经sn2转化将醇转化成叠氮化物的方法

文档序号:3597654阅读:4074来源:国知局
专利名称:经sn2转化将醇转化成叠氮化物的方法
技术领域
本发明涉及在适当溶剂中用相应的苯甲醇或α-羟基烷酯经SN2转化而制成叠氮化物的新方法,其中采用磷酰叠氮化物和质子(接)受体。
下式的口服活性弹性硬蛋白酶抑制剂I的合成方法已由Shah,S.K.et al在Med.Chem.1992,Vol.35,p.3745中作了说明结构 在很相关的活性衍生物的制备过程中,要求用对映体纯的胺3,该化合物理论上应能够经叠氮化物2得到 最初尝试制备该胺的方案是活化醇1,其中采用将其转化成磺酸盐衍生物后用碱金属叠氮化物置换的已知方法。但是,已放弃这些努力,因为活性的醇在比置换步骤要求的温度低得多的温度下就会分解(0℃下已观察到分解)。
从文献检索已知几种由醇向叠氮化物转化的方法,其中用富含电子的苯甲醇来保持光学活性。应用由叠氮化物亲核试剂2(注上标指本说明书后所列文献号)进行Mitsunobu置换似乎是最好的先例。可先在Mitsunobu条件下采用叠氮酸作为叠氮化物源引入叠氮化物3并且该方法可适用于手性α-芳基乙胺4。利用叠氮酸的替代方案包括Bose et al.提出的使用二苯基磷酰叠氮化物5(DPPA)以及叠氮化锌/双吡啶配合物6。
将Bose et al.条件4应用于我们的底物会导致不需要的消除反应产物5和外消旋的叠氮化物4,即 作为Bose工艺的改进方案,0℃下依次将醇1和三苯基膦加入偶氮二羧酸二乙酯和DPPA的THF溶液中。30分钟后经水处理而分出产物。分出的叠氮化物4产率达81%,只是旋光纯度仅为82%ee。该反应会不符合要求地生成6-8%的烯烃5。此外,叠氮化物受到6倍其重量的Mitsunobu副产物的污染,因此要求广泛利用色层分离法来进行提纯。不符合要求地失去旋光活性以及形成烯烃是由于高反应性中间体所致,这些中间体既具有离子化作用又具有置换化学作用(SN1和SN2)。
就现有技术而言,需要的是将醇转化成叠氮化物的方法,它完全是经历SN2转化而达到高收率和对映体纯的叠氮化产物。
我们已发现要求应用重氮二羧酸二烷酯和三苯基膦的Mitsunobu条件可完全得以避免并且在有机质子受体存在下利用二苯基二磷酰叠氮化物可直接和出人预料地获得优异的结果。经过基本上SN2转化而以高对映体纯度将醇直接转化成叠氮化物的方法是将醇(1当量)和DDPA(1.2当量)溶于无水非质子传递溶剂如甲苯中并达到约0.5-1mol醇浓度,向该混合物中加入略为当量过量的1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)。室温下搅拌数小时后通过水洗简单处理反应混合物并收集产物。例如,在上述例子中,23℃下搅拌约5小时后通过简单水处理分离叠氮化物4,其收率达91%。该叠氮化物的旋光纯度为97%ee(对映体过量的符合要求的异构体)并且消除反应产物5少于1%。
本发明即提出经过SN2转化将醇残基转化成相应叠氮化物的方法,其步骤包括在无水惰性非质子传递溶剂中,在可溶于所述溶剂的质子受体存在下,于约-20至100℃温度下将所述醇(I)与磷酰叠氮化物(II)反应足够长时间而得到所述叠氮化物(III),式中发生所述SN2转化的转化碳原子用星号标明 其中(a)R1选自C1-C8直链或支链烷基,5-10元单环或双环稠合芳环或杂芳环,该杂芳环中可独立地含有下列环杂原子1-4个氮原子;1个硫原子;1个氧原子;1-2个氮原子和1个硫原子;或1-2个氮原子和1个氧原子;而且所述环可被1-3个表示为X,Y或Z的取代基取代,这些取代基独立地选自氢,卤素,三卤-C1烷基,C1-C8烷基,C1-C8烷氧基,NH-CO-C1-C8烷基,NH-CO-苯基,NH-CO-OC1-C8烷基,NH-CO-苯基,N(CO-C1-C8烷基)2,N(CO-苯基)2,O-CO-苯基,或其中X和Y可以是1,2-亚甲二氧基,而在所述取代基中所述C1-C8烷基或苯基又可被1-3个卤素,C1-C8烷氧基取代,并且对于苯基还可被C1-C8烷基取代;(b)R2选自COOC1-C8烷基,C1-C8烷基,C1-C8烷基羰基,并且在R1是芳环或杂芳环的情况下,R2可以是R5(CH)n-COO C1-C8烷基,而n是1-5,R5是氢、C1-C8烷基;而且R2也可以是C1-C3亚烷基链,这由实曲线标明,链中可含有1个硫原子或1个氧原子,当R1是5-10元单环或双环稠合芳环时在所述芳环的相对于所述醇残基的邻位与所述R1连接,形成5-6元非芳稠环;(c)R3和R4独立地选自C1-C8烷基或苯基,所述基团可被1-3个C1-C8烷氧基、卤素、三卤-C1烷基取代基取代,而对于苯基还可被C1-C8烷基取代基取代,该方法在不存在偶氮二羧酸二烷基酯情况下进行。
本发明还提出以下结构的化合物 式中X和Y独立地选自H,p-CF3,p-CH3,m-OCH3,p-OCH3,而且X和Y也可一起代表1,2-亚甲二氧基,而波浪线则表示α和β键。
从机理上讲,相信本发明方法反应的发生是先形成醇的磷酸酯,然后释放叠氮酸的DBU盐。对于相对缺电子的底物,该中间体磷酸酯已由NMR观察到,其中磷酸酯的苯甲基质子与磷偶联,并且对于表1所列化合物3和4而言,在δ=5.5ppm处出现明显的四重峰。
释放的叠氮化物盐类似于在有机溶剂中有某种溶解度的季铵叠氮化物。这导致在室温下由有机可溶形式的叠氮化物置换有足够反应活性的磷酸酯离去基团。
我们已发现就地产生的叠氮化物会完全置换磷酸酯,而无需任何补充的叠氮化物源,即碱金属叠氮化物,HN3或叠氮化钠。一旦叠氮化物置换完成(在化合物3和4中δ=4.3ppm,苯甲基的次甲基),就形成磷酸二苯基酯的DBU盐。该盐是水溶性的并且可简单地经水洗去除,而无需进行广泛的或大规模的色层分离。任何过量的DBU又可经酸洗除去,而留下的是仅含略为过量的原料DPPA的叠氮化物反应产物。再经硅胶色层分离即可得到分析纯的叠氮化物样品。与Mitsunobu反应相比,该反应除了操作简单而外,而且待处理的副产物极少,收率得以提高,还可保持符合要求的转化产物的对映体纯度。
该方法中收率范围为基于原料醇的理论值的60-95%。
对映体过量(ee)是在作为外消旋物存在的量以上的游离旋光异构体量。例如,96%对映体过量(ee)是指除了96%符合要求的纯对映体而外还有2%每一对映体存在。
在本方法中醇经历SN2反应,其中与醇相连接的碳原子在得到的叠氮化物中得以转化。因此,α-醇会形成β-叠氮化物,而β-醇会转化成α-叠氮化物。
可用于本发明方法的醇结构如下 其中R1和R2如上述。
本说明书中所用“C1-C8烷基”包括直链或支链烷基,可举出甲基,乙基,丙基,异丙基,正丁基,异丁基,仲丁基,叔丁基,戊基,己基,异己基,庚基,辛基,异辛基等,优选甲基。
本说明书中所用“C1-C8烷氧基”包括上述C1-C8烷基与氧原子连接形成的基团,可举出甲氧基,乙氧基,丙氧基,异丙氧基,正丁氧基,异丁氧基,仲丁氧基,叔丁氧基,戊氧基,己氧基,异己氧基,庚氧基,辛氧基,异辛氧基等,优选甲氧基本文中所用“卤素”一词意指氟、氯或溴,优选氟。
本发明中所用的单环或双环稠合芳环/杂芳环包括苯基,萘基,吡啶基,吡咯基,呋喃基,噻吩基,异噻唑基,咪唑基,苯并咪唑基,四唑基,吡嗪基,嘧啶基,喹啉基,异喹啉基,苯并呋喃基,异苯并呋喃基,苯并噻吩基,吡唑基,吲哚基,异吲哚基,嘌呤基,咔唑基,异噁唑基,苯并噻唑基,苯并噁唑基,噻唑基,噁唑基和1,4-苯并二氮杂基,其中吲哚基、异吲哚基、咔唑基或苯并二氮杂基的NH部分在工艺过程中可通过可去除的C1-C4烷酰基如乙酰基来保护。采用常规温和的碱水解如通过与氢氧化钠液接触即可很容易地去除烷酰基。
优选芳环/杂芳环包括苯基,萘基,呋喃基,噻吩基,苯并噻吩基,苯并呋喃基。优选的是,醇(I)选自 其中G是C2-C4亚烷基,该亚烷基可被C1-C3烷基取代并且所述亚烷基链可含S(O)n环原子,式中n是0-2; 其中G如上述; 可用其形成相应叠氮化物产物(III),其中含有转化的叠氮化物碳原子。
特别优选的是,醇选自 其中X是H,p-CF3,p-CH3,m-OCH3,p-OCH3,并且波浪线可以是α或β键 其中X选自H,p-CF3,p-CH3,m-OCH3,p-OCH3,并且X和Y可一起表示1,2-亚甲二氧基,而波浪线可以是α或β键而所述相应的转化叠氮化物是 其中X是H,p-CF3,p-CH3,m-OCH3,p-OCH3 本发明主题还包括下列新化合物 其中X和Y独立地选自H,p-CF3,p-CH3,m-OCH3,p-OCH3,而且X和Y可一起表示1,2-亚甲二氧基其中波浪线指α或β键。
该方法中所用的磷酰叠氮化物如下式(R3O)(R4O)P(O)N3其中R3和R4独立地选自C1-C8烷基或苯基,并且可被1-3个C1-C8烷氧基,卤素,三卤-C1烷基取代基取代,而对于苯基还可由C1-C8烷基取代基取代,优选的是,R3和R4均是苯基。
上述说明所包含的磷酰叠氮化物在本技术领域是已知的或可按类似于本技术领域所述的方法得到。
代表性磷酰叠氮化物包括二苯基磷酰叠氮化物二(对甲氧基苯基)磷酰叠氮化物二(对氟苯基)磷酰叠氮化物二(对甲苯基)磷酰叠氮化物二乙基磷酰叠氮化物二(正丁基)磷酰叠氮化物二(对三氟甲基苯基)磷酰叠氮化物二(2,4-二氯苯基)磷酰叠氮化物等。
优选二苯基磷酰叠氮化物。
本方法中所用的质子受体包括C6-C10二氮杂双环烷烃,C6-C10二氮杂双环烯烃,1-5个C1-C3烷基取代的胍类,C4-C9杂芳含氮化合物,或一或二-C1-C4烷基氨基取代的吡啶。
所有这些质子受体在本技术领域都是已知的或可按本技术领域已知的相似方法得到。
代表性例子可举出1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)1,4-二氮杂双环[2.2.0]辛烷(Dabco)1,5-二氮杂双环[4.3.0]壬-5-烯(DBN)1,1-二甲基胍
1,1,3,3-四甲基胍1,1,3,3,4-五甲基胍吡啶喹啉4-(二甲基氨基)吡啶4-(二乙基氨基)吡啶优选DBU和Dabco。
本方法中的温度范围为-20至100℃,优选20-50℃,更优选为室温该方法中可用的溶剂,对醇、磷酰叠氮化物和质子受体而言,是无水惰性非质子传递溶剂。可用的溶剂包括C5-C12饱和烃,C6-C10芳烃,可由1-3个卤素(Br,Cl,F)或C1-C4烷基取代基取代,1-4个卤素取代的C1-C6直链或环状烷,C4-C6直链或环状醚,C1-C2N,N-二烷基甲酰胺,C1-C2N,N-二烷基乙酰胺,或C1-C2烷基腈。
这些溶剂可从市场上得到,其中包括己烷,苯,甲苯,间二甲基,对二甲苯,萘,氯苯,邻二氯苯,二氯甲烷,氯仿,四氯化碳,氯代环己烷,乙醚,二噁烷,四氢呋喃(THF),1,2-二甲氧基乙烷,N,N-二甲基甲酰胺,N,N-二乙基甲酰胺,N,N-二甲基乙酰胺,N,N-二乙基乙酰胺,乙腈等。优选THF和甲苯。
本方法优选在无水惰性气氛,包括无水氮气中进行。
可采用常规装置。
以下实施例说明本发明的要旨,但不应将其理解为对本发明保护范围和精神实质的限制。
实施例中所用的一般叠氮化步骤如下将醇(1mmol)和二苯基磷酰叠氮化物(1.2mmol)溶于无水溶剂(甲苯或THF)(2ml)中。N2下向混合物中加入净1,8-二氮杂双环[5.4.0]十一碳-7-烯(1.2mmol)。在20℃下搅拌至反应完成为止,一般经过12小时。混合物用甲苯(3ml)稀释并用水(2×3ml)和5%HCl(3ml)洗涤。有机层真空浓缩后用硅胶柱色层分离法提纯而得到纯叠氮化物,一般收率为80-95%,典型的对映体过量约80-99%。以下仅从机理方面针对1-芳基(Ar)-1-羟基丙烷苯甲醇说明一般步骤。
我们已将该反应应用于表1所示结构上不同的各种醇。示为此化合物1-5的实施例范围包括缺电子(对位CF3)到富含电子的苯甲醇(对位OMe)。与间位甲氧基取代的苯基相连接的苯甲醇(化合物3)最近已用于进行Mitsunobu置换反应以表明手性氨合成4。但是,间位甲氧基取代基事实上是吸电子的(正Hammettσ值)并且与未被取代的苯基相比不易于外消旋化8。我们已表明应用更一般的一类苯甲醇的方法。很清楚,底物不必是富含电子才能进行成功的转化。但是,在芳环上的取代基电性变化影响到置换步骤反应的速度。但是,在所有情况下,都在1小时内形成磷酸酯,化合物1(对位CF3)要求加热到40℃以完成置换,而化合物5(对位OMe)在0℃下几小时内就完成反应。化合物7至9表明应用富含电子的杂环的情况。所有实施例中,除了对位甲氧基苯基(化合物5)和2-位取代的呋喃(化合物8)而外,外消旋化一般都少于2%。而在这两个实施例中,分别有5%和10%的相对的对映体生成。化合物10和11说明了用不同中间体的方法9。C-4顺式和反式醇均经历完全的转化。两种非对映体均转化而排除叠氮化物α面选择性作用(attack)的可能性9。就目前情况来讲,这是已报道的将C-4胺引入这类分子中的立体控制的最高水平。本方法可扩展而得到受保护的氨基酸(化合物12)。在这种情况下,酯足以使进行置换的羟基活化,而又不会涉及到相邻的苯环10,11。由于这些产物易于差向异构10b,所以使用略为少量的碱(0.98当量)。
化合物13中的伯醇在甲苯或THF中室温下很缓慢地形成叠氮化物(24小时后达到5%转化率)。采用更有利于SN2置换的条件即可完全形成叠氮化物(于DMF中65℃下3小时)12。而即使在强制的条件下也只能以低收率形成叠氮化物(化合物14;DMF中125℃18小时)。但是,这种底物用Mistunobu条件可以高收率形成叠氮化物5。这一观察结果使得利用Mitsunobu条件达到的相对反应性水准与我们的方法形成对比。在Mitsunobu反应中,已提出用烷氧基鏻类作为反应性中间体2b。这种高反应性中间体很容易使未活化的仲醇被置换。在底物是旋光活性的富含电子的苯甲醇时,这种高反应性中间体可能是不需要的。在这种情况下,磷酸酯具有适当的反应活性平衡,因此在0-25℃温度下外消旋化受到抑制,而与叠氮化物的置换反应则易于进行。
总流程
表1化合物 醇a叠氮化物b收率 1 X=Hd99%ee98.7%ee 93%2 X=CF3c95.2%ee 94.3%ee 94% 3 X=间位-OMee97.5%ee 96.0%ee 89%4 X=对位-CH3e97%ee 95%ee91%5 X=对位-OMee99.4%ee 87.6%ee 80%6 95%99.5%eec94.1%ee7 82%97.4%eee96.9%ee
表1(续)化合物醇a叠氮化物b收率8 86%92.5%eee71.3%ee9 90%99.6%eeeg97.5%eeb10 92%顺反 顺反1192%顺反 顺反表1(续)化合物醇a叠氮化物b收率12 87%99%eei98%eei.k13正癸醇正癸基叠氮化物 88%14胆甾醇胆甾烯基叠氮化物 20%(a)光学纯度用Cyclodex-B柱气相色谱法测定。(b)在用LiAIH4将叠氮化物还原成胺并将胺转化成氨基甲酸基酯(氯甲酸基酯,三乙胺)之后用反相HPLC测定对映体比例。所有实施例都与独立地制成的外消旋样品进行比较。(c)经对映体选择性酮还原过程得到醇,可参见后续所列文献13。(d)从Adrich购得醇。(e)按照后续所列文献14所述的方法经非对称二烷基锌加成作用而得到醇。(f)用手性OD柱测定光学纯度。(g)光学纯度用手性OB柱测定光学纯度。(h)醇比例用反相HPLC测定,而叠氮化物比例用1H NMR测定。(i)叠氮化反应在THF中进行。(j)光学纯度被作为Aldrich的化学纯度。(k)在用三苯基膦将叠氮化物还原成胺之后,用手性crownpak(CR+)柱测定对映体的比例。
参考文献及注释1. Shah,S.K.;Dorn,C.P.;Finke,P.E.;Hale,J.J.;Hagman,W.K.;Brause,K.A.;Chandler,G.O.;Kissinger,A.L.;2. (a)在Mitsunobu条件下插入一个胺当量的第一实施例采用邻苯二甲酰亚胺Mitsunobu,O.;Wad,M.;Sano,T.J.Am.Chem.
Soc.1972,94,679。(b)Hughes已广泛评述了Mitsunobu置换。
在该评述中可找到形成C-N键的变化,这方面可参见Hughes,D.L.Org.React.1992,42,335。
3. Loibner,H.;Zbiral,E.Helvetica Chimica Acta,1977,60,417.
4. Chen,C.-P.;Prasad,K.;Repic,O.Tetrahedron Lett,1991,32,7175.
5. Lal,B.;Pramanik,B.N.;Manhas,M.S.;Bose,A.K.TetrahedronLett,1977,1977.
6. Viaud,M.C.;Rollin,P.Synthesis,1990,130.
7. 在β-内酰胺领域可观察到类似现象,可参见Gasparski,C.M.;Teng,M.;Miller,M.J.Am.Chem.Soc.1992,114,2741。
8. Lowry,T.M.;Richardson,K.S.“Mechanism and Theory inOrganic Chemistry”;2nd Ed.Harper and Row,1981,p.134.
9. Blacklock T.J.;Sohar,S.;Butcher,J.W.;Lamanec,T.;Grabowski,E.J.J.Org.Chem.1993,58,1672.
10.对于用一个胺当量置换α-羟基酯的实施例,可参见(a)置换三氟甲烷磺酸酯Effenberger,F.;Burkard,U.;Willfahrt,J.
Angew.Chem.Int.Ed.Engl.1983,22,65。(b)对于用HN3进行Mitsunobu置换的实施例,可参见Fabiano,E.;Golding,B.
T.;Sadeghi,M.M.Synthesis 1987,190。(c)对于在Mitsunobu条件下采用被保护的羟基胺的实施例,可参见Kolasa,T.,
Miller,M.J.J.Org.Chem.1987,52.4978。(d)对于采用对硝基苯磺酸酯的实施例,可参见Hoffman,R.V.,Kim,H.-O.
Tetrahedron 1992,48,3007。11. 对于通过重氮转换制备氨基酸的叠氮基衍生物,可参见Zaloom,J.;Roberts,D.C.J.Org.Chem.1981,46,5173。12. 我们已观察到在没有醇存在的情况下DPPA和DBU在极性溶剂如CH3CN或DMF中混合时有气体产生。应当总是后加入碱。13. Mathre,D.J.;Thompson,A.S.;Douglas,A.W.;Hoogsteen,K.;Carroll,J.D.;Corley,E.G.;Grabowsli,E.J.J.J.Org.
Chem.,1993,58,2880.14. Yoshioka,M.;Kawakita,T.;Ohno,M.,Tetrahedron Lett,1989,30,1657.Takahashi,H.;Kawakita,T.;Yoshioka,M.;Kobayashi,S.;Ohno,M.,ibid,1989,30,7095.15. 表1所述叠氮化物的沸点(熔点)和旋光度如下,即化合物,Bp,旋光度1,65℃/0.5mm,[α]D25=-69.4(c=1.02,己烷);2,105-110℃/15mm,[α]D25=-115.1(c=1.02,己烷);3,95℃/1mm,[α]D25=+155.5(c=1.0,己烷);4,[α]D25=+170.5(c=1.0,己烷);5,110℃/0.6mB,[α]D22=+141.2(c=0.99,己烷);6,140℃/15mm,[α]D23=-25.3(c=1.1,己烷);7,100℃/30mm,[α]D25=+99.2(c=1.0,己烷);8,105℃/35mm,[α]D25=+96.7(c=1.0,己烷);9,[α]D25=-125(c=1.02,己烷);10,mp=118-119℃,[α]D25=-232(c=1.13,MeOH);11,mp=99-101℃,[α]D25=-53.9(c=1.02,MeOH);12,105-110℃/100mm,[α]D25=+17.5(c=1.03,己烷).
权利要求
1.经过SN2转化将醇残基转化成相应叠氮化物的方法,其步骤包括在无水惰性非质子传递溶剂中,在可有溶于所述溶剂的质子受体存在下,于约-20至100℃温度下,将所述醇(I)与磷酰叠氮化物(II)反应足够长时间,得到所述叠氮化物(III),式中发生所述SN2转化的转化碳原子用星号标明 其中(a)R1选自C1-C8直链或支链烷基,5-10元单环或双环稠合芳环或杂芳环,该杂芳环中可独立地含有下列环杂原子1-4个氮原子;1个硫原子;1个氧原子;1-2个氮原子和1个硫原子;或1-2个氮原子和1个氧原子;而且所述环可被1-3个表示为X,Y或Z的取代基取代,这些取代基独立地选自氢,卤素,三卤-C1烷基,C1-C8烷基,C1-C8烷氧基,NH-CO-C1-C8烷基,NH-CO-苯基,NH-CO-OC1-C8烷基,NH-CO-苯基,N(CO-C1-C8烷基)2,N(CO-苯基)2,O-CO-苯基,或其中X和Y可以是1,2-亚甲二氧基,而在所述取代基中所述C1-C8烷基或苯基又可被1-3个卤素、C1-C8烷氧基取代基取代,并且对于苯基还可被C1-C8烷基取代;(b)R2选自COOC1-C8烷基,C1-C8烷基,C1-C8烷基羰基,并且在R1是芳环或杂芳环的情况下,R2可以是R5(CH)n-COO C1-C8烷基,而n是1-5,R5是氢,C1-C8烷基,而且R2也可以是C1-C3亚烷基链,这由实曲线标明,链中可含有1个硫原子或1个氧原子,当R1是5-10元单环或双环稠合芳环时在所述芳环的相对于所述醇残基的邻位与所述R1连接,形成5-6元非芳稠环;(C)R3和R4独立地选自C1-C8烷基或苯基,所述基团可被1-3个C1-C8烷氧基,卤素,三卤-C1烷基取代基取代,而对于苯基还可被C1-C8烷取代基取代,该方法在不存在偶氮二羧酸二烷基酯情况下进行。
2.权利要求1的方法,其中R3和4均是苯基。
3.权利要求1的方法,其中所述温度范围是20-50℃。
4.权利要求1的方法,其中所述质子受体是C6-C10二氮杂双环烷烃或烯烃,1-5个C1-C3烷基取代的胍、C4-C9杂芳含氮化合物、或一或二个C1-C4烷基氨基取代的吡啶。
5.权利要求1的方法,其中所述溶剂是C5-C12饱和烃,C6-C10芳烃,并且所述烃可被1-3个卤素或C1-C4烷基取代基取代,1-4个卤代的C1-C6烷烃、C4-C6直链或环醚、N,N-二-C1-C2烷基甲酰胺、N,N-二-C1-C2烷基乙酰胺、C1-C2烷基腈。
6.权利要求1的方法,其中R1是芳环或杂芳环,选自苯基、萘基、吡啶基、吡咯基、呋喃基、噻吩基、异噻唑基、咪唑基、苯并咪唑基、四唑基、吡嗪基、嘧啶基、喹啉基、异喹啉基、苯并呋喃基、异苯并呋喃基、苯并噻吩基、吡唑基、吲哚基、异吲哚基、嘌呤基、咔唑基、异噁唑基、苯并噻唑基、苯并噁唑基、噻唑基、噁唑基和1,4-苯并二氮杂基,其中吲哚基,异吲哚基,咔唑基或苯并二氮杂基的NH部分被可除去的C1-C4烷酰基保护。
7.权利要求1的方法,其中所述醇(I)选自 其中G是C2-C4亚烷基,该亚烷基可被C1-C3烷基取代并且所述亚烷基链可含S(O)n环原子,式中n是0-2; 可用其形成相应叠氮化物产物(III),其中含有转化的叠氮化物碳原子。
8.权利要求7的方法,其中所述醇I选自 其中X是H,p-CF3,p-CH3,m-OCH3,p-OCH3,并且波浪线可以是α或β键 其中X选自H,p-CF3,p-CH3,m-OCH3,p-OCH3,并且X和Y可一起表示1,2-亚甲二氧基,而波浪线可以是α或β键而所述相应的转化叠氮化物是 其中X是H,p-CF3,p-CH3,m-OCH3,p-OCH3 其中X和Y独立地选自H,p-CF3,p-CH3,m-OCH3,p-OCH3,而且X和Y可一起表示1,2-亚甲二氧基其中波浪线指α或β键。
全文摘要
本发明提出用磷酰叠氮化物如二苯基磷酰叠氮化物经SN
文档编号C07D213/42GK1126992SQ94192719
公开日1996年7月17日 申请日期1994年7月5日 优先权日1993年7月8日
发明者A·S·汤普森, E·J·格拉宝斯基 申请人:麦克公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1