专利名称:一种多孔金属纳米颗粒催化剂及其制备方法
技术领域:
本发明涉及一种催化剂材料,更特别地说,是指一种应用于有机化合物加氢反应的多孔钴/镍纳米颗粒催化剂及其制备方法。
背景技术:
纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应。当多孔金属材料的颗粒尺寸达到纳米级时,它表现出很大的比表面积,使其具有广阔的应用前景。多孔金属纳米颗粒是一种极具潜力的材料,在光学,催化,电子,传感器,医学等领域中具有广阔的应用前景。目前,在实验室和工业生产中,有很多种方法可以制备多孔金属材料。如模板法、layer-by-layer自组装技术、去合金化法。然而,模板法所制备多孔金属颗粒其孔结构受模板材料结构的限制,而且制备过程复杂,成本较高,不适合批量生产。layer-by-layer自组装技术的应用非常少,目前只用来合成了纳米多孔金。此技术比较复杂,成本高,反应过程中使用大量有机溶剂,容易造成环境污染,而且需要预先制备金和银的溶胶,制得的多孔结构受金银溶胶颗粒尺寸,金银比例等因素的影响。去合金化法具有操作条件易于控制、制备过程简单、成本低、易于实现工业化等优点,所以被广泛应用于制备多孔金属颗粒。但此方法制备的多孔金属颗粒尺寸为微米级或毫米级,且粒径分布不均匀。
发明内容
为了解决有机化合物加氢反应中催化剂比表面积小,催化性能不佳的问题,本发明提出一种制备多孔金属纳米颗粒催化剂的方法,该方法应用去合金化与超声技术相结合进行制备多孔金属纳米颗粒催化剂。制得的纳米颗粒纯度高,比表面积大,粒度分布均匀。本发明的一种多孔金属纳米颗粒催化剂,该催化剂是以金属钴或镍为主要成分,另外含有低于5wt%的金属招。多孔金属纳米颗粒催化剂中的颗粒尺寸为IOnm lOOnm。多孔金属纳米颗粒催化剂中的多孔金属纳米颗粒表面孔径尺寸为Inm 7nm。制备本发明的多孔金属纳米颗粒催化剂的方法,包括有下列步骤步骤一熔炼制合金锭步骤101 :将用作催化剂的金属与金属铝在熔炼条件下,制得第一合金锭;熔炼条件包括有电弧工作电流IOOA 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ;用量在Ig的金属铝中加入1. 5g 3g的用作催化剂的金属;所述用作催化剂的金属是金属镍或者金属钴;金属镍的质量百分比纯度为大于等于99. 0% ;金属钴的质量百分比纯度为大于等于99. 9% ;金属铝的质量百分比纯度为大于等于99. 0% ;
步骤102 :切断电弧,将第一合金锭翻滚,继续在熔炼条件下熔炼,制得第二合金锭;熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ;步骤103 :切断电弧,将第二合金锭翻滚,继续在熔炼条件下熔炼,制得第三合金锭;熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ;步骤104 :切断电弧,将第三合金锭翻滚,继续在熔炼条件下熔炼,制得第四合金锭;熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ;步骤二 合金纳米颗粒制备将第四合金锭在纳米颗粒合成条件下进行处理,得到合金纳米颗粒;合金纳米颗粒合成条件包括有等离子工作电流为100A 300A,等离子中心温度为4000°C 6000°C,反应时间为30分钟 90分钟,纳米颗粒合成过程保持在O. 05MPa
O.1MPa的氢气与気气的混合气氛中,且氢气与気气的体积比为1:2 5:1。IS气和氢气的体积百分数纯度大于等于99% ;步骤三多孔纳米颗粒制备步骤301 :将合金纳米颗粒与去离子水放入容器中,然后将容器放入超声仪器中,并加热至20°C 80°C的反应温度;用量10mL去离子水中加入O. 05 O. 2g合金纳米颗粒;步骤302 :开启超声仪器进入工作状态,将质量百分比浓度为10% 25%的氢氧化钠溶液加入容器中,反应时间为5分钟 60分钟;超声条件超声频率为30kHz 40kHz ;用量0.1g的合金纳米颗粒中加入50mL 200mL氢氧化钠溶液;步骤304 :向保留有反应产物的容器中加入去离子水,对反应产物进行清洗,直至清洗液的PH值达到7 7. 5为止,从而得到纯净的多孔纳米颗粒催化剂。本发明制得的多孔金属纳米颗粒催化剂的优点在于①制得的多孔金属颗粒催化剂具有纳米尺寸,IOnm lOOnm,有较大的比表面积,
较高的化学活性。②制得的多孔金属纳米颗粒催化剂纯度高,粒度分布均匀。③在糠醛加氢制备糠醇的反应过程中,多孔钴纳米颗粒催化剂的加入降低了反应温度和反应压力,提高了反应产率,加快反应速率,同时不会引入二次污染。④在柠檬醛加氢生产3,7 二甲基辛醇的过程中,多孔镍纳米颗粒催化剂的加入可以提高了反应产率,加快反应速率,同时不会引入二次污染。
制备本发明多孔金属纳米颗粒催化剂的方法优点在于①将超声方法引入了去合金化方法中,可以缓和去合金化反应条件,加快去合金化反应速率。②反应废液为无机溶液,易处理。③制备工艺上工序少,所需设备简单。
图1是本发明多孔钴纳米颗粒催化剂的X射线衍射图谱。图1A是本发明多孔钴纳米颗粒催化剂的N 2吸附-脱附等温曲线图谱。图1B是本发明多孔钴纳米颗粒催化剂的透射电镜图片。图2是本发明多孔镍纳米颗粒催化剂的X射线衍射图谱。图3是去合金化反应示意图。图3A是多孔金属纳米颗粒与反应液分离示意图。
具体实施例方式下面将结合附图和实施例对本发明做进一步的详细说明。参见图1所示,本发明的一种多孔金属纳米颗粒催化剂,该催化剂是以金属钴或镍为主要成分,另外含有低于5wt%的金属铝。本发明的一种制备多孔金属纳米颗粒催化剂包括有下列步骤步骤一熔炼制合金锭步骤101 :将用作催化剂的金属与金属铝在熔炼条件下,制得第一合金锭;熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的纯度大于等于99% (体积百分数);用量在Ig的金属铝中加入1. 5g 3g的用作催化剂的金属;所述用作催化剂的金属是金属镍或者金属钴;金属镍的质量百分比纯度为大于等于99. 0%,金属钴的质量百分比纯度为大于等于99. 9%。金属铝的质量百分比纯度为大于等于 99. 0%。步骤102 :切断电弧,将第一合金锭翻滚,继续在熔炼条件下熔炼,制得第二合金锭;熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的纯度大于等于99% (体积百分数);步骤103 :切断电弧,将第二合金锭翻滚,继续在熔炼条件下熔炼,制得第三合金锭;熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的纯度大于等于99% (体积百分数);步骤104 :切断电弧,将第三合金锭翻滚,继续在熔炼条件下熔炼,制得第四合金锭;熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在O. 05MPa O.1MPa的氩气气氛中;氩气的纯度大于等于99% (体积百分数);在本发明中,多次对原料(即用作催化剂的金属与金属铝的混合物)进行熔炼是为了使合金锭的成分更加均匀,以利于制备出成分均匀的合金纳米颗粒。步骤二 合金纳米颗粒制备将第四合金锭在纳米颗粒合成条件下进行处理,得到合金纳米颗粒;合金纳米颗粒合成条件包括有等离子工作电流为100A 300A,等离子中心温度为4000°C 6000°C,反应时间为30分钟 90分钟,纳米颗粒合成过程保持在O. 05MPa
O.1OMPa的氢气与気气的混合气氛中,且氢气与気气的体积比为1:2 5:1。IS气和氢气的纯度大于等于99% (体积百分数);将第四合金锭进行氢等离子体法的处理是为高效合成纳米级合金颗粒,增大颗粒比表面积,提高颗粒活性。步骤三多孔纳米颗粒制备步骤301 :将合金纳米颗粒与去离子水放入容器I中,然后将容器I放入超声仪器10中,并加热至反应温度为20°C 80°C ;用量10mL去离子水中加入O. 05g O. 2g合金纳米颗粒;步骤302 :开启超声仪器进入工作状态,将质量百分比浓度为10% 25%的氢氧化钠溶液加入容器I中,反应时间为5分钟 60分钟;超声条件超声频率为30kHz 40kHz ;用量0.1g的合金纳米颗粒中加入50mL 200mL氢氧化钠溶液。参见图3所示,将装有合金纳米颗粒和氢氧化钠溶液的容器I放入超声仪器10中,并在超声仪器10的容池中放入水11,水可以是自来水或者去离子水。参见图3A所示,步骤303 :将容器I从超声仪器10中取出,并将永磁体4放于容器I底部,倒出反应溶液2,实现反应产物3与反应溶液2的分离,得到反应产物3保留在容器I内;步骤304 向保留有反应产物3的容器I中加入去离子水,对反应产物3进行清洗,直至清洗液的PH值达到7 7. 5为止,从而得到纯净的多孔纳米颗粒催化剂。在本发明中,多次加入去离子水是为了洗除多孔纳米颗粒催化剂中残留的氢氧化钠溶液。在本发明中,为防止多孔纳米颗粒催化剂在空气中被氧化,应当将其保存在无水乙醇中。实施例1制备多孔钴金属纳米颗粒催化剂包括有下列步骤步骤一熔炼制钴铝合金锭步骤101 :将质量百分比纯度为99. 9%的金属钴与质量百分比纯度为99. 9%的金属铝在熔炼条件下,制得第一钴铝合金锭;熔炼条件包括有电弧工作电流300A,电弧中心温度约为5700°C,熔炼时间为5分钟,熔炼过程保持在O. 08MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);用量Ig的金属铝中加入2. 2g的金属钴;步骤102 :切断电弧,将第一钴铝合金锭翻滚,继续在熔炼条件下熔炼,制得第二钴招合金锭;熔炼条件包括有电弧工作电流300A,电弧中心温度约为5700°C,熔炼时间为5分钟,熔炼过程保持在O. 08MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);步骤103 :切断电弧,将第二钴铝合金锭翻滚,继续在熔炼条件下熔炼,制得第三钴招合金锭;熔炼条件包括有电弧工作电流300A,电弧中心温度约为5700°C,熔炼时间为5分钟,熔炼过程保持在O. 08MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);步骤104 :切断电弧,将第三钴铝合金锭翻滚,继续在熔炼条件下熔炼,制得第四钴招合金锭;熔炼条件包括有电弧工作电流300A,电弧中心温度约为5700°C,熔炼时间为5分钟,熔炼过程保持在O. 08MPa的氩气气氛中,氩气的纯度为99. 999% (体积百分数);在本发明中,熔炼采用的设备为真空电弧炉,通过控制真空电弧炉的工作电流100A 400A,在该工作电流100A 400A下进行熔炼时,熔炼温度可以达到4000°C 6000°C。真空电弧炉选取北京物科光电技术有限公司生产的NEW-ADR-05型号。在本发明中,多次对原料(金属钴与金属铝的混合物)进行熔炼是为了使合金锭的成分更加均匀,以利于制备出成分均匀的合金纳米颗粒。步骤二 钴铝纳米颗粒制备将第四钴铝合金锭在纳米颗粒合成条件下进行处理,得到钴铝纳米颗粒;钴铝纳米颗粒合成条件包括有等离子工作电流为200A,等离子中心温度约为5500°C,反应时间为60分钟,纳米颗粒合成过程保持在O. 09MPa的氢气与氩气的混合气氛中,且氢气与氩气的体积比为1:1,氩气和氢气的纯度为99.999% (体积百分数)。经步骤二制得的钴铝纳米颗粒采用透射电子显微镜(日本电子株式会社),X射线衍射仪(日本Rigaku公司)仪器进行结构性能分析。在本发明中,氢等离子体金属反应采用的设备为北京物科光电技术有限公司生产的BH-500等离子反应器。将第四合钴铝金锭进行氢等离子体金属反应法的处理是为了让钴铝颗粒的尺寸达到纳米级,增大颗粒比表面积,提高颗粒活性。步骤三多孔钴纳米颗粒制备步骤301 :将钴铝纳米颗粒与去离子水放入容器I中,然后将容器I放入超声仪器10中,并加热至50 0C ;用量10mL去离子水中加入O.1g钴铝纳米颗粒。步骤302 :开启超声仪器进入工作状态,将质量百分比浓度为20%的氢氧化钠溶液加入容器I中,反应时间为10分钟;超声条件超声频率为40kHz。用量0.1g的合金纳米颗粒中加入IOOmL氢氧化钠溶液;参见图3所示,将装有钴铝纳米颗粒和氢氧化钠溶液的容器I放入超声仪器10中,并在超声仪器10的容池中放入水11,水可以是自来水或者去离子水。参见图3A所示,步骤303 :将容器从超声仪器10中取出,并将永磁体4放于容器I底部,倒出反应溶液2,实现反应产物3与反应溶液2的分离,得到反应产物3保留在容器I内;步骤304 :向保留有反应产物3的容器I中加入去离子水,对反应产物3进行清洗,直至清洗液的PH值达到7为止,从而得到纯净的多孔钴纳米颗粒催化剂。经步骤三制得的多孔钴纳米颗粒采用透射电子显微镜(日本电子株式会社),X射线衍射仪(日本Rigaku公司)仪器进行结构性能分析。在本发明中,多次加入去离子水是为了洗除多孔钴纳米颗粒催化剂中残留的氢氧化钠溶液。在本发明中,超声仪器选取苏州江东精密仪器有限公司生产的型号为KQ-100DE,其最高工作频率为40kHz。在本发明中,为防止多孔钴纳米颗粒催化剂在空气中被氧化,将其保存在无水乙醇中。步骤四各项性能检测钴铝纳米颗粒与多孔钴纳米颗粒的X射线衍射测试结果在图1中显示,N 2吸附一脱附等温曲线在图1A中显示;多孔钴纳米颗粒的透射电子显微镜照片在图1B中显示。其中,图1中的(a)曲线为钻招纳米颗粒X射线衍射图谱,图1中的(b)曲线为50 C超声条件下,反应IOmin后得到的多孔钴纳米颗粒X射线衍射图谱;图1A中的(a)曲线为钴铝纳米颗粒的N 2吸附一脱附等温曲线,图1A中的(b)曲线为50°C超声条件下,反应IOmin后得到的多孔钴纳米颗粒的N 2吸附-脱附等温曲线;图1B为50°C超声条件下,反应IOmin后得到的多孔钴纳米颗粒透射电子显微镜照片。图1中的(a)曲线可见,钴铝纳米颗粒主要由钴铝相组成,另外含有少量的铝相。由图1中的(b)曲线可以看出,在50°C超声条件下反应得到的多孔钴纳米颗粒仅由面心立方结构的钴相组成,这说明原始钴铝纳米颗粒中的铝元素几乎被氢氧化钠溶液反应掉。由图1A中的(a)曲线可以看出,此曲线不存在滞后环,这说明原始钴铝纳米颗粒是实心结构。而由图1A中的(b)曲线可以看出,此曲线存在滞后环,这说明反应后得到的钴纳米颗粒是多孔结构,通过计算可知其BET比表面积约为50. 0m2/g。由图1B的透射电子显微镜照片可以看出,钴纳米颗粒为多孔结构,颗粒呈不规则形状,颗粒尺寸分布在IOnm 50nm之间,平均颗粒尺寸约30nm,颗粒表面孔径尺寸约为Inm 3nm。将实施例1制得的多孔钴金属纳米颗粒催化剂应用于糠醛加氢制备糠醇的过程中,当采用原始的CuO-Cr2O3催化剂时,反应温度高达200°C,反应压力高达172 X IO5Pa,且反应产率仅为60%。当使用多孔纳米钴催化剂时,反应温度可降至10(TC,反应压力可降至20 X IO5Pa,且反应产率可达到80%。反应完成后,催化剂不会造成二次污染。所述的在糠醛加氢制备糠醇的反应操作,参考西安冶金建筑学院学报在1988年第20卷第3期中公开的《Co-Al-Cr合金制取Raney Co-Cr的研究》。在该文献中的2节中详细介绍了糠醛在Raney Co-Cr催化剂上的氢化试验与结果。实施例2制备多孔镍金属纳米颗粒催化剂包括有下列步骤
步骤一熔炼制镍铝合金锭步骤101 :将质量百分比纯度为99. 9%的金属镍与质量百分比纯度为99. 9%的金属铝在熔炼条件下,制得第一镍铝合金锭;熔炼条件包括有电弧工作电流350A,电弧中心温度约为5900°C,熔炼时间为3分钟,熔炼过程保持在O. 06MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);用量Ig的金属铝中加入1. 5g的金属镍;步骤102 :切断电弧,将第一镍铝合金锭翻滚,继续在熔炼条件下熔炼,制得第二钴镍合金锭;熔炼条件包括有电弧工作电流350A,电弧中心温度约为5900°C,熔炼时间为3分钟,熔炼过程保持在O. 06MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);步骤103 :切断电弧,将第二镍铝合金锭翻滚,继续在熔炼条件下熔炼,制得第三镍招合金锭;熔炼条件包括有电弧工作电流350A,电弧中心温度约为5900°C,熔炼时间为3分钟,熔炼过程保持在O. 06MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);步骤104 :切断电弧,将第三镍铝合金锭翻滚,继续在熔炼条件下熔炼,制得第四镍招合金锭;熔炼条件包括有电弧工作电流350A,电弧中心温度约为5900°C,熔炼时间为3分钟,熔炼过程保持在O. 06MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数)。在本发明中,熔炼采用的设备为真空电弧炉,通过控制真空电弧炉的工作电流100A 400A,在该工作电流100A 400A下进行熔炼时,熔炼温度可以达到4000°C 6000°C。真空电弧炉选取北京物科光电技术有限公司生产的NEW-ADR-05型号。在本发明中,多次对原料(金属镍与金属铝的混合物)进行熔炼是为了使合金锭的成分更加均匀,以利于制备出成分均匀的合金纳米颗粒。步骤二 镍铝纳米颗粒制备将第四镍铝合金锭在纳米颗粒合成条件下进行处理,得到镍铝纳米颗粒;镍铝纳米颗粒合成条件包括有等离子工作电流为250A,等离子中心温度约为5800°C,反应时间为30分钟,纳米颗粒合成过程保持在O. 06MPa的氢气与氩气的混合气氛中,且氢气与氩气的体积比为1:2,氩气和氢气的纯度为99. 999% (体积百分数)。经步骤二制得的钴铝纳米颗粒采用透射电子显微镜(日本电子株式会社),X射线衍射仪(日本Rigaku公司)仪器进行结构性能分析。在本发明中,氢等离子体金属反应采用的设备为北京物科光电技术有限公司生产的BH-500等离子反应器。将第四镍铝合金锭进行氢等离子体金属反应法的处理是为了让镍铝颗粒的尺寸达到纳米级,增大颗粒比表面积,提高颗粒活性。步骤三多孔镍纳米颗粒制备步骤301 :将镍铝纳米颗粒与去离子水放入容器I中,然后将容器I放入超声仪器10中,并加热至30 0C ;用量10mL去离子水中加入O. 2g镍铝纳米颗粒。步骤302 :开启超声仪器进入工作状态,将质量百分比浓度为15%的氢氧化钠溶液加入容器I中,反应时间为30分钟;超声条件超声频率为30kHz。用量0.1g的合金纳米颗粒中加入200mL氢氧化钠溶液;参见图3所示,将装有钴铝纳米颗粒和氢氧化钠溶液的容器I放入超声仪器10中,并在超声仪器10的容池中放入水11,水可以是自来水或者去离子水。参见图3A所示,步骤303 :将容器从超声仪器10中取出,并将永磁体4放于容器I底部,倒出反应溶液2,实现反应产物3与反应溶液2的分离,得到反应产物3保留在容器I内;步骤304 :向保留有反应产物3的容器I中加入去离子水,对反应物3进行清洗,直至清洗液的PH值达到7为止,从而得到纯净的多孔镍纳米颗粒催化剂。经步骤三制得的多孔镍纳米颗粒采用透射电子显微镜(日本电子株式会社),X射线衍射仪(日本Rigaku公司)等仪器进行结构性能分析。在本发明中,多次加入去离子水是为了洗除多孔镍纳米颗粒催化剂中残留的氢氧化钠溶液。在本发明中,超声仪器选取苏州江东精密仪器有限公司生产的型号为KQ-100DE,其最高工作频率为40kHz。在本发明中,为防止多孔镍纳米颗粒催化剂在空气中被氧化,将其保存在无水乙醇中。步骤四各项性能检测镍铝纳米颗粒与多孔镍纳米颗粒的X射线衍射测试结果在图2中显示,其中,图2中的(a)曲线为镍铝纳米颗粒X射线衍射图谱,图2中的(b)曲线为30°C超声条件下,反应30min后得到的多孔镍纳米颗粒X射线衍射图谱。图2中的(a)曲线可见,镍铝纳米颗粒主要由镍铝相组成,另外含有少量的铝相。由图2中的(b)曲线可以看出,在30°C超声条件下反应得到的多孔镍纳米颗粒仅由面心立方结构的镍相组成,这说明原始镍铝纳米颗粒中的铝元素几乎被氢氧化钠溶液反应掉。实施例2制得的镍纳米颗粒为多孔结构,其BET比表面积约为64. 2m2/g。此纳米颗粒呈不规则形状,颗粒尺寸分布在20nm 70nm之间,平均颗粒尺寸约40nm,颗粒表面孔径尺寸约为3nm 5nm0将实施例2制得的多孔镍金属纳米颗粒催化剂应用于柠檬醛加氢生成3,7 二甲基辛醇的反应过程中,若不添加催化剂,在3h时,反应产率可达80%。在添加了多孔钴纳米颗粒催化剂后,在30min时,反应产率可达90%,而且催化剂不会对加氢反应造成二次污染。所述的在柠檬醛加氢生成3,7 二甲基辛醇的反应操作,参考Applied CatalysisA :General 在 2009 年第 356 期中公开的《Influence of phase compositionand particlesize of atomised N1-Al alloy samples on the catalytic performanceof Raney-typenickel catalysts》。在该文献中的第2. 3节中详细介绍了 Hydrogenation of citral。实施例3制备多孔钴金属纳米颗粒催化剂包括有下列步骤步骤一熔炼制钴铝合金锭步骤101 :将质量百分比纯度为99. 9%的金属钴与质量百分比纯度为99. 9%的金属铝在熔炼条件下,制得第一钴铝合金锭;熔炼条件包括有电弧工作电流200A,电弧中心温度约为5400°C,熔炼时间为10分钟,熔炼过程保持在O.1MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);用量lg的金属铝中加入3g的金属钴;步骤102 :切断电弧,将第一钴铝合金锭翻滚,继续在熔炼条件下熔炼,制得第二钴钴合金锭;熔炼条件包括有电弧工作电流200A,电弧中心温度约为5400°C,熔炼时间为10分钟,熔炼过程保持在O.1MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);步骤103 :切断电弧,将第二钴铝合金锭翻滚,继续在熔炼条件下熔炼,制得第三钻招合金;熔炼条件包括有电弧工作电流200A,电弧中心温度约为5400°C,熔炼时间为10分钟,熔炼过程保持在O.1MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);步骤104 :切断电弧,将第三钴铝合金锭翻滚,继续在熔炼条件下熔炼,制得第四钻招合金;熔炼条件包括有电弧工作电流200A,电弧中心温度约为5400°C,熔炼时间为10分钟,熔炼过程保持在O.1MPa的氩气气氛中;氩气的纯度为99. 999% (体积百分数);在本发明中,熔炼采用的设备为真空电弧炉,通过控制真空电弧炉的工作电流100A 400A,在该工作电流100A 400A下进行熔炼时,熔炼温度可以达到4000°C 6000°C。真空电弧炉选取北京物科光电技术有限公司生产的NEW-ADR-05型号。在本发明中,多次对原料(金属钴与金属铝的混合物)进行熔炼是为了使合金锭的成分更加均匀,以利于制备出成分均匀的合金纳米颗粒。步骤二 纳米颗粒制备将第四钴铝合金锭在纳米颗粒合成条件下进行处理,得到钴铝纳米颗粒;钴铝纳米颗粒合成条件包括有等离子工作电流为170A,等离子中心温度约为5000°C,反应时间为90分钟,纳米颗粒合成过程保持在O.1MPa的氢气与氩气的混合气氛中,且氢气与氩气的体积比为4:1,氩气和氢气的纯度为99. 999% (体积百分数)经步骤二制得的钴铝纳米颗粒采用透射电子显微镜(日本电子株式会社),X射线衍射仪(日本Rigaku公司)仪器进行结构性能分析。 在本发明中,氢等离子体金属反应采用的设备为北京物科光电技术有限公司生产的BH-500等离子反应器。将第四钴铝合金锭进行氢等离子体金属反应法的处理是为了让钴铝颗粒的尺寸达到纳米级,增大颗粒比表面积,提高颗粒活性。步骤三多孔钴纳米颗粒制备步骤301 :将钴铝纳米颗粒与去离子水放入容器I中,然后将容器I放入超声仪器10中,并加热至80 0C ;用量IOmL去离子水中加入O. 06g钴铝纳米颗粒。步骤302 :开启超声仪器进入工作状态,将质量百分比浓度为25%的氢氧化钠溶液加入容器I中,反应时间为60分钟;超声条件超声频率为35kHz。
用量0.1g的合金纳米颗粒中加入70mL氢氧化钠溶液;参见图1所示,将装有钴铝纳米颗粒和氢氧化钠溶液的容器I放入超声仪器10中,并在超声仪器10的容池中放入水11,水可以是自来水或者去离子水。参见图1A所示,步骤303 :将容器从超声仪器10中取出,并将永磁体4放于容器I底部,倒出反应溶液2,实现反应产物3与反应溶液2的分离,得到反应产物3保留在容器I内; 步骤304 向保留有反应产物3的容器I中加入去离子水,对反应产物3进行清洗,直至清洗液的PH值达到7为止,从而得到纯净的多孔钴纳米颗粒催化剂。经步骤三制得的多孔钴纳米颗粒采用透射电子显微镜(日本电子株式会社),X射线衍射仪(日本Rigaku公司)等仪器进行结构性能分析。在本发明中,多次加入去离子水是为了洗除多孔钴纳米颗粒催化剂中残留的氢氧化钠溶液。在本发明中,超声仪器选取苏州江东精密仪器有限公司生产的型号为KQ-100DE,其最高工作频率为40kHz。在本发明中,为防止多孔钴纳米颗粒催化剂在空气中被氧化,将其保存在无水乙醇中。步骤四各项性能检测实施例3制得的多孔钴纳米颗粒主要由面心立方结构的钴相组成,为多孔结构,其BET比表面积为44. lm2/g。此纳米颗粒呈不规则形状,颗粒尺寸分布在30nm IOOnm之间,平均颗粒尺寸约50nm,颗粒表面孔径尺寸约为3nm 7nm。将实施例3制得的多孔钴金属纳米颗粒催化剂应用于糠醛加氢制备糠醇的过程中,当采用原始的CuO-Cr2O3催化剂时,反应温度高达200°C,反应压力高达172 X IO5Pa,且反应产率仅为60%。当使用实施例3制得的多孔纳米钴催化剂时,反应温度可降至100°C,反应压力可降至25 X IO5Pa,且反应产率可达到75. 5%。反应完成后,催化剂不会造成二次污染。
权利要求
1.一种多孔金属纳米颗粒催化剂,其特征在于该催化剂是以金属钴或镍为主要成分,另外含有低于5wt%的金属铝。
2.根据权利要求1所述的多孔金属纳米颗粒催化剂,其特征在于多孔金属纳米颗粒催化剂中的颗粒尺寸为IOnm lOOnm。
3.根据权利要求1所述的多孔金属纳米颗粒催化剂,其特征在于多孔金属纳米颗粒催化剂中的多孔金属纳米颗粒表面孔径尺寸为Inm 7nm。
4.制备如权利要求1所述的多孔金属纳米颗粒催化剂的方法,其特征在于包括有下列步骤 步骤一熔炼制合金锭 步骤101 :将用作催化剂的金属与金属铝在熔炼条件下,制得第一合金锭; 熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在0. 05MPa 0.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ; 用量在Ig的金属铝中加入1. 5g 3g的用作催化剂的金属; 所述用作催化剂的金属是金属镍或者金属钴; 金属镍的质量百分比纯度为大于等于99. 0% ; 金属钴的质量百分比纯度为大于等于99. 9% ; 金属铝的质量百分比纯度为大于等于99. 0% ; 步骤102 :切断电弧,将第一合金锭翻滚,继续在熔炼条件下熔炼,制得第二合金锭; 熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在0. 05MPa 0.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ; 步骤103 :切断电弧,将第二合金锭翻滚,继续在熔炼条件下熔炼,制得第三合金锭; 熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在0. 05MPa 0.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ; 步骤104 :切断电弧,将第三合金锭翻滚,继续在熔炼条件下熔炼,制得第四合金锭; 熔炼条件包括有电弧工作电流100A 400A,电弧中心温度为4000°C 6000°C,熔炼时间为3分钟 10分钟,熔炼过程保持在0. 05MPa 0.1MPa的氩气气氛中;氩气的体积百分数纯度大于等于99% ; 步骤二 合金纳米颗粒制备 将第四合金锭在纳米颗粒合成条件下进行处理,得到合金纳米颗粒; 合金纳米颗粒合成条件包括有等离子工作电流为100A 300A,等离子中心温度为.4000°C 6000°C,反应时间为30分钟 90分钟,纳米颗粒合成过程保持在0. 05MPa ,0.1MPa的氢气与気气的混合气氛中,且氢气与気气的体积比为1:2 5:1。IS气和氢气的体积百分数纯度大于等于99% ; 步骤三多孔纳米颗粒制备 步骤301 :将合金纳米颗粒与去离子水放入容器中,然后将容器放入超声仪器中,并加热至20°C 80°C的反应温度;用量10mL去离子水中加入0. 05 0. 2g合金纳米颗粒; 步骤302 :开启超声仪器进入工作状态,将质量百分比浓度为10% 25%的氢氧化钠溶液加入容器中,反应时间为5分钟 60分钟; 超声条件超声频率为30kHz 40kHz ; 用量0.1g的合金纳米颗粒中加入50mL 200mL氢氧化钠溶液; 步骤304:向保留有反应产物的容器中加入去离子水,对反应产物进行清洗,直至清洗液的PH值达到7 7. 5为止,从而得到纯净的多孔纳米颗粒催化剂。
5.根据权利要求4所述的制备多孔金属纳米颗粒催化剂的方法,其特征在于为防止多孔纳米颗粒催化剂在空气中被氧化,应当将其保存在无水乙醇中。
全文摘要
本发明公开了一种多孔钴/镍纳米颗粒催化剂及其制备方法,该方法首先将含铝元素的合金纳米颗粒与碱液反应,得到多孔金属纳米颗粒;然后将多孔金属纳米颗粒与反应溶液分离,并反复清洗,直至洗液pH值达到中性;最后将清洗好的多孔金属纳米颗粒放置在去离子水或有机溶液中保存。采用本发明制备多孔金属纳米颗粒的方法,其制得的纳米颗粒纯度高,比表面积大,粒度分布均匀;制备工艺上工序少,所需设备简单。将多孔纳米颗粒进行加氢反应可以降低反应温度、提高反应产率、加快反应速率,同时不会引入二次污染。
文档编号C07C29/141GK103055869SQ20121049905
公开日2013年4月24日 申请日期2012年11月29日 优先权日2012年11月29日
发明者刘彤, 祝牧, 张同文 申请人:北京航空航天大学