29mmol)中。转移0.5ml上述溶液至含PMe3/均三甲苯-d12(作为外锁)的5mm NMR管中。内容物用液氮冷却,NMR管在真空下密封。将管保存于110℃的经预热的烘箱中,并每隔一定时间记录一次NMR谱。当反转门控13C{1H}-NMR实验不再显示进一步的变化时,将NMR管冷却至室温并破坏密封。向NMR管中加入均三甲苯(5μl,0.0359mmol)作为GC的内标。样品再进行GC分析。
GC结果。图3A、3B和C3(其中3B和3C是3A的区域的扩展)所示的气相色谱示出了反应过程中形成的各种产物的分布。各种烷烃的浓度相对于已知的均三甲苯浓度计算。数据在随附的excel工作表中给出。初步结果表明约15.5%的己烷被消耗并形成6.7%的正癸烷。另外形成了约2.6%的正戊烷和2%的正庚烷以及更少量的其他烷烃。
NMR结果。13C{1H}-NMR示出了可精确确定归属的烷烃的独特峰。但由于某些烷烃峰的重叠,故该归属并非穷举的。由于癸烷大量形成并也在NMR中显示明显分离的峰,故采用5秒延迟的反转门控13C{1H}-NMR实验来确定反应过程中形成的癸烷的量。结果表明形成了约7%的正癸烷,这与自GC获得的百分数非常相似。
实施例13-17 显示“氧化铝效果”的烷烃易位反应程序 实施例13 在无另外的经煅烧的游离Al2O3存在下的烷烃易位反应 向烧瓶中加入14.0mg(0.227mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)、540mg Re2O7/Al2O3(3%重量)、2.5mL(12.8mmol)正癸烷和12.5mg(0.0770mmol)六甲基苯(作为内标)。铱络合物自身立即吸附到氧化铝载体上,这可从无色溶液和铁锈色固体看出。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数和产物浓度。
实施例14 在有另外的经煅烧的游离Al2O3存在下的烷烃易位反应 向烧瓶中加入14.5mg(0.0235mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)、542mg Re2O7/Al2O3(3%重量)、500mg经煅烧的游离γ-Al2O3、2.5mL(13mmol)正癸烷和17.4mg(0.107mmol)六甲基苯(作为内标)。铱络合物自身立即吸附到氧化铝载体上,这可从无色溶液和铁锈色固体看出。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数和产物浓度。
实施例13-14的数据
实施例15 在无另外的经煅烧的游离Al2O3存在下的烷烃易位反应 向烧瓶中加入13.0mg(0.0210mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)、128mg Re2O7/Al2O3(13%重量)、2.5mL(12.8mmol)正癸烷和13.4mg(0.0826mmol)六甲基苯(作为内标)。铱络合物自身部分吸附到氧化铝载体上,这可从浅橙色溶液和铁锈色固体看出。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数和产物浓度。
实施例16 在有另外的经煅烧的游离Al2O3存在下的烷烃易位反应 向烧瓶中加入13.5mg(0.0219mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)、130mg Re2O7/Al2O3(13%重量)、415mg经煅烧的游离γ-Al2O3、2.5mL(12.8mmol)正癸烷和11.7mg(0.0721mmol)六甲基苯(作为内标)。铱络合物自身立即吸附到氧化铝载体上,这可从无色溶液和铁锈色固体看出。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数和产物浓度。 实施例15-16的数据
实施例17 在无另外的经煅烧的游离Al2O3存在下的烷烃易位反应 向烧瓶中加入53.7mg MoO3/SiO2-Al2O3(9.1%重量)、0.90μL(.0065mmol)SnMe4、2.5mL(13mmol)正癸烷和6.0μL(0.067mmol)苯(作为内标)。混合物在室温下搅拌10分钟,然后向混合物中加入14.1mg(0.0228mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)。铱络合物自身部分吸附到氧化铝载体上,这可从浅橙色溶液和铁锈色固体看出。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数和产物浓度。
实施例18 在有另外的经煅烧的游离Al2O3存在下的烷烃易位反应 向烧瓶中加入53.9mg MoO3/SiO2-Al2O3(9.1%重量)、0.90μL(0.0065mmol)SnMe4、2.5mL正癸烷和6.0μL(0.067mmol)苯(作为内标)。混合物在室温下搅拌10分钟,然后向混合物中加入12.6mg(0.0204mmol){C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)和300mg经煅烧的游离γ-Al2O3。铱络合物自身立即吸附到氧化铝载体上,这可从无色溶液和铁锈色固体看出。烧瓶用Teflon塞在氩气氛下封紧,溶液在175℃油浴中搅拌。定期从浴中取出烧瓶并冷却。从烧瓶中取出等分试样,进行GC分析。为每等分试样计算转换数和产物浓度。
实施例17-18的数据
在上述反应中,我们观察到一加入经煅烧的游离Al2O3后反应速率和产物浓度即显著提高。众所周知,在这些反应中{C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)将负载其自身于固体载体上,这可从自红色溶液和白色固体到无色(或浅色)溶液和铁锈色固体的变化看出。因此,我们将此加入氧化铝后对反应速率和产率的效果归因于负载的和游离的Ir催化剂之间的平衡,其对添加了Al2O3时负载的络合物有利。游离的Ir络合物可与固体载体上的Re2O7或MoO3络合物发生相互作用而使易位催化剂失活。因此,在添加了氧化铝时,负载的{C6H3-2,6-[OP(t-Bu)2]2}Ir(C2H4)相对于游离Ir的量的增加可减少两种催化剂间的相互作用而减少催化剂失活的量。
实施例19-20 SiO2负载IrH2转移催化剂的合成实施例19 制备SiO2-负载Ir氢转移催化剂的程序 Pd-催化的5-溴-1,3-二甲氧基苯与烯丙基硼酸频哪醇酯的交叉偶联反应以极好的产率产生5-烯丙基-1,3-二甲氧基苯1。用AlI3为5-烯丙基-1,3-二甲氧基苯脱甲基并用CS2作溶剂以产生5-烯丙基间苯二酚2。二(次亚膦酸酯)PCP配体3通过5-烯丙基间苯二酚2与相应的氯膦和氢化钠(作为碱)的二磷酸化获得。铱络合物4自相应的PCP配体3与[Ir(COD)Cl]2或[Ir(COE)2Cl]2的反应获得。络合物4的氢化硅烷化产生氢化硅烷化的络合物5。络合物5与硅胶的反应提供Si2O-负载的Ir络合物6。到此为止,以92%的产率制备出了5-烯丙基-1,3-二甲氧基苯1。 制备SiO2-负载Ir氢转移催化剂的方案
实施例20 5-烯丙基-1,3-二甲氧基苯的合成 称取5-溴-1,3-二甲氧基苯(2.13g,9.8mmol)、CsF(2.88g,19.0mmol)和Pd(Ph3)4(0.57-1.13g,0.5-1.0mmol)于经火焰干燥的Schlenk烧瓶中并置于氩气流下。用注射器向烧瓶中加入THF(80mL),所得悬浮体在室温下搅拌30分钟。加入烯丙基硼酸频哪醇酯(2.96g,17.6mmol)/THF(40mL),所得混合物加热回流30h。加入另一部分CsF(2.88g,19.0mmol)和Pd(Ph3)4(0.57-1.13g,0.5-1.0mmol),继续回流24h。反应混合物用石油醚(100ml)、然后用H2O(100ml)稀释。分层,水层用石油醚(2×80ml)萃提。合并有机层并用H2O(100ml)和食盐水(100ml)洗涤。溶液用MgSO4干燥并蒸发至干。粗产物用柱色谱(硅胶,洗脱液己烷/苯=3∶2)纯化得到1.60g(92%)5-烯丙基-1,3-二甲氧基苯。1HNMR(CDCl3)δ3.33(d,J=6.7Hz,2H,CH2CH=CH2),3.77(s,6H,OCH3),5.02-5.11(m,2H,CH2CH=CH2),5.89-5.99(m,1H,CH2CH=CH2),6.33-6.38(m,3H)。 实施例21 使用 {C6H3-2,6-[P(tBu)2]2}Ir(Hn)和 Mo(=CHCMe2Ph)(=NC6H4(iPr)2)(OC(CF3)2(Me))2的烷烃易位反应的 实施例 总体说明。所有操作均用标准的Schlenk和手套箱技术在氩气氛下进行。{C6H3-2,6-[P(tBu)2]2}Ir(Hn)按报道的程序合成。Mo(=CHCMe2Ph)(=NC6H4(iPr)2)(OC(CF3)2(Me))2购自Strem chemicals并不经处理直接使用。无水正己烷(99%)购自Fluka,经冷冻抽吸融化循环脱气,在NaK上蒸馏并贮存于充氩气的手套箱中。叔丁基乙烯购自Aldrich。其经冷冻抽吸融化循环脱气,在Na-K合金上搅拌,通过真空转移收集,然后贮存于氩气下。
物理性质测定。1H、31P{1H}和13C{1H}-NMR(反转门控,5秒延迟)用400MHz Varian NMR波谱仪以均三甲苯-d12作外锁进行记录。1H和13C{1H}-NMR以正己烷作参比,正己烷再以TMS作参比。31P-NMR以PMe3作外标(δ=-62.6ppm)。GC分析用带25m×0.2mm ID×0.5μm膜厚HP-1交联甲基硅酮毛细管柱的Thermo Focus GC仪器(主要用于分析Cn≥4的烷烃)进行。液上气体分析用装配有100m×0.25mm ID×0.5μm膜厚Supelco Petrocol DH毛细管柱的ThermoFocus GC仪器(主要用于分析Cn≤4的烷烃)进行。
实验。在手套箱中,将(tBuPCP)IrHn(12mg,0.021mmol)、Mo-Schrock(10mg,0.013mmol)和TBE(5.4μl,0.042mmol)加到含均三甲苯(0.034M,作为内标)的正己烷(2ml,15.3mmol)中。将该溶液的两等分试样(各0.5mL)转移至含PMe3/均三甲苯-d12(作为参比和外锁)的NMR管中。内容物用液氮冷却并在真空下密封。管在经预热的烘箱中于125℃下加热(平行地),并每隔一定时间记录一次NMR谱。13C{1H}-NMR波谱可分辨C1-C12范围内的所有正烷烃,但定量精度显著低于GC分析所获得的(但可通过反转门的使用得到改进)。两等分试样的谱图间未观察到显著差异。当NMR不再显示正烷烃组成中任何进一步的变化时(23h),对反应混合物进行GC分析。将其中一管的密封破坏,通过GC对溶液和液上气体进行分析。在手套箱内将第二管的密封破坏,加入另一份催化剂Mo-Schrock(2.5mg,0.003mmol),在真空下将管再次密封并于125℃下在烘箱中再加热23h。然后以相同的方式对溶液和液上气体加以分析。自GC获得的结果在下表中给正己烷扫描图在图4中给出。
表于125℃的密封管中,(tBuPCP)IrHn(10mM)与Mo-Schrock(6.5mM)和叔丁基乙烯(TBE;20mM)在正己烷(2ml)中连续反应23小时的产物分布。
*加入另外的6.5mM Mo-Schrock催化剂后。
液上气体分析。(用甲烷、乙烷和丙烷的基准试样标定)。加热后将管中内容物置于室温下,然后用液氮冷却管并反复振摇以使气体产物平衡和溶解。然后破坏密封并换上隔膜,将溶液置于室温下。用气密注射器取200μl液上气体作为试样进行GC分析。气相的GC分析表明在总的131mM乙烷中(如果全部乙烷均在溶液中的话),液上气体中存在1.7μmol乙烷。同样,在总的176mM丙烷浓度中,液上气体中存在少量丙烷,为1mM。仅观察到痕量的甲烷(有效浓度=0.5mM),其很可能是由于Mo-亚甲基中间体的分解形成的。
比较以(tBuPCP)IrHn和(tBuPOCOP)IrHn/(tBuPOCOP)Ir(C2H4)用Mo-Schrock作易位催化剂进行的反应,观察到不同的产物分布。用(tBuPOCOP)IrHn作脱氢催化剂的反应导致产物的随机分布,而使用(tBuPCP)IrHn的反应自Cn产生更高浓度的C2n-2产物。推测起来,在该反应条件下,二膦-配位Ir催化剂比二次亚膦酸酯-配位Ir物种催化异构化反应的速度要慢(或相对于氢化反应而言要慢)。
前述是对本发明的说明,不应理解为其限制。本发明由下面的权利要求所限定,所述权利要求的等价物也包含其中。
权利要求
1.一种转化至少一种第一烷烃为至少一种较低分子量烷烃和至少一种较高分子量烷烃的混合物的方法,所述方法包括
使第一烷烃在包含(i)氢转移催化剂和(ii)易位催化剂的双催化剂体系的存在下反应,产生至少一种低分子量烷烃和至少一种高分子量烷烃的所述混合物;
其中所述氢转移催化剂为铱钳形络合物催化剂。
2.权利要求1的方法,其中所述氢转移催化剂和所述易位催化剂为非均相催化剂。
3.权利要求1的方法,其中所述易位催化剂选自Schrock催化剂、钼催化剂、氧化钨催化剂、氧化铼催化剂和其混合物。
4.权利要求1的方法,其中所产生的至少一种较高分子量烷烃中直链烷烃与支链烷烃的比率至少为500∶1。
5.权利要求1的方法,其中所述氢转移催化剂固定化于固体载体上,其中所述反应在溶剂中进行,且其中所述方法还包括自所述溶剂分离游离的氢转移催化剂的步骤。
6.权利要求1的方法,其中所述反应在氢受体的存在下进行,且其中所述氢受体与所述氢转移催化剂的摩尔比不高于10∶1。
7.权利要求1的方法,其中所述至少一种第一烷烃是直链的。
8.权利要求1的方法,其中所述至少一种第一烷烃通过如下产生在Fischer-Tropsch催化下转化合成气为所述至少一种第一烷烃。
9.权利要求1的方法,所述方法还包括以下步骤
向液态烃燃料合成工艺中提供至少部分所述高分子量烷烃以产生液态烃燃料。
10.权利要求1的方法,所述方法还包括以下步骤
向汽油合成工艺中提供至少部分所述高分子量烷烃以产生汽油。
11.权利要求1的方法,所述方法还包括以下步骤
向柴油合成工艺中提供至少部分所述高分子量烷烃以产生柴油。
12.一种通过Fischer Tropsch反应自合成气制备液态烃燃料的方法,其中所述燃料包含至少一种高分子量烷烃,且其中所述FischerTropsch反应的产物的至少一部分包含至少一种低分子量烷烃,其改进包括
通过使所述低分子量烷烃在包含(i)氢转移催化剂和(ii)易位催化剂的双催化剂体系的存在下反应产生所述高分子量烷烃而转化至少部分所述低分子量烷烃为所述高分子量烷烃;
其中所述氢转移催化剂为铱钳形络合物催化剂。
13.权利要求12的方法,其中所述氢转移催化剂和所述易位催化剂均为非均相催化剂。
14.权利要求12的方法,其中所述易位催化剂选自Schrock催化剂、钼催化剂、氧化钨催化剂、氧化铼催化剂和其混合物。
15.权利要求12的方法,其中所产生的至少一种较高分子量烷烃中直链烷烃与支链烷烃的比率至少为500∶1。
16.权利要求12的方法,其中所述氢转移催化剂固定化于固体载体上,其中所述反应在溶剂中进行,且其中所述方法还包括自所述溶剂分离游离的氢转移催化剂的步骤。
17.权利要求12的方法,其中所述燃料为柴油或汽油。
18.权利要求12的方法,其中
所述至少一种低分子量烷烃为式CnH2n+2化合物,其中n为3-10,和
所述至少一种高分子量烷烃为式CmH2m+2化合物,其中m为4-40的整数。
19.权利要求12的方法,其中所述反应在氢受体的存在下进行,且其中所述氢受体与所述氢转移催化剂的摩尔比不高于10∶1。
20.一种组合物,所述组合物包含以下组分的组合
(i)固定化于固体载体上的铱钳形络合物氢转移催化剂;和
(ii)固定化于固体载体上的易位催化剂。
21.权利要求20的组合物,其中所述易位催化剂选自Schrock催化剂、钼催化剂、氧化钨催化剂、氧化铼催化剂和其混合物。
22.权利要求20的组合物,其中所述氢转移催化剂和所述易位催化剂固定化于相同的固体载体上。
23.权利要求20的组合物,其中所述氢转移催化剂和所述易位催化剂固定化于不同的固体载体上。
24.一种自含碳材料生产液态烃燃料的装置,所述装置包含
合成气生成器;
有效地与所述合成气生成器相关联的Fischer Tropsch反应器;和
有效地与所述Fischer Tropsch反应器相关联的双催化剂反应器,所述双催化剂反应器含(i)铱钳形络合物氢转移催化剂和(ii)易位催化剂。
25.权利要求24的装置,其中
(i)所述铱钳形络合物氢转移催化剂固定化于固体载体上;和
(ii)所述易位催化剂固定化于固体载体上。
26.权利要求24的装置,其中所述易位催化剂选自Schrock催化剂、钼催化剂、氧化钨催化剂、氧化铼催化剂和其混合物。
27.一种通过Fischer-Tropsch反应自合成气制备液态烃燃料的方法,其中所述燃料包含至少一种高分子量烷烃,其中所述FischerTropsch反应的产物的至少一部分包含蜡,且其中所述蜡的分子量比所述高分子量烷烃的还要高,其改进包括
通过使所述蜡在包含(i)氢转移催化剂和(ii)易位催化剂的双催化剂体系的存在下反应产生所述至少一种较高分子量烷烃而转化至少部分所述蜡为所述至少一种高分子量烷烃;
其中所述氢转移催化剂为铱钳形络合物催化剂。
28.权利要求27的方法,其中所述氢转移催化剂和所述易位催化剂均为非均相催化剂。
29.权利要求27的方法,其中所述易位催化剂选自Schrock催化剂、钼催化剂、氧化钨催化剂、氧化铼催化剂和其混合物。
30.权利要求27的方法,其中所产生的至少一种较高分子量烷烃中直链烷烃与支链烷烃的比率至少为500∶1。
32.权利要求27的方法,其中所述燃料为柴油或汽油。
33.权利要求27的方法,其中
所述至少一种较高分子量烷烃为式CmH2m+2化合物,其中m为4-40的整数;
所述蜡为式CpH2p+2化合物,其中p为18-200。
34.权利要求27的方法,其中所述反应在氢受体的存在下进行,且其中所述氢受体与所述氢转移催化剂的摩尔比不高于10∶1。
全文摘要
将至少一种第一烷烃转化为至少一种低分子量烷烃(任选也含其他较低和/或较高分子量的烷烃)和至少一种高分子量烷烃的混合物的方法,所述方法包括使第一烷烃在包含第一催化剂(即氢转移催化剂并优选铱钳形络合物催化剂)和第二催化剂(即易位催化剂)的双催化剂体系的存在下反应产生低和高分子量烷烃的混合物。
文档编号C07C1/00GK101253132SQ200680032203
公开日2008年8月27日 申请日期2006年7月7日 优先权日2005年7月8日
发明者A·S·戈德曼, M·布鲁克哈特, A·R·麦卡瑟, R·阿胡亚, 正 黄 申请人:北卡罗来纳-查佩尔山大学, 拉杰斯大学