甲苯歧化方法

文档序号:3548190阅读:2200来源:国知局
专利名称:甲苯歧化方法
技术领域
本发明涉及一种甲苯的歧化方法,尤其涉及一种由甲苯选择性地歧化生成对二甲苯的方法。
“择形催化”这一术语指的是在沸石中未预料到的催化选择性。有人已对择形催化的原理作过广泛评述,例如由N.Y.Chen,W.E.Garwood及F.G.Dwyer所述的,“Shape Selective Catalysis in Industrial Applications,"36,Marcel Dekker,Inc.(1989).在一个沸石孔中,烃的转化反应如链烷烃的异构化,烯烃骨架或双键的异构化,低聚化及芳香歧化,烷基化或烷基转移作用均受通道大小所限。当部分原料太大以致不能进入沸石反应时,则发生反应选择性;而当部分产物不能离开沸石通道则发生产物选择性。产物的分布也能通过使某些反应不发生的过渡态选择性来改变,某些反应的不发生是由于反应跃迁态太大而不能在沸石孔或笼中生成。另一种选择性类型是由构型扩散所致,其中分子的直径接近沸石孔系统的直径。分子或沸石孔的直径的微小变化均能导致引起不同产物分布的巨大扩散改变。这种类型的择形催化,可以例如通过甲苯的选择性歧化生成对二甲苯而证明。
对二甲苯可用于聚酯纤维的生产,是一种非常有价值的商品。在学术界对二甲苯的催化生产已受到高度的重视,为了增加催化剂的对位选择性已有许多方法报导。
对二甲苯的合成典型地是通过在适宜催化剂存在下将甲苯甲基化来完成的。例如甲苯与甲醇反应,由Chen等所述,J.Amer.Chem.Sec.1979,101,6783,以及甲苯的歧化,由Pines在“TheChemistry of Catalytic Hydrocarbon Conversions",Academic Press,N.Y.,1981,p.72中所述。这些方法的典型产物是包括对二甲苯,邻二甲苯,和间二甲苯的混合物。按催化剂的对位选择性和反应条件,得到不同百分含量的对二甲苯。产率,即原料实际转化为二甲苯的量,也受催化剂和反应条件的影响。
甲苯歧化生成二甲苯和苯的平衡反应如下 对二甲苯产率=选择性×转化率= 15.03/108.72 ×0.59=8.2%对二甲苯纯度=100× 15.03/62.63 =24%。
增加沸石催化剂对位选择性的一个已知方法是通过用“选择化试剂”(selectivating agent)处理来改进催化剂。已有改进方法的提议是通过在使用前提供一种二氧化硅涂层的处理来改进催化剂。例如,美国专利4,477,583和4,127,616所公开的方法,其中在室温且在一烃类溶剂和水性乳浊液中将催化剂与一改进化合物如苯甲基硅氧烷相接触,接着进行煅烧。这些改进步骤成功地使对位选择性高达90%,但代价是甲苯转化率仅约商业上难接受的10%,而导致产率不超过约9%,即10%×90%。这些方法也产生了相当量的邻二甲苯和间二甲苯,因而必须进行昂贵的分离工艺,如分级结晶和吸附分离,以从其它异构体中分离出对二甲苯。其它二甲苯异构体通常再循环套用,因而需要二甲苯异构化装置使套用的二甲苯异构体再转化成含有对二甲苯的平衡二甲苯混合物。
本专业技术人员认为分离过程的费用与所需的分离程度是成正比的。因此,通过提高对位异构体的选择性并保持商业上可接受的转化水平,可节省相当可观的费用。
因此,本发明的一个目的是,提供一种用于自甲苯制备对二甲苯的定位选择性方法,并保持商业可接受的甲苯转化水平。
相应地,本发明是一种甲苯的歧化方法,其中包括将甲苯与一种分子筛催化剂反应,以提供含有至少占C8成分约90%(重量)的对二甲苯的单程产物以及至少约15%(重量)的甲苯转化率。
本发明方法中所用的分子筛催化剂较好地具有初始约束(constraint)指数1-30,优选1-20,更优选1-12,并且优选含有中等孔径的沸石,如ZSM-5,ZSM-11,ZSM-22,ZSM-23,或ZSM-55,最优选ZSM-5。该催化剂优选具有α值大于100,例如,150-2000,二氧化硅-氧化铝比少于100,优选为20-80。正如美国专利,4,326,994中所述催化剂的α值可通过将该催化剂用硝酸或通过温和蒸汽处理增加。
α值是与标准催化剂相比,催化剂的催化裂化活性的近似指标,并且它给出了相对速率常数(每单位时间每单位催化剂体积正已烷转化速率)。它是以无定形二氧化硅一氧化铝裂化催化剂的活性为基础的,假定1α为1(速率常数=0.016秒-1)。α试验已于美国专利3,354,078及The Journal of Catalysis,Vol.4,pp.522-529(August 1965);Vol.6,p.278(1966);以及Vol.61,p.395(1980)述及。值得注意的是对于许多酸催化反应,固有速率常数与特定结晶硅酸盐催化剂的α值成正比(参见“The Active Site ofAcidic Aluminosillicate Catalysts"),Nature Vol.309,No.5959,pp.589-591,14 June 1984)。在此所用的实验条件包括恒温538℃及可变的流动速率,如Journal of Catalysis,Vol.61,p.395中所详述。约束指数及其测定方式如美国专利No.4,016,218中所述。
本发明方法中所使用的分子筛催化剂可以与一种载体或粘合材料相复配,例如,一种多孔的无机氧化物材料或粘土粘合剂,优选的粘合剂是以二氧化硅为主。其它未限定的粘合剂材料包括氧化铝,氧化锆,氧化镁,氧化钍,二氧化钛,氧化硼及其复配物,通常以干燥的无机氧化物凝胶或凝胶状沉淀形式。适用的粘土材料包括,例如,膨润土和硅藻土。以复配物的重量为准,适宜的结晶分子筛对催化剂和结合剂或载体的总组分的相对比例可以是30-90%(重量),并优选50-80%(重量)。复配物的形态可以是挤压物、颗粒或可流体化的微粒。
在本发明的一个实施例中,通过事先用以含硅化合物形式的一种选择化试剂进行处理(此后称作“预选择化”(preselectivation))使分子筛催化剂具有所需的对二甲苯选择性及甲苯转化水平。通过任何适宜方法用于预选择化的硅化合物放在催化剂的外表面。例如,可将硅化合物溶于一种溶剂中,将其与催化剂混合,然后干燥。所使用的硅化合物可以是以溶液,液态或气态形式,条件是与混石接触。在沸石表面放置硅的实例方法可在美国专利4,090,981,4,127,616,4,465,886和4,497,583中查得。
在预选择化中完成含硅化合物放置后,优选将催化剂煅烧。例如,催化剂的煅烧可以含氧气氛中,优选空气中,以0.2-5℃/分钟的速率升温至300℃以上,但低于某一温度会使沸石结晶度受不利影响。通常,此温度低于600℃。优选的煅烧温度大约在350°-500℃范围。通常将产品在煅烧温度保持1-24小时。
在本发明的另一个实施例中,通过用一种选择化试剂进行现场处理(此后称作“调整选择化”(trim-selectivation)使分子筛具有所需的对二甲苯选择性和甲苯转化水平,优选至少在反应的起始期(start-up phase)将选择化试剂与待歧化的甲苯同时加入,调整选择化期优选持续50-300小时,最优选少于170小时。以甲苯的重量为准,所加入的选择化试剂的量为0.1-50%,优选0.1-20%。
优选的调整选择化试剂是一种挥发性有机硅化合物,并且在起始期的反应条件包括温度100-600℃,优选300-500℃;压力100-14000KPa(0-2000psig),优选200-5600KPa(15-800psig);氢与烃类的摩尔比为0(即无氢存在)至10,优选1-4,而重时空速(WHSV)为0.1-100,优选0.1-10。通过热分解作用,在沸石表面沉积一含硅涂层,它减少或消除了表面活性而提高了外形选择性。
在一个可供选择的实施例中,催化剂既对其作预选择化,又对其作调整选择化。
用于预选择化和/或调整选择化的硅化合物可以是一种聚硅氧烷(polysiloxane)包括聚硅氧烷类(silicones),硅氧烷,以及硅烷包括二硅烷类和烷氧硅烷类。
用于本发明的聚硅氧烷化合物,可以下列通表示 其中R1是氢,氟,羟基,烷基,芳烷基,烷芳基或氟代烷基。烃取代基通常含有1-10个碳原子,优选是甲基或乙基基团。R选自与R1相同的基团,n是至少为2的整数,通常范围在2-1000间。所使用的聚硅氧烷化合物的摩尔重量通常为80-20,000,优选150-10,000。具代表性的聚硅氧烷化合物包括聚二甲基硅氧烷,聚二乙基硅氧烷,聚苯基甲基硅氧烷,聚甲基氢硅氧烷,聚乙基氢硅氧烷,聚二苯基硅氧烷,聚甲基三氟丙基硅氧烷,聚乙基三氟丙基硅氧烷,聚四氯苯基甲基硅氧烷,聚四氯苯基乙基硅氧烷,聚四氯苯基氢硅氧烷,聚四氯苯基苯基硅氧烷,聚甲基乙烯基硅氧烷及聚乙基乙烯基硅氧烷。聚硅氧烷化合物不需要是线型,它可以是环状如六甲基环三硅氧烷,八甲基环四硅氧烷,六苯基环三硅氧烷和八苯基环四硅氧烷。这些化合物的混合物也可以与具有其它官能团的聚硅氧烷类同样使用。
有用的硅氧烷类或聚硅氧烷类包括非限定的实例六甲基环三硅氧烷,八甲基环四硅氧烷,十甲基环五硅氧烷,六甲基二硅氧烷,八甲基三硅氧烷,十甲基四硅氧烷,六乙基环三硅氧烷,十乙基环甲硅氧烷,六苯基环三硅氧烷和八苯基环四硅氧烷。
有用的硅烷类,二硅烷类或烷氧基硅烷类包括具有下列通式的有机取代硅烷类 式中R是反应基团如氢,烷氧基,卤素,羧基,氨基,乙酰胺,三烷基甲硅烷基。R1,R2和R3可以与R相同。也可以是一有机基团包括C1-40的烷基,其中有机部分烷基含1-30碳原子,芳基含6-24碳原子,而含6-24碳原子的芳基可被进一步取代,C7-30的烷芳基或芳烷基。优选地,烷基硅烷的烷基基团链长为1-4个碳原子。也可使用它们的混合物。
硅烷类和二硅烷类包括非限定的实例二甲基苯基硅烷,苯基三甲基硅烷,三乙基硅烷和六甲基二硅烷。那些有用的烷氧硅烷类至少含一个硅-氢键。
虽然不想受制于理论,但仍可以相信本发明的优越之处是当增加催化剂的曲率催化剂表面的酸位(acid site)基本上不进入反应物。存在于催化剂外表面的酸位据认为使对二甲苯异构化为另二种异构体退出催化剂孔而至平衡水平,因此减少二甲苯中对二甲苯的量至仅约24%。通过减少这些酸位与存在于催化剂孔中对二甲苯的接触。则能保持相对高水平的对二甲苯。可以相信本发明的选择化试剂通过对所述位点的化学修饰。阻塞或放弃外部酸位而不与对二甲苯相接触。
优选地,选择化试剂的动态直径以比沸石孔径大,以避免减少催化剂本身的活性。
可以相信当使用聚硅氧烷化合物作为调整选择化试剂时,在反应区氢的存在对保持二甲苯理想的高产率是重要的。
在此公开的方法大大提高了对二甲苯的生产效率。例如,对二甲苯的纯度大大超过90%(重量),优选至少有95%(重量),最优选至少有97%(重量),前提是按全部C8产物计甲苯转化率能大大超过15%,优选至少有25%,最优选至少有50%(重量)。而且,能够将邻二甲苯异构体减少至少超过总二甲苯含量的0.5%,将间二甲苯异构体减少至不超过总二甲苯含量的5%。另外,当反应体系被正确地处理,如通过在分子筛上旋转铂,乙苯的存在将大大地减少,如低于C8产物量的2%。
用于本发明方法中的原料优选含有50-100%,更优选至少含80%(重量)的甲苯。其它化合物如苯,二甲苯类,及三甲基苯类也可在原料中存在而不对本方法产生不良影响。
如果需要,也可用一种减少水汽进入反应区的方式将甲苯原料干燥。适用于干燥本方法中甲苯的已知方法有多种。这些方法包括,经任何适宜的干燥渗滤,例如,硅胶,活性氧化铝,分子筛或其它适宜物质,或使用液体进料干燥器。
本发明方法中甲苯歧化反应的操作条件包括温度为350-540℃,优选大于400℃,压力为100-35000KPa(大气压至5000psig),优选800-7000KPa(100-1000psig),WHSV0.1-2.0,优选2-4,氢与烃摩尔比0.1-20,优选2-4。本方法可在固定或流动床上进行,它们都有易于操作的长处。
流出物经分离和蒸馏以分离所需的产物,即,对甲苯,加上其它副产物。未反应的反应物,即甲苯,优选被回收再进行反应。苯是一个有价值的联产品。
按照本发明的一个优选实施例,催化剂被进一步改进以减少不需副产物的量,尤其是乙苯。已有技术的现状是反应器中甲苯歧化反应的流出物典型地含有0.5%乙苯副产物。通过对反应产物的蒸镏,C8部分中乙苯的含量常常增加至3-4%。这一含量的乙苯对聚合物级别的对二甲苯是不能接受的,因为如果不将其去除,C8产物中的乙苯将影响由对二甲苯最终制成的纤维的质量。因此,乙苯必须保持低含量。工业上C8产物中测出的乙苯含量已被规定低于0.3%。通过异构化或超精镏能基本上将乙苯除去。通过常规的异构化作用来除去乙苯对本发明是不可行的。因为含有超过90%对二甲苯的二甲苯流会同时异构化生成平衡的二甲苯类,而使此二甲苯流分中对二甲苯的量降低至约24%。而且,众所周知通过超精镏来除去乙苯这一供选择的方法成本极其昂贵。
为了避免产物流分中需要除去乙苯,通过加入一种金属化合物如铂而在催化剂中引入一种氢化一脱氢作用机制,从而有利地降低了乙苯副产物的含量。虽然铂是优选的,其它金属如钯,镍,铜,钴,钼,铑,钌,银,金,汞,锇,铁,锌,镉,及其混合物也可被采用。金属可通过阳离子交换而被加入,其量为0.01-2%,典型地约0.5%。金属必须能进入催化剂的孔中以使其后的煅烧步骤继续进行。例如,一种铂改进的催化剂的制备可以是首先将催化剂加入至硝酸铵溶液中使催化剂转化成铵型,然后加入四氨基硝酸铂(Ⅱ)水溶液以提高活性。然后将催化剂过滤,水洗并在250°-500℃温度下煅烧。
现在,参考实施例及附图,本发明将得到更具体的说明;附图中

图1是在氢气(实施例1)或氮气存在下,经聚硅氧烷调整选择化的ZSM-5催化剂作用,运转时间与二甲苯对位选择性和甲苯转化率函数关系的比较图,图2与图1相似,它提供了在实施例2中所用的稍低温度下同时给氢的结果,图3也与图1相似,与显示了无氢条件下(实施例3)所得到的结果。
图4显示了运转时间与对二甲苯选择性和甲苯转化的函数关系。
图5描绘了已被用10%SiO2预选择化后沸石的对位选择性和转化率,以及图6提供了已被用5%SiO2预选择化后沸石的对位选择性和转化率。
实施例1甲苯的歧化是在固定床反应器中完成的,使用2g粘合有二氧化硅的HZSM-5催化剂,其二氧化硅/氧化硅比为26,晶粒大小为0.1微米,α值为731。反应器的进料为含1%聚硅氧烷化合物的甲苯,该聚硅氧烷中聚苯基甲基硅氧烷与聚二甲基硅氧烷之比为1∶1。操作条件为4.0WHSV,480℃,3550KPa(500psig),氢/烃为2。表1归纳了在调整选择化期间及其后,作为运转时间函数的甲苯转化率和对二甲苯选择性。
表1二甲苯类中对运转时间,hr 转化率,wt% 二甲苯的量,wt%1 56 226 57 2122 51 2446 42 3998 36 70143 28 86170 25 89174*25 91342*25 91*停止共同加入聚硅氧烷。
值得注意的是,聚硅氧烷的调整选择化作用大大增加了对二甲苯的选择性,从起初的22%升至超过90%。在运转第174小时,将进料改成100%甲苯,即,停止聚硅氧烷的共同进料。在其后的一周测试期间,甲苯转化率保持稳定在25%,对二甲苯的选择性保护稳定在91%。
上述结果由图1进行说明,图中还包括了在氮气而非氢存在下进行选择化的结果,在氮存在下催化剂迅速失活且转化率迅速到达零。
实施例2在4.0WHSV,446℃,3550KPa(500psig),及氢/烃之比为2的条件下重复进行实施例1的甲苯歧化工艺。表2归纳了运转时间与甲苯转化率和对二甲苯选择性的函数关系。
表2二甲苯类中对运转时间,hr 转化率,wt% 二甲苯的量,wt%1 44 2925 42 3447 37 5894 31 86143 29 93176 27 96199 26 97223 25 97239*25 97*停止聚硅氧烷共进料。
聚硅氧烷的调整选择化作用将对二甲苯选择性从24%(热动力值)提高至高达97%且具有25%甲苯转化率。当停止聚硅氧烷的共同进料,对二甲苯的选择性和甲苯的转化率分别保持在97%和25%不变,该结果可由图2说明。
实施例3在4.0WHSV,420℃,100KPa(O psig),及氢/烃=0条件下重复实施例1的甲苯歧化方法。表3和图3归纳了运转时间与甲苯转化率和对二甲苯选择性的函数关系。注意在运转第184小时转化率几乎降至零,与此对照的是当在氢存在下操作,在第184小时转化率稳定在25%。
表3二甲苯类中对运转时间,hr 转化率,wt% 二甲苯的量,wt%1 14 2748 8 5196 2 82136 1 93184 0.1 97实施例4采用SiO2-HZSM-5进行甲苯的歧化,并在甲苯进料中使用1%八甲基环甲硅氧烷作为调整选择化试剂。操作条件是446℃,3550KPa(500psig),4.0WHSV,及H2/HC=2。表4归纳了其结果。
表4运转时间, 对二甲苯/二甲苯类, 甲苯转化率,Hrs. wt% wt%0 25 4024 88 2346 95 1871 98 15使用六甲基二硅氧烷(HMDS)进行实施例4所述的经调整选择化的甲苯歧化反应。表5和图4归纳了其结果。
表5运转时间, 二甲苯类中对二甲苯的量, 甲苯转化率,Hrs. wt% wt%1 28 472 56 424 80 3714 95 3324 98 2847 99 2054 99 18图4描述了历经运转350小时以后,高的对二甲苯选择性和甲苯转化率。甲苯转化率保持在约18-20%的同时,在延续的一段时间内对二甲苯的选择性为99%。在约50小时后,停止加入HMDS。
实施例6-14使用列于表6中的硅氧烷类进行调整选择化,重复实施例4的方法。操作条件是446℃,3550KPa(500psig),4.0WHSV,及H2/HC(氢、烃之比)=2.24小时后的结果列于表6中。
表6对二甲苯/ 甲苯二甲苯类 转化率实施例 硅氧烷类 wt.% wt.%6 甲基氢环硅氧烷 89 137 六甲基环三硅氧烷 84a208 1,3,5-三甲基-1,3,5-三苯基环三硅氧烷 85 319 八甲基环四硅氧烷 88 2310 十甲基环五硅氧烷 90 2811 十甲基四硅氧烷 98 2412 六甲基二硅氧烷 98 2413 1,1,3,3,5,5-六甲基三硅氧烷 96 1414 八甲基三硅氧烷(41小时之后) 81a20a-继续选择化超出规定的时间,将对二甲苯选择性提高至90%且甲苯转化率至少为15%。
实施例15-19用列于表7中的硅烷类进行实施例4-5中所述的调整选择化。操作条件是446℃,3550KPa(500psig),4.0WHSV及H2/HC=2.24小时后的结果列于表7中。
表7对二甲苯/ 甲苯二甲苯类 转化率实施例 硅氧烷类 wt.% wt.%15 二苯基硅烷 96 1516 二甲基苯基硅烷 97 1917 苯基三甲基硅烷 86a1918 三乙基硅烷 85a2119 六甲基二硅烷 95 23a-24小时后继续选择化,使对二甲苯选择化高达90%。
实施例20-24为了比较,按实施例6-19方法,对列于表8中化合物进行试验,结果列于表8。
表8对二甲苯/ 甲苯二甲苯类 转化率实施例 硅氧烷 wt.% wt.%20 六苯基环三硅氧烷 43 2921 八苯基环四硅氧烷 66 2822 四-(正丁基)-原硅酸酯 36 223 四-乙基-原硅酸酯 38 324 四-(2-乙已基)-原硅酸酯 33 1实施例25向溶于40cc已烷的1.26g聚苯基甲基硅氧烷中加入5.00gHZSM-5,由此制备二氧化硅预选择化的ZSM-5催化剂。将溶剂蒸镏,以1℃/min速率将催化剂在空气中煅烧至538℃,然后在538℃保持6小时。预选择化后的催化剂含有令人满意的10%外加二氧化硅。
在446℃,3550KPa(500psig),4.0WHSV,及氢烃之比=2条件下进行10%SiO2-HZSM-5的聚硅氧烷调整选择化。表9和图5显示了运转时间与10%SiO2-HZSM-5甲苯转化率和对二甲苯选择性的函数关系。
表910%SiO2-HZSM-5的聚硅氧烷选择化甲苯 二甲苯类中对运转时间,hrs 转化率,wt% 二甲苯的量,wt%2 25 334 24 436 23 728 21 8410 21 8915 19 9420 18 9628 18 98运转经过28小时以上,聚硅氧烷调整选择化将对二甲苯选择性大幅度地从33%提高至98%。然后将进料改成100%甲苯。经过以后的十小时选择性提高至99%且保持16%转化率。为进一步提高转化率,将温度升至457℃并迅速升至468℃。转化率便升至21%,然后经过其后的80小时略降至20%。经这80小时,对二甲苯的选择性从99.2%提高至99.6%。
与实施例1的HASM-5相比,实施例25的10%SiO2-HZSM-5(被预选择化的)催化剂显示了更高的选择性。对于预选择化的HZSM-5,仅在运转10小时后(比需170小时的HZSM-5母体快17倍)即达到89%的对二甲苯选择率。同样,达到最佳对二甲苯选择状态所需的时间,对于预选择化的HZSM-5需1天,而对HZSM-5的选择化温度更高(480℃比446℃)。
聚苯基甲基硅氧烷的总消耗量是每克HZSM-5对6.80g聚硅氧烷以及每克预选择化的HZSM-5对1.42克聚硅氧烷。因而,预选择化后的HZSM-5调整选择化所消耗的聚硅氧烷比未预选择化的催化剂要少5倍。
实施例26重复实施例25,但用仅给5%外加二氧化硅的预选择化后的催化剂。表10和图6显示了运转时间与5%SiO2-HZSM-5甲苯转化率和对二甲苯选择性的函数关系。
表105%SiO2-HZSM-5的聚硅氧烷选择化甲苯 二甲苯类中对运转时间,hrs 转化率,wt% 二甲苯的量,wt%2 41 254 41 275 38 367 35 5414 31 8321 27 9526 25 98聚硅氧烷的调整选择化在运转26小时以上,可将对二甲苯的选择性从25%大幅度提高至98%。与10%SiO2-HZSM-5相比,5%SiO2催化剂显示了更高的转化率选择化时间超过一天。然后将进料改成100%甲苯。在下面6个小时,选择性提高至99%且转化率为24%,温度被降至468℃且HZSV降至3。转化率升至27%,然后渐渐降低并在21%保持稳定6天(146小时)。相应地,对二甲苯选择性起初保持在99%不变然后渐升至并保持稳定在99.6-99.9%6天,运转即可立时停止。
实施例27向12.5cc 1M硝酸铵溶液中加入2.50g在实施例25中制备的10%SiO2-HZSM-5,由此制备0.05%Pt-10%SiO2-HZSM-5催化剂。1.5小时后,向其中加入0.0025g四氨基硝酸铂(Ⅱ)溶于约0.5cc水中的溶液。放置过夜后将催化剂过滤,水洗,以5℃/min速率热至350℃空气煅烧,燃后保持在350℃3小时。
在2.00g上述所得催化剂作用下,于446℃,3550KPa(500psig),4WHSV,及氢/烃=2.0条件下进行甲苯的歧化反应。表11显示了在相同操作条件下与得自实施例25的无Pt二氧化硅改进的HZSM-5产物成分的比较。甲苯转化率相似,而通过使用Pt-催化剂乙苯产物减少至近1/12。不需要的C9+芳香产物也减少了近1/2。
表11组份wt% Pt-SiO2-HZSM-5 SiO2-HZSM-5苯 45.84 41.65乙苯 0.05 0.59二甲苯类 43.12 55.98C9+芳香烃 0.99 1.78100.00 100.00C8中乙苯的量,wt. 0.10 1.18二甲苯中对二甲苯的 25.8 29.8量,wt%甲苯转化率,wt% 35 34实施例28实施例27的催化剂在446℃,3550KPa(500psig),4WHSV,及氢/烃摩尔比为2.0条件下,现场用1%溶于甲苯的聚苯基甲基硅烷处理。运转32小时后,将进料改成100%甲苯。表12显示了在相同标作条件下测定与无Pt,用硅氧烷处理后,二氧化硅改进的HZSM-5产物成分的比较。
表12组份,wt% Pt-SiO2-HZSM-5 SiO2-HZSM-5苯 46.62 38.43乙苯 0.33 1.18二甲苯类 52.35 58.56C9+芳香烃 0.70 1.83100.00 100.00C8中的乙苯,wt%. 0.63 1.98二甲苯类中的对二甲 98.4 98.7苯,wt%甲苯转化率,wt% 25 22使用Pt-催化剂能保持相似的甲苯转化率而将乙苯产物减少至1/3.6,并且保持对二甲苯很高选择性,为98.4%-98.7%。不需要的C9+芳香烃产物同样减少至近1/3。
表13中所报告的实施例29-31结果,表明了通过对催化剂分子筛增加铂,对产物生产中乙苯产生的有益效果。
实施例29使用含1%聚苯基甲基硅氧烷的甲苯进料,在446℃,3550KPa(500psig),4.0WHSV,及氢/烃=2的条件下进行10%SiO2-HZSM-5的聚硅氧烷调整选择化。在运转至第31小时。将进料改成100%甲苯。在运转至第52小时,将温度升至468℃。并在第165小时将WHSV降至3.0。表13中第一栏所列的是运转39天的数据。
实施例30使用含1%聚苯基甲基硅氧烷的甲苯进料,在446℃,3550KPa(500psig),4.0WHSV,及氢/烃=2的条件下进行0.025%Pt10%SiO2-HZSM-5的聚硅氧烷调整选择化。在运转至第56小时,将进料改成100%甲苯。在运转至第73小时,将温度升至468℃。表13中第2栏所示的是运转7天的数据。
实施例31
使用含1%聚苯基甲基硅氧烷的甲苯进料,在446℃,3550KPa(500psig),4.0WHSV,及氢/烃=2的条件下进行硝酸活化的0.05%Pt10%SiO2-HZSM-5的聚硅氧烷选择化。在运转时温度,WHSV及氢/烃比值均有变动。运转13日的数据列于表13第3栏中。
表13聚硅氧烷 聚硅氧烷/Pt实施例29 实施例30 实施例31反应条件温度,℃ 468 468 431压力,psig 500 500 500H2/HC 2 2 8WHSV 3 4 4运转时间,days 39 7 13甲苯转化率,wt% 23 20 21产物,wt%C-52.5 2.5 2.5苯 43.0 43.6 47.2乙苯 1.9 0.2 0.1二甲苯类 50.4 53.1 50.0乙基甲苯类 1.9 0.5 0.2C+100.3 0.1 0.0100.0 100.0 100.0对二甲苯 99.7 98.7 99.7间二甲苯 0.3 1.3 0.3邻二甲苯 tr. tr. tr.
100.0 100.0 100.0苯/二甲苯类,m/m 1.2 1.1 1.3对二甲苯纯度,wt% 97.8 98.3 99.5实施例29-31表明了本发明反应产物中乙苯的水平能通过使用具有氢化/脱氢作用机制的催化分子筛如在分子筛中引入铂,而得从降低。产物成分中的乙苯含量优选为商业上可接受的不大于0.3%,最优选的是约不大于0.2%。
如上所述,本方法着眼于其它C8产物,有利地提供一种具有高纯度对二甲苯的产物。表14提供了对二甲苯与其它产物不同组合的相对比例。
表14参数 聚硅氧烷 聚硅氧烷/Pt 计算的平衡值实施例29 实施例30 实施例31对二甲苯/EB 26.4 262 498 2.5对二甲苯/EB+间邻二甲苯 23.9 58.2 166 2.5(其它C8)对二甲基/EB+间邻二甲苯+ 12.6 37.4 99.6 1.6C9(其它C8+C9)对二甲苯纯度 95.7 98.3 99.5 71.8(在所有C8产物中),wt%对二甲苯产率 10.6 10.6 10.2 11.9(以所有产物及甲苯的总量为基准),wt%
权利要求
1.一种甲苯的歧化方法,其特征在于它包括将含有甲苯的进料与分子筛催化剂相接触,以提供含有至少占C8组分90%(重量)的对二甲苯的单一合格产物,且甲苯转化率为至少15%(重量)。
2.如权利要求1所述的方法,其特征在于其中所述的接触包括至少在该方法的起始期,通过将该催化剂与含有甲苯和对二甲苯选择化试剂的反应物组份相接触,使分子筛催化剂得到选择化。
3.如权利要求2所述的方法,其特征在于其中所述的反应物组份含有至少80%(重量)的甲苯和至少0.1%(重量)的对二甲苯选择化试剂。
4.如权利要求1或2所述的方法,其特征在于其中,在分子筛与所述进料接触前,用对二甲苯选择化试剂对其进行处理。
5.如权利要求2或4所述的方法,其特征在于其中,对二甲苯选择化试剂含有有机硅化合物。
6.如权利要求5所述的方法,其特征在于其中,有机硅化合物选自聚硅氧烷类,硅氧烷类,硅烷类,二硅烷类和烷氧基硅烷类。
7.如权利要求1所述的方法,其特征在于其中,所述的分子筛催化剂的约束指数为1-20。
8.如权利要求1所述的方法,其特征在于其中所述的接触在温度350-540℃,压力100-35000KPa(大气压5000psig),WHSV0.1-20,及氢/烃摩尔比为0.1-20的条件下有效。
9.如权利要求1所述的方法,其特征在于其中所述的分子筛催化剂包括一种具氢化/脱氢作用的金属组分。
10.如权利要求9所述的方法,其特征在于其中所述的金属包括铂。
11.如权利要求1所述的方法,其特征在于其中所述的接触催化提供了一种含有不超过0.5%邻二甲苯和不超过5%间二甲苯的二甲苯产物。
12.如权利要求1所述的方法,其特征在于其中,至少25%(重量)的所述甲苯转化成二甲苯。
13.如权利要求1所述的方法,其特征在于其中至少30%(重量)的所述甲苯转化成二甲苯。
14.如权利要求1所述的方法,其特征在于其中在单程产物中所述的对二甲苯占产物中C8组分重量在95%以上。
15.如权利要求1所述的方法,其特征在于其中在单程产物中所述的对二甲苯占产物C8组分重量的97%以上。
全文摘要
在一种甲苯选择性歧化生成对二甲苯的方法中,通过使用被含硅化合物处理过的分子筛催化剂,该处理在歧化之前和/或至少在部分歧化过程中,单程得到对二甲苯产物超过90%,并且甲苯转化率至少为15%。
文档编号C07C2/86GK1100402SQ93116960
公开日1995年3月22日 申请日期1993年9月16日 优先权日1992年3月12日
发明者C·D·张, 小·P·G·罗德瓦尔德 申请人:美孚石油有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1