电磁辐射入射束频率加倍方法

文档序号:3548860阅读:279来源:国知局
专利名称:电磁辐射入射束频率加倍方法
技术领域
本发明涉及一种光学元件,以及在这些光学元件上使用的配方,由这些配方赋予这种光学元件非线性的性质。本发明特别涉及一种包含一透射介质的光学元件,该透射介质包括极性直线校准的非中心对称的分子偶极子,该偶极子具有一个通过共轭键部分连接一电子接受体的电子给予体,接受体是一选定的氟化砜,氟化酮,或一氟乙烯基砜,氟烃基乙烯砜或氟化磺酰基硫酰亚胺。这里所述的光学元件特别适用于需要二次谐波产生(简称SHG)的光学器件。例如二次谐波产生用于光路中的信息控制,改变二极管激光器的频率,以及光开关。
业已公认,具有极化率的某些介质能够提供控制入射电磁辐射束的灵敏的方法,这种介质被认为具有非线性的极化特性,对这种非线性极化特性影响的大小取决于在该介质中带电粒子(电子、离子和核)的排列。为获得一介质的最高的非线性极化特性,在这个介质中分子一定这样排列,以使在这种介质中单个极性分子的非线性特性不相互抵消掉。
在分子水平上,一介质的极化可以用下面表达式来描述μ=μo+αE+βEE+γEEE+…其中μ是感应偶极矩;μo是永久偶极矩;E是所在位置的电场强度;α,β,γ,分别代表线性二次和三次极化率;β,γ,也分别被称为第一和第二过极化率。
在分子水平上,第一次或线性极化用αE来描述;第二次或第一非线性极化用βEE来描述;而第三次或第二非线性极化用γEEE来描述。
通过一应用的电场感应一个分子系综的极化可以用下面的表达式来描述P=Po+X(1)E+X(2)EE+X(3)EEE+…其中P是感应极化;Po是永久极化;E是应用的电场;X(1),X(2)和X(3)分别代表线性,二次和三次极化率的张量。
X(2)是由于二次分子极化率或第一过极化率β引起的,X(3)是由于更进一步过极化率引起的等等。实际上张量的数量,即电极化率,X(1)是高度对称相关的;奇数次系数对所有材料都是非零的,而偶数次系数,即X(2),仅对非中心对称的材料来说才是非零的。
Franken等人在《Physical Review Letters》(7,118-119)(1961)中公开了因一脉冲红宝石激光束发射通过结晶的石英观察二次谐波产生(SHG),为一产生一个能足以检测SHG现象的电场强度E,一个唯一的实用的办法仍然是利用激光。
二次非线性光学现象,例如SHG,和频和差频的产生,参数处理(Parametric Processes)和电光效应等都是起因于X(2)项。因此为了产生显著的非线性光学现象,希望一个分子具有大的过极化率β,以及这些分子的系综具有大的X(2)。
这篇论文认为,具有共轭π一电子系统或低位电荷转移激发态的有机分子常常具有极大的过极化率,但是,在晶相中,在薄膜或其它状态中这些分子的不适宜的直线对准可能导致一中心对称的材料,在这个材料中X(2)变为零。这个问题可以通过采用一种手性分子以保证非中心对称(即在靠近其中心附近对称)的晶体来克服,但是与产生和保持高水平的光纯度相关的问题限制了这个途径价值。此外,其本身的光学旋光性不能保证X(2)将是大的,仅是它将不为零而已。
Anderson等人在美国专利4818898中公开了一个解决此问题的方案,该方案包括了一个包合配合物的配方,所述的包合配合物由形成晶体晶格的基质化合物和非线性可极化的寄生化合物组成,寄生化合物包含在晶格带有的连续槽中,寄生化合物具有大于10-30静电单位的二次极化率。
Ulman等人在美国专利4792208中公开了一个光学元件,该元件包含一种呈现二次极化率大于10-9静电单位的介质,该介质是由极化直线校准的非中心线对称的分子偶极子组成,该分子偶极子具有一个通过π键系统连接到一个电子接受体部分上的电子给予体部分,以便使分子偶极子在低极化的基态和较高极化的激发态之间振荡。以磺酰基电子接受体基团与优选的取代电子给予体基团的烃的结合,公开了各种给予体和接受体部分。例如,可以通过在聚合物粘结剂(形成Langmuir-Blodgett 薄膜)中分子偶极子极性直线校准来达到二次非线性。
虽然这篇论文继续了为增加分子的非线性和相应的分子偶极矩而作的化学结构上替换研究,这个途径也不可能产生具有最好的全部特性结合的材料。有利于强极性直线校准的大偶极矩可能常常与聚集和溶解度问题有关,并且只允许少量的光学旋光性材料包含在粘结剂中,在化学结构中进一步替换以增加非线性常常可能相反地影响最终材料的颜色,因为二极管激光器的一次和二次谐波波长分别位于800和400nm附近,最优的非线性分子必须有高的透明度,即,在这两个波长有很低的吸收,以及在暴露于高光强度条件下还要具有高的光学稳定性。在这技术领域中主要的化学任务之一是发现具有高的非线性,并在350-850nm的可见光波长范围的可见光吸收很小光的分子。
为此,本发明的一个目的是提供一种在可见光波长范围内呈现高透明度的新的非线性光学介质。
本发明的另一个目的是提供一个包括从氟化砜和氟化酮中选取的透明介质的非线性光学元件。
本发明还有一个目的是提供一个新的配方,该配方是氟化砜或酮与一聚合物组分的物理混合。
本发明又一个目的是提供一个二次谐波产生装置。
从说明书和实施例的描述可以使本发明的这些目的和优点更加清楚。
本发明提供一类呈现高度非线性高度透明度的化合物,即在390nm-850nm波长范围内很少或不吸收,该类化合物选自下列结构式中的氟化砜和氟化酮类 其中,D是一个电子给予体部分,它选自NH2,NHR1,N(CnH2n+1)(CnH2nOH),N(CnH2nOH)2,N(CnH2n+1)N(CnH2n+1)2,N=C(CnH2n+1)2,OCnH2n+1,SCnH2n+1, 2-20碳原子的支链或直链烃基,F,以及Br;其中,n=0-20Z1,Z2,Z3,Z4和Z5是单独地从H,1-20碳原子的烃基,芳基,OR2,SR3和NR4R5中选取的;R1,R2,R3,R4,以及R5单独地从下述基团选取芳基,1-20碳原子的烃基和COR6;在此R6是选自H、芳基,以及1-20碳原子的烃基;X和Y是相同或不同的,并且是单独地从H,F,Cl,Br,I,1-20碳原子烃基和氟代烃基,芳基,氟代芳基,SR和OR7中选取;其中,R7是从1-20碳原子的烃基和芳基中选取;并有下列附带条款(1)对于结构式1和4,当D是NH2,F,Br,NH(C2H5),N(CH3)2,OCH3,OH或SH时,X不是F,而Y不是少于7个碳原子的氟代烃基;(2)对于结构式7,当D是H,p-Cl,p-F,m-F,p-NO2或p-NH2时,X和Y不是F;(3)对结构式8,当D是OCnH(2n+1)时,n不是1。
X是F,而Y是1-20碳原子的氟代烃,这是可取的;而更可取的是X是F,Y是2-10碳原子的全氟烃基。
在上述结构式中,金属配位在与D的选择性结合中也是有效的,当应用金属配位时,D是从式M(L)2X′的取代基中选取;其中M是从铂、钯中选取;而L是从三芳基膦和1-20碳原子的三烃基膦中选取,X′是从F,Cl,Br,I,-SCN,-NCO,-NO2,-CN,以及SnCl3中选取的。
本发明也提供一种含有一透射介质的改进的光学元件,该介质由极性直线校准的分子偶极子组成,偶极子排列成非中心对称的结构中,该偶极子具有一个通过共轭π键系统连接到一电子接受体部分的电子给予体部分。这个改进归于所述的电子接受体部分是选自SO2CFXY,CH=CHSO2CFXY,COCFXY和CFXYS=NSO2CFXY,其中X和Y是相同或不同的,并且单独选自H,F,Cl,Br,I,1-20碳原子的烃基和氟代烃基,芳基,氟代芳基,SR7和OR7,其中R7是选自1-20碳原子的烃基和芳基。X是F或1-20碳原子的全氟烃基,而Y是全氟烃基是可取的;X是F,Y是2-10碳原子的全氟烃基更可取。
这种光学元件可以在各种状态下利用,包括用作溶液或在一聚合物中分散体(然后它要在电场的作用下直线校准所述的极性分子),或用作一个薄膜(例如,Langmir-Blodgett(LB)膜),还可能用所选定的化合物大的晶体,或用作所述化合物的溶液(然后该溶液要在电场作用下直线校准所述的极性分子)。


图1是用于测量电场感应二次谐波产生(EFISH)和三次谐波产生(THG)的装置示意图。
图2是本发明的一个非线性光学器件的示意图。
根据本发明,业已发现利用磺酰基或羧基类的一电子接受体部分,其中邻近磺酰基或羰基基团的碳原子至少具有一个氟取代基,该方法提供一个具有增加偶极矩,以及相应地具有高的非线性的分子,而在透明度上无明显的损失。当在烷链上氟取代的程度进一步增加时,对偶极矩和相应的非线性增加有帮助。对磺酰基型和羰基型两种电子接受体部分,所观测的结果,即在非氟代砜和酮上非线性提高的结果,其中以苯作共轭π键系统的分子增加最大,其次为联苯,而以1,2-二苯乙烯为最差。这个效应的数值磺酰基型的电子接受体部分比羰基型的电子接受体的大。利用如在结构式7中所示氟代磺酰基硫酰亚胺基团得到较大偶极矩和相对于可比较氟代砜基团的可比较的β。例如,4-甲氧基-4′-全氟代己基-磺酰基联苯有μ为5.9,β为9.1×10-30静电单位(μβ=54单位),而类似的带有氟代磺酰基硫酰亚胺基的化合物,4-甲氧基-4′-S-全氟丙基-N-三氟甲基磺酰基硫酰亚胺联苯,μ为7.9,β为9.4×10-30静单位(μβ=74单位)。由于较大的偶极矩,氟化磺酰基硫酰亚胺基在极化聚合物应用中提供好处。
为了测定本发明中使用的化合物的分子过极化率,β,根据已有技术的方法曾进行了一组物理和光学测量,这包括在一系列的不同浓度的溶液上,进行不透明度,在几个波长的折射率,电容,THG,以及EFISH大小和粘着长度的测量。这些测量结果分别确定在溶液中-溶质分子的比容,溶液的分散性,溶液的不导电性质,以及对每个溶液的THG和EFISH非线性电极化率。除了THG和EFISH的测量是按下面参考图1的描述进行外,所有测量都是根据本领域中非常确实的方法完成的。按照《the fullonsager local field》模型(C.J.F.Bottcher,“Theory of Electrical Polarization”2nded.Elsevier,NY,1973)和用无限稀释极限(K.D.Singer and A.F.Garito,J.Chem Phys.75(1981)3572-3580),用所测定的溶液性质计算出相应分子的性质,包括偶极矩μ,低频线性极化率α,所述分子的过极化率β,以及二次分子过极化率γ。
图1是一个用于EFISH和THG测量的光学装置的示意图,一个20赫(Hz)的钕钇铝石榴石(NdYAG)激光器(1)提供0.4J能量的10ns的脉冲,1.06μm输出(2)激励一氢喇量转换机构(hydrogen Raman Shifter)(3),它在1.91μm的频率处提供超过120mw的Stokes辐射(4),Stokes辐射(4)用作EFISH和THG测量的基频,其谐波波长分别在954nm和636nm,Stokes辐射(4)分别进入三光路三束(5)、(6)、(7),束(5)通过由一种非线性晶体材料(例如石英)构成参考波道(8),所得到的光束(9)用分光镜(10)(在每一个光支路上是单个分光镜)分离为第二、第三谐波信号(11)和(12),以测定标准强度。光束(6)经过波幅池(13),波幅池(13)包括一个供光束(6)通过的2cm厚的窗口(14),波幅池(13)分为两部分(15),(16),部分(15)含有一已知光学特性的液体,如甲苯;部分(16)含有在本发明实施中有用的化合物的溶液的一合适的溶剂,如,P-二噁烷或三氯甲烷,在窗口-液体交界处装配有金电极,这样EFISH和THG的测量可以同时实现,这是按照在L.-T.Cheng等人SPIE Vol.1147(1989)的所述的方法来实现的。为了测量谐波的振幅,所得到的光束(17)用分光镜(18)分为二次和三次谐波信号(19)和(20),光束(7)直接通过一光劈形池(21),该池(21)具有石英窗口(22),(23),并含有用于测量粘着长度的在本发明实践中有用的如同部分(16)所含有的相当一化合物溶液。所得到的光束(23)用分光镜(25)分为二次和三次谐波信号(26)和(27)。
本发明的光学元件在某些情况下,可以由一选定的化合物的宏观晶体构成,条件是这种化合物可以制成晶体,并且在这个晶体中极性分子是非中心对称直线校准的,这种晶体可以用本领域中各式各样的方法在与它们的母液平衡情况慢速生长。但是,这个方法对许多极性分子将不适用,这一般应归于偶极子的相互作用。另一种生产有用的光学元件的方法包括溶解一化合物在一溶剂中,这个溶剂可以放在一所希望形状的容器中,然后可以将该溶液受一个电场的作用,该电场使溶解偶极子在该电场中它们自己直线对准,此后电磁辐射可以通过所述的溶液,并可产生非线性光学效应,如二次谐波产生。电场的存在和需要使用的化合物在液体溶液状态二者在有些应用中可能是不方便的或不希望的。
根据本发明,一个特别方便和有效的光学元件类型包括在一聚合物粘结剂中分散极性分子,所述的极性分子混合在聚合物粘结剂中或枝接在所述聚合物上,所述的混合物可以加热到这样一个温度,在这个温度所述聚合物变得足够软,以致在一个电场应用到所述极性分子上时使这些极性分子在电场方向排列成线,当该混合物冷却时,这些极性分子固定在它们直线对准的位置,此后可以除去电场。合适的粘结剂包括聚甲基丙烯酸酯,聚甲基甲基丙烯酸酯,聚乙烯醇,甲基甲基丙烯酸酯和甲基丙烯酸的共聚物,苯乙烯和马来酐以及后者的半酯酸的共聚物,以及许多其他化合物,所选的聚合物粘结剂最好是高透明的,以便在完成本发明所使用的化合物透明性可以被有利地使用。
一个可采用的普通的光学元件类型是Langmuir-Blodgett(LB)膜。一个在本发明实施中有用的化合物小量喷在一液体表面,在空气/液体的界面上形成单分子厚的表面膜。若这个支承液体是一极性液体,例如水,所述化合物的亲水性的部分被吸引到液体中,而该化合物的疏水性部分吸引非极性,所述界面的空气一侧,固定所述极性分子在支承液体的表面,其结果是在支承液体的表面上所述极性分子极性直线校准。当支承基质缓慢地浸入膜支承液体或慢慢地从其中缩回时,在基质上形成定向的单分子膜。
依照本发明的非线性光学器件包括一个至少把一束入射的电磁辐射射到一个具有非线性光学性能的光学元件上,借此,从该元件上射出的电磁辐射至少包含有一个与任何一个入射的辐射频率不同的频率。该不同的频率是该电磁辐射的一入射束的整数倍。该光学元件是选自上述各种的一种。最好不同频率的出射辐射被加倍,即SHG。现在参照图2,定向光学元件(31),是依靠相匹配、因非临界状态选择这种特殊定向、最大非线性、增加角接受等等,至少达到局部最大的SHG。例如,从钕钇铝石榴石激光器(32)的波长1.06μ的偏振光沿着光路入射到光学元件上,透镜(33)把该束光聚焦在该光学元件上,从光学元件(31)射出的光用一类似的透镜(34)准直,并通过适合滤掉初始波长(即1.06u)光的滤波器(35),而通过入射光的1/2波长(即0.53μ)光。
本发明的光学元件也可在光电调制器中使用,其中,一个电场加到该光学元件上,电场是沿着改善该元件的光学透射特性的方向。
下面描述本发明的具体实施例,根据Kurtz等人的粉末法〔J.Appl.Phy.,Vol.39,3798(1968)〕应用钕钇铝石榴石激光器(波长1.064μm)和尿素标准测量SHG。用作标准的多晶体尿素粉末具有90μm-125μm的平均大小颗粒。用这个样品产生二次谐波辐射的强度相对于由尿素产生强度被测量。
化合物1-5是根据采用文献的方法制备的,使4-氟代苯硫醇的钠盐与全氟癸基碘反应(见V.N.Boiko,G.M.Shchupak和L.M.Yagupolskii,J.Org.Chem.USSR(英译本)1977,13,972;V.I.Popov,V.N.Boiko和L.M.Yagupolskii,J.FluorineChem.1982,21,365;A.E.Feiring,J.Fluorine Chem.1984,24,191;V.I.Popov,V.N.Boiko,N.V.Kondratenko,V.P.Sampur和L.M.Yagupolskii,J.Org.Chem.USSR(英译本)1977,13,1985;V.N.Boiko,T.A.Dashevskaya,G.M.Shchupak和L.M.Yagupolskii,J.Org.Chem.USSR(英译本)1979,15,347)以产生一中间苯基全氟烃基硫化物(未示出),用三氧化铬氧化它成为砜(见N.V.Kondratenko,V.I.Popov,A.A.Kolomeitsev,E.P.Saenko,V.V.Prenhdo,A.E.Lutskii和L.M.Yagupolskii,J.Org.Chem.USSR(英译本)1980,16,1049)。用化合物1与亲核试剂HY反应制备经下面用2-5说明的产物(见V.I.Popov,A.A.Kolomeitsev和T.I.Cherepenko,Fiziol.Akt。Verhchestra 1980,12,36(化学文摘,95425462),在这些例子中的具体步骤给在下面 2,Y=NEt23,Y=OPh-Ph-OCH34,Y=O(CH2)5H,5,Y=OCH2C*H(CH3)CH2CH3利用在(X.Creary,J.Org.Chem.52(1981)5026)所述的工艺规程制备表I的化合物6,7和8。作交叉偶合化学(化合物3和6)的一个参考文献是(B.A.Patel,C.B.Ziegler,N.A.Cortese,J.E.Plevyak,T.C.Zebovitz,M.Terpko和R.F.Heck,J.Org.Chem.,Vol.42,No.24,1977,3903.)。用烃基硼酸类制备联苯(如在化合物2和5中)的参考文献是1)N.Migaura,T.Yanagi以及A.Suzuki,Synthetic Communications,11(7)(1981)513;和2)W.J.Thompson和J.Gaudino,J.Org.Chem.,49(1984)5240。
用下面文献的方法制备乙烯基砜类(R·Sodoyer,E.Abad,E.Rouvier,以及A.Cambon,Journal ofFluorine Chemistry , 22(1983)401-419CH3SO2(CF2)2C(OMe)(OCH2CF3)(CF3)用作原料,用(C.G.Krespan和B.E.Smart,J.Org.Chem.(1986),51.320)文献描述工艺规程可以生产所述的原料,芳基-CHCH-SO2Rf的乙烯基砜类被制造,其中Rf是(CF2)2C(OMe)(OCH2CH3)(CF3)。
3-甲基-P-茴香醛与CH3SO2(CF2)2C(OMe)(OCH2CH3)(CF3)的缩合。
把在5ml乙醇(EtOH)中一催化量NaOEt(在5ml乙醇中溶解钠球来制备)加到在0℃的10ml乙醇中有0.5克(1.28毫摩尔)的CH3SO2(CF2)2C(OMe)(OCH2CH3)(CF3)和0.202克(1.35毫摩尔)的3-甲基-P-茴香醛溶液中,这个混合物暖到室温并搅拌过夜。用回转蒸发(rotary evaporation)除去溶剂,而剩余物在硅胶上用二氯甲烷为淋洗剂进行层析,这样得到0.471g(0.90毫摩尔,70%)的淡黄色固体。
元素分析对C17H16O5F10S计算C39.09;H3.09;测量C38.81;H3.33。1H核磁共振(CD2Cl2)7.73(d,J=15.3Hz,1H),7.45(m,3H),6.91(d,J=8Hz,1H),6.66(d,J=15.3Hz,1H),4.18(q,J=8Hz,2H),3.89(s,3H),3.67(s,3H)。SHG0.006×尿素。EFISH数据λmax=316nm,μ=5.5×10-18静电单位;β=14×1030静电单位。
4-N,-N-二甲基氨基苯甲醛与CH3SO2(CF2)2C(OMe)(OCH2CF3)(CF3)缩合。
用上述同样的方法,但用1.00克(2.56毫摩尔的CH3SO2(CF2)2C(OMe)(OCH2CF3)(CF3)和0.282克(2.56毫摩尔)的4-N,N-二甲基氨基苯甲醛。在硅胶上用三氯甲烷洗提层析后得到0.970克(1.86毫摩尔,73%)的所需要的黄色固体。对C17H17NO4F10S进行元素分析计算C39.16;H3.29;测量C39.05;H3.09。1H核磁共振(CD2Cl2)7.66(d,J=15.1Hz,1H),7.47(d,J=8.9Hz,2H),8.96(d,J=6.89Hz,2H),6.45(d,J=15.1Hz,1H),4.18(q,J=8Hz,2H),3.67(s,3H),3.07(s,3H)。SHG0.02×尿素。EFIS H数据λmax376nm,μ=7.4×10-18静电单位;β=34×10-30静电单位。
用文献(N.V.Kondratenko,V.I.Popov,G.N.Timofeeva,N.J.Ignat′ev,以及L.M.Yagupol′skii,Zhurnal Organischeskoi Khimii,20,2367-2371,1984)的方法通过一个氟代亚砜与氟代磺酰胺在氟代磺酰酐中反应来制备氟代磺酰硫酰亚胺。尤其是结构式7的化合物,其中D是H,对-Cl,对-F,间-F,对-NO2和对-NH2;而X和Y是F,通过在三氟甲基磺酰酐中相应的亚砜与CF3SO2NH2反应来制备。根据本发明,结构式7的具体化是通过从已知对-氟衍生物亲核取代来制备的。用对-溴衍生物和4-甲氧基苯硼酸从钯催化交叉偶联化学制备联苯基衍生物,是使用下述文献的方法(N.Migaura,T.Yanagi,以及A.Suzuki,Synthetic Communications,11,513-519,1981,以及W.J.Thompson和J.Gaudino,J.Org.Chem.,49,5237-5243,1984)。
p-F-C6H4S(C3F7)=NSO2CF3制备方法如下把1.00克(3.20毫摩尔)的(4-氟苯)全氟丙基亚砜,0.477克(3.20毫摩尔)的三氟甲基磺酰胺,以及0.904克(3.20毫摩尔)的三氟甲基磺酰酐放到10ml的二氯甲烷中。该混合物搅拌过夜,然后被加到冰中。用二氯甲烷萃取该混合物,在硫酸镁上干燥并除去溶剂。用己烷洗所得固体,以除去原料,得到0.348克(0.78毫摩尔,24%)的所要的产品。溶点92-96℃。对C10H4NO2F11S2元素分析计算C27.10,H0.91;测量C27.14,H0.84。1H核磁共振(CD2Cl2)8.1(m,2H),7.5(m,2H)。19F核磁共振(CD2Cl2)-78.4(s,3F),-80.6(t,J=9Hz,3F),-98.5(m,1F),-104.4(d of q,J=221,9Hz,1F),-110.2(d of q,J=221,8Hz,1F),-122.5(s,2F)。
用如上所述的同样的工艺规程制备p-F-C6H4S(C10F21)=NSO2CF3,但用662毫克(1.0毫摩尔)的(4-氟苯)全氟癸基亚砜,564毫克(2.0毫摩尔)的所述酐和298毫克(2.0毫摩尔)的三氟甲基磺酰胺。得到178毫克(0. 22毫摩尔,22%)的所要产品。1H核磁共振(CD2Cl2)8.0(m,2H),7.5(m,2H)。19F核磁共振(CD2Cl2)-78.4(s,3F),-81.0(t,J=10Hz,3F),-98.4(m,1F),-103.0(d of m,J=220Hz,1F),-109.0(d of m,J=220Hz,1F),-118.0(s,2F),-121.8(s,10F),-122.5(s,2F),-126.3(s,2F)。
用上述同样的工艺规程制备p-Br-C6H4S(C3F7)=NSO2CF3,但用1.0克(2.68毫摩尔)的(4-溴苯)全氟丙基亚砜,0.756克(2.68毫摩尔)的所述酐以及0.400克(2.68毫摩尔)的三氟甲基磺酰胺。获得393毫克(0.78毫摩尔,29%)的所要的产品,该产品是米色的固体。对C10H14NO2F10S2Br进行元素分析计算C23.82;H0.80;测量C23.82,H0.70。19F核磁共振(CD2Cl2)-78.4(s,3F),-80.6(t,J=9Hz,3F),-104.0(d of q J=220,9Hz,1F),-109.9(d of m,J=220Hz,1F),-122.4(s,2F)。
所述亚砜从相应的硫化物和间-氯过氧苯甲酸(MCPBA)制备的。制造(4-溴苯)全氟丙基亚砜的具有代表性的工艺规程如下MCPBA(百分之五十三的4.330克,13.8毫摩尔溶解在50毫升的二氯甲烷中,并在-78℃加到含4.93克(13.8毫摩尔)的(4-溴苯)-全氟丙基硫化物的75毫升二氯甲烷中,这个混合物在室温下搅拌过夜,加1摩尔的氢氧化钠50毫升到该无色溶液中,并三次用50毫升二氯甲烷萃取该混合物,在硫酸镁上干燥,除去溶剂,所得剩余物在硅胶上用25%三氯甲烷/正己烷层析,得到637毫克的砜和3.073克(8.24毫摩尔,60%)的白色固体亚砜,溶点59.5-63℃。对C9H4OF7SBr进行元素分析计算C28.97;H1.08;测量C29.05;H1.28。19F核磁共振(CD2Cl2)-81.0(t,J=9Hz,3F),-112.4(d of m,J=245Hz,1F),-124.0(d of m,J=245Hz,1F),-124.8(d,J=14Hz,2F)。
例1(4-氟苯)全氟癸基砜加58.2克(0.09摩尔)的固体全氟癸基碘到一在500毫升的二甲基甲酰胺中含13.5克(0.09摩尔)的4-氟苯硫醇钠(从甲醇中硫羟(thiol)和甲醇钠制备)的溶液中,该溶液用1小时加热到30℃,再用1小时加热到40℃,在室温搅拌过夜后,用2小时加热到45℃,并倾到冰水中,加入醚,然后用氯化钠,并分离出醚层。该水溶液2次用300毫升的醚萃取,2次用150毫升氯化钠饱和水溶液洗涤合并的醚萃取物,并在回转蒸发器上浓缩,在73-77℃和0.05mm压力在Kugelrohr装置中蒸馏残留物,产生54.5克(94%)的产品,即4-氟苯全氟癸基硫化物白色固体。1H核磁共振(CD2Cl2),δ7.15(m,2H);7.65(m,2H)。19F核磁共振(CD2Cl2),δ-81.2(3F);-87.5(1F);-108.9(2F);-119.4(2F);-121.4(2F);-121.9(8F);-122.9(2F);-126.4(2F)。
在同样的方式中制备熔点为39℃的另一个样品的差动扫描式热量计(DSC)分析。
对C16H4F22S分析计算C,29.74;H,0.62;F,64.68;S,4.96。测量C,29.61;H,0.79;F,64.49;S,5.51。
把上述制备的(4-氟苯)全氟癸基硫化物(51.5克,0.08摩尔)溶解在500毫升的冰醋酸中,加三氧化铬(26克,0.26摩尔),该溶液回流加热4小时。冷却到室温后,把该溶液加入冰水中,并10次用500毫升的醚萃取。然后用饱和氯化钠水溶液和碳酸氢钠饱和水溶液洗涤合并的醚萃取物,在硫酸镁上干燥,并蒸浓到干燥。剩余物在Kugelrohr装置中在73℃和0.05mm压强下蒸馏,产生52克白色固体产品,DSC熔点91.5℃。
1H核磁共振(CD2Cl2)δ7.39(m,2H);8.09(m,2H)。19F核磁共振(CD2Cl2)δ-81.2(3F);-98.2(1F);-111.5(2F);-111.9(2F);-121.8(10F);-122.9(2F);-126.4(2F)。
对C16H4F22SO2分析计算C,28.33;H,0.59;F,61.63;S,4.73。测量C,28.65;H,0.49;F,61.10;S,4.73。
这个化合物的光学性质在表I中被表示为化合物编号4。
例2(4-二乙氨基苯)全氟癸基砜13.6克(0.02摩尔)的(4-氟苯)全氟癸基砜(根据例1的工艺规程制备)和400毫升二噁烷的混合物被加热,以产生一均匀溶液,并加入过量的二乙基胺(15克)。该溶液用4小时加热到80℃另外的10克二乙基胺和100毫升二噁烷被加入,该溶液在58℃搅拌过夜。GIpc分析表明仍然没有完成反应,这样,该容液被加热回流8小时,然后该溶液蒸发到干燥,并溶解在醚和水的混合物中,这个水溶液用醚萃取,干燥合并的醚萃取物并浓缩至干燥。剩余物用正己烷再结晶,产生11.4克(80%)的产品,该产品熔点124.5-125.5℃。
1H核磁共振(CD2Cl2)δ1.22(t,6H); 3.45(q,4H);6.75(d,2H);7.75(d,2H)。
19F核磁共振(CD2Cl2)δ-81.14(3F);-112.7(2F);-120.1(2F);-121.8(10F);-122.9(2F);-126.3(2F)。
对C20H14F21NO2S分析计算C,32.54;H,1.93;N,1.92;F,54.55;S,4.38。测量C,32.70;H,1.89,N,1.87;F,54.18;S,4.75。
在表I中编号3的化合物表明这个化合物的光学性质。
例3(4′-甲氧基-4-联苯氧基苯基)全氟癸基砜3.00克(15毫摩尔)的4-甲氧基-4′-羧基联苯,2.81克(20.3毫摩尔)的无水碳酸钾,35毫升的DMAC和35毫升的甲苯的混合物在氩存在的条件共沸蒸馏,一直到釜的温度达到135℃。按照例1的方法制备的(4-氟苯)全氟癸基砜(10.17克,15毫摩尔)被加入,这个混合物在140℃搅拌2.5小时。这个冷却了的溶液倒入冰水中,并收集固体,将该固体溶解在乙酸乙酯中并浓缩至于燥,然后,与苯混合成泥浆并浓缩。剩余物用热的乙酸乙酯再结晶,二次产生10.4克(81%)的产品,熔点176-176.5℃1H核磁共振(CD2Cl2)δ3.82(s,3H);7.0(d,2H);7.19(d of d,4H); 7.55(d,2H);7.65(d,2H);7.95(d,2H)。
19F核磁共振(CD2Cl2)d-81.0(3F);-111.8(2F);-119.9(2F);-121.7(10F);-122.8(2F);-126.2(2F)
对C29H15F21O4S分析计算C,40.57;H,1.76;F,46.48;S,3.73。测量C,40.67;H,1.81;F,46.59;S,4.01。
例4(4-戊羟苯基)全氟癸基砜在氮气条件下把金属钠(0.25克)加到50毫升1-戊醇中并让它溶解。按照例1的方法制备的(4-氟苯)全氟癸基砜分二次(4.0克和3.4克,合计0.011摩尔)(间隔1小时)加入到在70℃加热的上述溶液中,在第二次加入后,该溶液加热6小时,冷却到室温后,所述溶液在一回转蒸发器上浓缩,并在125℃和0.1mm加热,以除去任何不反应的1。剩余物溶解到醚中,过滤,浓缩到干燥并用正己烷再结晶,产生6.25克(77%)的白色针状体,熔点96-96.5℃。
1H核磁共振(CD2Cl2)δ0.94(t,3H);1.42(m,4H);1.84(q,2H);4.08(t,2H);7.10(d,2H);7.92(d,2H)。
19F核磁共振(CD2Cl2)δ-81.14(3F);-112.2(2F);-120.1(2F);-121.8(10F);-122.9(2F);-126.3(2F)。
对C21H15F21O3S分析计算C,33.79;H,2.03;F,53.46;S,4.30。测量C,33.63;H,1.93;F,53.86;S,4.67。
例5〔4-(2-甲基丁氧基)苯〕全氟癸基砜把金属钠(0.42克)加到100毫升刚蒸馏的(一)2-甲基-1-丁醇(〔α〕D=-6.1°)并搅拌直到溶解,依照例1的方法制备的(4-氟苯)全氟癸基砜(12.3克,0.018摩尔)加到上述溶液中,而所得到的溶液在68℃搅拌2.5小时,该溶液在回转蒸发器在温度达105℃和0.05mm条件下浓缩,剩余物用正己烷再结晶,产生4.52克(33%)的白色固体熔点96-97℃,〔α〕D(异辛烷)=+2.9°。
1H核磁共振(CD2Cl2)δ0.95(m,3H);1.04(m,3H);1.3-2.0(m,3H);3.90(m,2H);7.11(d,2H);7.95(d,2H)。
19F核磁共振(CD2Cl2)δ-81.2(3F);-112.2(2F);-120.0(2F);-121.8(10F);-122.9(2F);-126.4(2F)。
对C21H15F21O3S分析计算C,33.79;H,2.03;F,53.46;S,4.30。测量C,34.29;H,2.04;F,52.76;S,4.74。
该化合物的光学性质由在表I中化合物编号2给出。
例6(4-氟苯)全氟癸基砜与L-脯氨醇反应把2克(2.95毫摩尔)的(4-氟苯)-全氟癸基砜和0.30克(2.95毫摩尔的L-脯氨醇以及0.42克(3.04毫摩尔)碳酸钾放到大约40毫升的二甲基亚砜中,在50℃的油浴上加热所得的淤浆二天,加水,过滤白色固体并用水洗,这样获得2.195克该产品。SHG0.017×尿素。
1H核磁共振(CDCl2)7.8(d,2H);6.8(d,2H); 4.0(m,1H);3.6(m,3H);3.3(m,1H);2.5(s,1H);2.0(m,4H)。
例74-甲氧基-4′-全氟己基磺酰基芪0.600克(1.11毫摩尔)的(4-溴苯基)-全氟己基砜,0.160克(1.19毫摩尔)的乙烯茴香醚,20毫克的Pd(OAc)2和20毫克P(O-toly)3被放到10毫升的n-三丁胺中,并在氮气中110℃加热过夜。加入饱和的氯化铵溶液,用50毫升的二氯甲烷萃取三次,在硫酸镁上干燥。用回转蒸馏法除去溶剂后,用闪蒸色谱法纯化该剩余物,从而得到0.241克(0.40毫摩尔,36.6%)的产品。元素分析测量C42.04,41.84;H2.13,2.06;对C21H13F13SO3计算C42.58;H2.21。高分辨质谱测量592.0474;计算592.0378。1H核磁共振(CD2Cl2)反式同分异构体7.97(d,J=8.6Hz,2H),7.75(d,J=8.6Hz,2H),7.53(d,J=8.7Hz,2H),7.34(d,J=16.3Hz,1H),7.06(d,J=16.3Hz,1H),6.94(d,J=8.7Hz,2H),3.84(s,3H)。顺式同分异构体8.18(d,J=8.4Hz,2H),7.86(d,J=8.4Hz,2H),7.13(d,J=8.7Hz,2H),6.80(d,J=12.2Hz,1H),6.77(d,J=8.7Hz,2H),6.55(d,J=12.2Hz,1H),3.79(s,3H)。1H核磁共振结果表明反式与顺式同分异构体之比为10∶1。SHG无旋光性。
在表3中化合物编号15是表示该化合物的光学性质。
例84-甲氧基-4′-全氟丙基磺酰基芪除了0.600克(1.54毫摩尔)的(4-溴苯)全氟丙基砜和0.207克(1.54毫摩尔)乙烯基茴香醚在10毫升的N(n-Bu)3中,在氮气条件110℃加热过夜外按照例7的工艺规程。分离产品给出0.337克(0.76毫摩尔,49.4%)的淡黄色固体的产品。元素分析测量C49.09;H2.92;对C18H13F7SO2计算C48.87;H2.96。1H核磁共振结果表明反式和顺式同分异构体的比为4.7的-混合物。1H核磁共振(CD2Cl2)反式同分异构体7.97(d,J=8.5Hz,2H),7.75(d,J=8.5Hz,2H),7.54(d,J=8.8Hz,2H),7.34(d,J=16.3Hz,1H),7.05(d,J=16.3Hz,1H),6.95(d,J=8.8Hz,2H),3.85(s,3H)。顺式同分异构体7.86(d,J=8.5Hz,2H),7.8(用反式同分异构体掩蔽,2H),7.14(d,J=8.7Hz,2H),6.81(d,J=12.1Hz,1H),6.79(d,J=8.77Hz,2H),6.55(d,J=12.1Hz,1H),3.80(s,3H)。SHG0.06×尿素。
例94-甲氧基-4′-全氟丙基磺酰基联苯600毫克(1.54毫摩尔)的(4-溴苯)-全氟丙基砜溶解在10毫升甲苯中,和329mg(0.285毫摩尔的Pd(pph3)4(仅仅40毫克催化剂可应用)。该混合物搅拌10分钟,然后在4毫升甲醇中234毫克(1.54毫摩尔)的4-甲氧基苯溴酸被加入,然后在2毫升水中326毫克(3.08毫摩尔)的碳酸钠溶液加到这个混合物中,接着,该混合物在80℃搅拌过夜。加入盐水并用50毫升二氯甲烷萃取三次,在硫酸镁上干燥,用回转蒸馏法除去溶剂,剩余物被闪蒸层析(硅胶,三氯甲烷),产生542毫克所需的产物(1.30毫摩尔,84.5%)。SHG无旋光性。元素分析对C16H11F7O3S计算C46.16;H2.66;测量C46.06;H2.62。熔点78.5-80.5℃。1H核磁共振(CD2Cl2)8.06(d,J=8.6Hz,2H),7.86(d,J=8.6Hz,2H),7.64(d,J=8.8Hz,2H),7.05(d,J=8.8Hz,2H),3.87(s,3H)。
在表2中编号11的化合物的示出该化合的光学性质。
例104-甲氧基-4′-全氟己基磺酰联苯在10毫升甲苯中加600毫克(1.11毫摩尔)的(4-溴苯)全氟己基砜,以及20毫克(0.17毫摩尔)的Pd(pph3)4,把在2毫升甲醇中170毫克(1.12毫摩尔)的4-甲氧基苯溴酸的溶液,以及在1毫升水中240毫克(2.26毫摩尔)的碳酸钠溶液加到该净无色的溶液中,在氮气中80℃搅拌过夜,依照例9的方法分离,在闪蒸层析(硅胶,50%三氯甲烷/正己烷)后,产生343毫克的这种联苯(0.60毫摩尔,54.6%)。元素分析测量C40.29;H2.03;对C19H11F13O3S计算C40.30;H1.96。熔点101.5-103℃。SHG无旋光性。1H核磁共振(CD2Cl2)8.05(d,J=8.6Hz,2H),7.87(d,J=8.6Hz,2H),7.65(d,J=8.8Hz,2H),7.04(d,J=8.8Hz,2H),3.87(s,3H)。
在表2中编号12的化合物所示的是该化合物光学性质。
例114-N,N-二甲胺-4′-全氟己基磺酰基联苯在10毫升甲苯中加600毫克(1.11毫摩尔)的4-(4-溴苯)全氟己基砜,和20毫克(0.17毫摩尔)的Pd(pph3)4。把在2毫升甲醇中有250毫克(1.52毫摩尔)的4-N,N-二甲胺苯溴酸的溶液,以及在1-2毫升水中240毫克(2.26毫摩尔)的碳酸钠水溶液加到所述净无色的溶液中。在氮气中80℃搅拌该溶液过夜,依照例9的方法分离,在闪蒸层析(硅胶,50%三氯甲烷/正己烷)后,产生237毫克所述联苯(0.41毫摩尔,36.8%)。元素分析测量C41.54;H2.48;对C20H14F13NO2S计算C41.46;H2.44。熔点138-140℃。SHG无旋光性。1H核磁共振(CD2Cl2)7.99(d,J=8.6Hz,2H),7.84(d,J=8.6Hz,2H),7.62(d,J=9.0Hz,2H),6.81(d,J=9.0Hz,2H),3.03(s,3H)。
例124-(4-N,N-二甲胺苯氧基)苯全氟癸基砜向50毫升二甲基亚砜中加202毫克(1.47毫摩尔)的4-N,N-二甲胺苯酚,1.0克(1.47毫摩尔的4-(4-氟苯)全氟癸基砜,以及202毫克(1.90毫摩尔)的碳酸钾。该混合物在50℃加热过夜,然后用水洗并真空干燥,该白色固体溶解在氯仿中,以除去不溶解的物质,再用回转蒸馏除去溶剂,给出967毫克(1.21毫摩尔,82.7%)所要产品。可用氯仿/正己烷再结晶。元素分析测量C36.09;H1.79;对C24H14NO3F21S计算C36.24;H1.77。熔点121-124℃。SHG无旋光性。1H核磁共振(CD2Cl2)7.91(d,J=8.8Hz,2H),7.10(d,J=8.8Hz,2H),6.99(d,J=8.5Hz,2H),6.76(d,J=8.8Hz,2H),2.96(s,6H)。
例134-吡咯烷酮苯基全氟癸基砜向40毫升二甲基亚砜加105毫克(1.47毫摩尔)吡咯烷,1.0克(1.47毫摩尔)4-(4-氟苯)全氟癸基砜,以及210毫克(1.52毫摩尔)的碳酸钾。该混合物在50℃加热过夜,然后用水处理,过滤该固体,用水洗,并真空干燥,产生790毫克(1.08毫摩尔,73.7%)的该产品。元素分析测量C32.78 ; H1.63;对C20H12NO2F21S计算C32.94;H1.66。熔点151-153℃。SHG无旋光性。1H核磁共振(CD2Cl2)在7.75和6.63ppm双重谱线,而在3.4和2.1ppm多重谱线。
例144-(2,6-二甲基苯氧基)苯基全氟癸基砜向30ml的二甲基亚砜中加入180毫克(1.47毫摩尔)的2,6-二甲基苯酚,1.0克(1.47毫摩尔)的4-(4-氟苯基)全氟癸基砜,以及210毫克(1.52毫摩尔)的碳酸钾,加热该混合物在50℃过夜,然后以水洗,真空干燥,所得白色固体溶解在氯仿中,以除去不溶解的物质,用回转蒸发除去溶剂,产生1.162克(1.47毫摩尔,100%)的所要产物。用正己烷再结晶,元素分析测量C37.20,H1.55;对C24H13F21O3S计算C36.94,H1.68。熔点134-136.5℃,SHG无旋光性,1H核磁共振(CD2Cl2)7.95(d,2H),7.18(s,3H),6.99(d,2H),2.10(s,6H)。
例154-(4-苯硫氧基)苯基全氟癸基砜向30ml二甲基亚砜中加入200毫克(1.51毫摩尔)的苯琉氧化钠,以及1.0克(1.47毫摩尔)的4-(4-氟苯)全氟癸基砜,在50℃加热该混合物过夜,然后用水洗并真空干燥,所得白色固体溶解在氯仿中,以除去不溶解的物质,用回转蒸发除去溶剂,产生953毫克(1.24毫摩尔,84.4%)的所要产物,用正己烷再结晶。元素分析测量C34.11;H1.25,对C22H9F21O2S2计算C34.39;H1.18,熔点122-123.5℃,SHG无旋光性,1H核磁共振(CD2Cl2)7.8(d,2H),7.6(m,2H),7.5(m,3H),7.3(d,2H)。
例164-(4-甲氧基苯氧基)苯基全氟癸基砜向30毫升的二甲基亚矾中加入182毫克(1.47毫摩尔)的4-甲氧苯酚,1.0克(1.47毫摩尔)的4-(4-氟苯)全氟癸基砜和210毫克(1.52毫摩尔)的碳酸钾,在50℃加热该混合物过夜,然后用水洗并真空干燥,所得的白色固体溶解在氯仿中,以除去不溶的物质。然后用回转蒸发除去溶剂得到1.056克(1.35毫摩尔,91.8%)的所要产品,用热正己烷再结晶。元素分析测量C35.52,H1.13,对C23H11F21O4S计算C35.52,H1.42,熔点137-139℃。SHG无旋光性,1H核磁共振(CD2Cl2)7.9(d,2H),7.15(d,2H),7.1(d,2H),6.99(d,2H),3.8(s,3H)。
在表4中化合物编号16所示的即该化合物的光学性质。
例174-(4-甲氧基苯硫氧基)苯基全氟癸基砜向30毫升的二甲基亚砜中加入152毫克(1.47毫摩尔)的4-甲氧基苯硫酚,1.0克(1.47毫摩尔)的4-(4氟苯)全氟癸基砜和210毫克(1.52毫摩尔)的碳酸钾,在50℃加热该混合物过夜,然后用水洗并真空干燥,产生1.092毫克(1.37毫摩尔,93%)的所要的近于纯白色固体产物,用热正己烷再结晶。元素分析测量C35.95,35.97;H1.16,1.46;对C23H11F21O3S2计算C34.60,H1.39,熔点122-123.5℃,SHG无旋光性,1H核磁共振(CD2Cl2)7.8(d,2H),7.5(d,2H),7.23(d,2H),7.05(d,2H),3.9(s,3H)。高分辨质谱测量798.0267;计算797.9814。
表4中编号17的化合物示出了该化合物的光学性质例18用4-(4-氟苯基)全氟丙基砜与L-脯氨醇反应向30毫升二甲基亚砜中加308毫克(3.034毫摩尔)的L-脯氨醇,1.0克(3.04毫摩尔)的4-(4-氟苯基)全氟丙基砜和425毫克(3.07毫摩尔)的碳酸钾。在50℃加热该混合物过夜,然后用水洗并真空干燥,产生976毫克(2.38毫摩尔,78.4%)的所要的近于纯白色的固体,用热正己烷再结晶,元素分析测量C41.08;H3.45;对C14H14F7O3NS计算C41.08;H3.44。熔点80-83℃,SHG无旋光性,1H核磁共振(CD2Cl2)7.8(d,2H),6.8(d,2H),4.03(m,1H),3.7(m,1H),3.6(m,1H),3.5(m,1H),3.3(m,1H),2.6(s,1H),2.1(m,4H)。
例19用4-(4-氟苯基)全氟丙基砜与哌嗪反应向30毫升二甲基亚砜中加127毫克(1.47毫摩尔)的哌嗪,1.0克(1.47毫摩尔)的4-(4-氟苯基)全氟丙基砜以及210毫克(1.52毫摩尔)的碳酸钾,在50℃加热该混合物过夜,然后用水洗并真空干燥,产生1.084克(1.46毫摩尔,99%)的所要白色固体产品,用正己烷再结晶,元素分析测量C33.03,33.33;H1.56,1.86;对C20H13F21O2N2S计算C32.27;H1.76,SHG无旋光性。高分辨质谱测量744.062;计算744.0362,1H核磁共振(CD2Cl2)7.8(d,2H),6.9(d,2H),3.4(m,4H),2.9(m,4H),1.6(s,1H)。
例204-(4-乙酰氨基苯琉氧基)苯基全氟癸基砜向30毫升的二甲基亚砜中加246毫克(1.47毫摩尔)的4-乙酰氨基苯硫酚,1.0克(1.47毫摩尔)的4-(4-氟苯基)全氟癸基砜和406毫克(2.94毫摩尔)的碳酸钾。在50℃加热该混合物过夜,然后用水洗并真空干燥,产生1.202克(1.45毫摩尔,99%)的所要的近于纯白色固体产品。元素分析测量C34.99;H1.72。对C14H14F7O3NS计算C34.92;H1.47,熔点178.5-182℃,SHG0.2×尿素。1H核磁共振(THF-D8)9.40(s,1H),7.86(d,J=8.7Hz,2H),7.79(d,J=8.7Hz,2H),7.50(d,J=8.7Hz,2H),7.32(d,J=8.7Hz,2H),2.07(s,3H)。
例214-(4-乙酰氨基苯氧基)苯基全氟癸基砜向30毫升二甲基亚砜中加233毫克(1.47毫摩尔)的4-乙酰氨基苯酚,1.0克(1.47毫摩尔)的4-(4-氟苯基)全氟癸基砜和406毫克(2.94毫摩尔)的碳酸钾。在50℃加热该混合物过夜,然后用水洗并真空干燥,产生1.101克(1.36毫摩尔,92.5%)的所要的白色固体产品。元素分析测量C35.72;H1.67;对C24H12F21O4NS计算C35.62;H1.49,熔点127-128℃,SHG无旋光性,1H核磁共振(THF-d8);9.20(s,1H),8.01(d,J=9.0Hz,2H),7.73(d,J=9.0Hz,2H),7.21(d,J=9.0Hz,2H),7.07(d,J=9.0Hz,2H),2.07(s,3H)。
例224-(4-乙酰氨基苯氧)苯基全氟丙基砜向30毫升二甲基亚砜中加461毫克(3.05毫摩尔)的4-乙酰氨基苯酚,1.0克(3.05毫摩尔)的4-(4-氟苯)全氟丙基砜和843毫克(6.10毫摩尔)的碳酸钾,在50℃加热该混合物过夜,然后用水洗,并真空干燥,产生740毫克(1.62毫摩尔,53.1%)的所需白色固体产品。元素分析测量C44.44;H2.84;对C17H12F7O4NS计算C44.45;H2.63,熔点159.5-162℃,SHG0.14×尿素,1H核磁共振(CD2Cl2)7.94(d,J=9.0Hz,2H),7.61(d,J=8.9Hz,2H),7.28(s,1H),7.14(d,J=9.0Hz,2H),7.09(d,J=8.9Hz,2H),2.15(s,3H)。
例234-(4-乙酰氨基苯硫氧基)苯基全氟癸基砜向30毫升二甲基亚砜中加入570毫克(3.05毫摩尔)的4-乙酰氨基苯硫酚,1.0克(3.05毫摩尔)的4-(4-氟苯基)全氟丙基砜和843毫克(6.10毫摩尔)的碳酸钾,在50℃加热该混合物过夜,然后用水洗并真空干燥,产生1.196克(2.51毫摩尔,82.5%)的所要的近于纯白色的固体产物。元素分析测量C42.70;H2.81;对C17H12F7O3NS2计算C42.95;H2.54;SHG1.1×尿素,1H核磁共振(CD2Cl2)7.78(d,J=8.6Hz,2H),7.66(d,J=8.6Hz,2H),7.53(d,J=8.6Hz,2H),7.39(s,1H),7.26(d,J=8.6Hz,2H),2.18(s,3H)。
例244-(4-氨基苯氧基)苯基全氟丙基砜向666毫克(1.45毫摩尔)的4-(4-氨基苯氧基)苯基全氟丙基砜,加入10毫升浓盐酸和10毫升的乙醇,该混合物回流2小时,并加20毫升水到已冷却了的该溶液中,用1M氢氧化钠中和该混合物,过滤形成的白色沉淀物,用水洗并真空干燥,以产生59 毫克(1.42毫摩尔,98.0%)的所要的近于纯白色固体产物。SHG无旋光性。1H核磁共振(CD2Cl2)7.91(d,J=9.0Hz,2H),7.10(d,J=9.0Hz,2H),6.90(d,J=8.7Hz,2H),6.73(d,J=8.7Hz,2H),3.776(s,2H)。
例254-(4-氨基苯硫氧基)苯基全氟丙基砜向1.009克(2.12毫摩尔)的4-(4-氨基苯硫氧基)苯基全氟丙基砜加入10毫升的浓盐酸和乙醇,回流该混合物2小时,加20毫升水到冷却了的该溶液中,用1M氢氧化钠中和该混合物,过滤形成的白色沉淀物,用水洗并真空干燥,产生904毫克(2.09毫摩尔,98.4%)的所要白色固体产物。SHG无旋光性。元素分析测量C41.27;H2.52;对C15H10NO2F7S2计算C41.57;H2.33。1H核磁共振(CD2Cl2)7.78(d,2H),7.38(d,2H),7.2(d,2H),6.78(d,2H),4.05(s,2H)。
例26Pt(PEt3)2(Br)(对-全氟丙基磺酰基苯基)向在50毫升甲苯中有500毫克(0.749毫摩尔)的Pt(PEt3)4的溶液中加入30毫升甲苯中有4-溴全氟丙基苯基砜的溶液,该混合物搅拌过夜,用回转蒸发从无色溶液中除去溶剂,并用正己烷洗该固体,这样获得313毫克(0.422毫摩尔,56.4%)的所要产品。SHG0.45×尿素,1H核磁共振(CD2Cl2)7.76(d,J=8.5,Jpt=65.4Hz,2H),7.48(d带有与铂偶联的未分解的物质,J=8.4Hz,2H),1.7(m,12H),1.2(m,18H),31P核磁共振(CD2Cl2)13.025(s,Jpt=2649Hz),X-射线结构测定是R3。
例27用P-F-C6H4S(C10F21)=NSO2CF3与吡咯烷反应在大约11毫升的二甲基亚砜中加入0.032克(0.45毫摩尔)的吡咯烷,0.070克(0.51毫摩尔)的碳酸钾,以及0.357克(0.45毫摩尔)的P-F-C6H4S(C3F7)=NSO2CF3。该混合物在50℃加热过夜,将该混合物加到水中,过滤该产物并用水洗。从而获得0.336克(0.40毫摩尔,88%)的所要产品。对C21H12N2O2F24S2元素分析计算C=29.87;H=1.43;测量C29.80;H1.57;1H核磁共振(CD2Cl2)7.69(d,J=9.1Hz,2H),6.71(d,J=9.1Hz,2H),3.40(m,4H),2.05(m,4H)。19F核磁共振(CD2Cl2)-78.7(s,3F),-80.9(t,J=10Hz,3F),-106(d of t,J=10,223Hz,1F),-111(d of t,J=10,223Hz,2F),-118.5(s,2F),-121.8(s,10F),-122.7(s,2F),-126.3(s,2F);SHG无旋光性。λmax(P-二噁烷)=336nm,μ=9,3=13×10-30静电单位。
例284-甲氧基-4′-S-全氟丙基-N-三氟甲基磺酰硫酰亚胺联苯向10毫升甲苯中加入0.500克(0.992毫摩尔)的S-全氟丙基-S-4-溴苯-N-三氟甲基磺酰硫酰亚胺。向该混合物中加入5毫升甲苯中含有60毫克(0.052毫摩尔)的Pd(pph3)4的溶液,搅拌该混合物10分钟,然后加入在4毫升MeOH中0.151克(0.992毫摩尔)的4-甲氧基苯溴酸的溶液,再加入在2毫升水中有0.21克(1.98毫摩尔)的碳酸钠的水溶液,这个淤浆在100℃加热过夜,向冷却了的这个混合物中加50毫升饱和氯化钠水溶液,并用75毫升二氯甲烷萃取三次,有机层在硫酸镁上干燥,用回转蒸发除去溶剂,而剩余物用50%三氯甲烷/正己烷层析,从而得到0.240克(0.45毫摩尔,45%)的所要的近于纯白色的固体产品。对C17H11NO3F10S2进行元素分析计算C38.43;H2.09;测量C39.23,39.03;H1.86,1.77。1H核磁共振(CD2Cl2)7.99(d,J=8.6Hz,2H),7.91(d,J=8.6Hz,2H),7.63(d,J=8.7Hz,2H),7.04(d,J=8.7Hz,2H),3.87(s,3H)。19F核磁共振(CD2Cl2)-78.4(s,3F),-80.6(t,J=9Hz,3F),-104.5(d of q,J=221,9Hz,1F),-110.6(d of m,J=221Hz,1F),-122.5(s,3F)。SHG无旋光性。λmax(对-二噁烷)=320nm,μ=7.9,和β=9.4×10-30静电单位。
例29用P-F-C6H4S(C3F7)=NSO2CF3与(S)-(+)-2-吡咯烷甲醇反应按例27的方法,除了用300毫克(0.677毫摩尔)的P-F-C6H4S(C3F7)=NSO2CF3,69毫克(0.677毫摩尔)的(S)-(+)-2-吡咯烷甲醇和100mg(0.724毫摩尔)的碳酸钾外。在完成工艺规程后,获得0.174克(0.33毫摩尔,49%)的所要的近于纯白色固体产物。对C15H14N2O2F10S2元素分析计算C34.36,H2.69测量C34.54;H2.62。19F核磁共振(CD2Cl2)-78.7(s,3F),-80.7(t,J=9Hz,3F),-106.5(d of m,J=223Hz,1F),-112.2(d of m,J=223Hz,1F),-123.0(d,J=9Hz,2F)。SHG无旋光性。
例30用P-F-C6H4S(C3F7)=NSO2CF3与二乙胺反应依照例27的方法,除了用310毫克(0.700毫摩尔)的P-F-C6H4S(C3F7)=NSO2CF3,51毫克(0.700毫摩尔)的二乙胺,和在DMSO中100毫克(0.72毫摩尔)的碳酸钾。将该混合物加到50毫升水中,形成粘合块,加入一些饱和氯化铵,并用醚萃取该混合物,有机层在硫酸钠上干燥,然后除去溶剂,剩余物用氯仿淋洗通过硅胶,产生102毫克(0.20毫摩尔29%)的所需褐色固体产物,对C14H14N2O2F10S2元素分析计算C33.88;H2.84;测量C33.67,33.73;H3.34,3.05。1H核磁共振(CH2Cl2)7.7(d,2H),6.8(d,2H),3.4(q,4H),1.1(t,6H),19F核磁共振(CD2Cl2)-78.7(s,3F),-80.8(t,J=9Hz,3F),-106.6(d of d of q,J=223,9,3Hz),-112.4(d of m,J=223Hz,1F),-123.0(d,J=10Hz,2F)。SHG无旋光性。λmax(CD2Cl2)=338nm。
例31用P-F-C6H4S(C3F7)=NSO2CF3与吡咯烷反应依照例27的方法,除了用400毫克(0.902毫摩尔)的P-F-C6H4S(C3F7)=NSO2CF3,64毫克(0.902毫摩尔)的吡咯烷,以及125毫克(0.910毫摩尔)的碳酸钾以外,这个完成是如例1一样,产生385毫克(0.779毫摩尔,86%)的所要的微黄色固体产品。对C14H12N2O2F10S2元素分析计算C34.01,H2.45;测量C33.88;H2.69。1H核磁共振(CD2Cl2)7.68(d,J=9Hz,2H),6.70(d,J=9.2Hz,2H),3.4(m,4H),2.1(m,4H)。19F核磁共振(CD2Cl2)-78.7(s,3F),-80.8(t,J=8.9Hz,3F),-106.8(d of do f q,J=224,9,2Hz,1F),-112.2(d of m,J=224,1F),-123.0(d,J=10Hz,2F),λmax(P-二噁烷)=336nm,μ=10.2,β=13×10-30静电单位。
例32光学性质的测量制备在表1-4中所示的化合物的溶液,这些溶液的浓度是在这些所示溶剂中从1×10-3-7×10-3摩尔,对各个化合物制备4个不同等级的浓度,典型是1×10-3、2×10-3和4×10-3摩尔。在全部4个溶液和纯溶剂上完成物理测量,用AntonPaar DMA45计算数字密度表测量密度。电容用KahlScientific溶液电容池和Hewlett Packard 4275Amultifrequency LCR表测量,用PrecisionInstruments refractometer在589.3nm和663nm测量折射指数,在表1-4中所示的这些溶液的非线性光学性质是用早先或在图1中叙述的电场诱导二次谐波产生和三次谐波产生测量方法测定的。EFISH测定,一个大约20KV/cm的脉冲电场被应用,从这些测定的溶液性质,用onsager local场,在无限稀释极限计算各种分子的特性。
在表1-4中所示的结果,在本发明实施中有用的化合物用化合物编号表示,而比较的化合物用在化合物编号前加“C”指出,在所有表中μ,α,β和γ是用静电单位(esu),而Me=CH3,Ph=C6H5;Bu=C4H9,Et=C2H5,Hex=C6H10和P-Diox=P-二噁烷。
表1 化合物 A D 溶剂 λmaxμαβ γ序号 (nm) 10-1810-2310-3010-36C-1SO2Me OHp-Dicx290 3.41.71.33.0C-2SO2C16H33NH2CHCl3262 5.56.22.110C-3SO2FNH2p-Diox274 6.01.73.02.5C-4SO2C2ClF3H N2H3p-Diox312 5.82.65.6-5C-5SO2C6F13Mep-Diox232 5.43.12 4.71 SO2C10F21OPh CHCl3253 7.24.69.1-132 SO2C10F21OMeBu CHCl3290 7.14.76.9-533 SO2C10F21NEt2CHCl3314 7.64.613 -154 SO2C10F21F CHCl3225 4.33.81.5 55 SO2C10F21BrCHCl3245 3.82.73.6 4
表1(续) 化合物 AD溶剂λmaxμ α β γ序号 (nm) 10-1810-2310-3010-36C-6 COH Me Neat 3.01.61.76.5C-7 COH OPh Neat2692.82.51.912C-8 COH OMe Neat2693.51.72.27.7C-9 COH SMe Neat3103.11.92.613C-10COH NMe2p-Diox 3265.12.06.3186 COCF3OPh p-Diox 2923.52.93.6127 COCF3OMe p-Diox 2924.02.03.67.48 COCF3NMe2p-Diox 3565.92.410 169 SO2C3F7BrPt(PEt3)2CHCL3---- 2.86.97.62910 SO2C3F7BrPd(PPh3)2CHCL3---- 5.011 1.353
表2 化合物A D 溶剂 λmaxμ α β γ序号 (nm) 10-1810-2310-3010-36C-11 SO2C6H12OHNMe2CHCl33306.04.611 38C-12 SO2FNH2p-Diox3306.52.912 2411 SO2C3F7OMe p-Diox3056.03.99.1-7812 SO2C6F13OMe p-Diox3055.94.611 6813 SO2C6F13NMe2p-Diox3628.05.125 70C-13 COCH3OMe p-Diox 3043.33.13.82314 COCF3OMe p-Diox4.23.27.635
表3 化合物A D溶剂λmaxμ α β γ序号 (nm)10-1810-2310-3010-36C-14 SO2C5H11HOHexO CHCl33366.56.010 6815 SO2C6F13OMe p-Diox 3477.84.814 93
表4 化合物 Y D溶剂λmaxμ α β γ序号 (nm)10-1810-2310-3010-3616 OOMe CHCl3252 5.2 5.1 6.3 1517 SOMe CHCl3295 5.3 5.9 8.9
在不违背本发明的精神和范围的情况下,可以得到本发明许多不同具体化方案,本发明不限于所述的实施例,而只能以权利要求书的限定为准。
权利要求
1.电磁辐射入射束频率加倍方法,其中包括将电磁辐射的至少一束入射束射到含有透射介质的光学元件上的组件,该介质由在非中心对称构型中排列的极性直线校准分子偶极子构成,该偶极子具有通过共轭键系连接到电子接受体部分的电子给予体,其特征是所述电子接受体部分选自SO2CFXY,CH=CHSO2CFXY,COCFXY和S(CFXY)=NSO2CFXY,其中X和Y独立地选自H,F,Cl,Br,I,1-20碳原子的烃基和氟代烃基,芳基,氟代芳基,SR7和OR7,其中R7选自1-20碳原子的烃基和氟代烃基以及芳基,而从所述光学元件上出射的电磁辐射是加倍的所述辐射入射束的频率。
2.按照权利要求1的方法,其特征是X选自F和1-20碳原子的全氟烃基,而Y是全氟烃基。
3.按照权利要求2的方法,其特征是X是F,而Y是2-10碳原子的全氟烃基。
4.按照权利要求1的方法,其特征是所述的分子偶极子按晶体的形态存在。
5.按照权利要求1的方法,其特征是所述的透射介质由“Langmir-Blodgett”薄膜构成。
6.按照权利要求1的方法,其特征是所述的分子偶极子在周围的聚合物粘结剂中保持极性直线校准。
7.按照权利要求6的方法,其特征是所述的聚合物粘结剂是高度透明的。
8.按照权利要求7的方法,其特征是所述的聚合物粘结剂选自聚甲基丙烯酸酯,聚甲基丙烯酸甲酯,聚乙烯醇,甲基丙烯酸甲酯和甲基丙烯酸的共聚物,苯乙烯和马来酸酐以及马来酸酐的半酯-酸的共聚物。
9.按照权利要求1的方法,其特征是所述的分子偶极子处于溶液中并且在一电场作用下按极性直线校准放置。
全文摘要
电磁辐射入射束频率加倍方法,包括将电磁辐射的至少一束入射束射到含有透射介质的光学元件上的组件,介质由非中心对称构型中排列的极性直线校准分子偶极子构成。偶极子有通过共轭键系连接到选自SO
文档编号C07C317/28GK1141440SQ9511560
公开日1997年1月29日 申请日期1995年8月31日 优先权日1989年11月29日
发明者郑立德, A·E·菲林, W·谭 申请人:纳幕尔杜邦公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1