采用直接产物急冷法回收热量的含氧有机物转化为烯烃的方法

文档序号:3551470阅读:348来源:国知局
专利名称:采用直接产物急冷法回收热量的含氧有机物转化为烯烃的方法
技术领域
本发明涉及在含氧有机物转化为烯烃过程中采用直接产物急冷法提高热回收效率和改进热量综合利用的方法。
生产轻质烯烃所用的一类重要替代原料是含氧有机物,如醇类,特别是甲醇和乙醇、二甲醚、甲乙醚、甲酸甲酯及碳酸二甲酯。可通过发酵过程或从天然气衍生的合成气、石油液体、包括煤在内的含碳材料、回收塑料、城市废物、农产品或大多数有机材料来生产醇。由于原料来源广泛,醇及醇衍生物和其他含氧有机物有希望成为一类用于生产烯烃的很经济的非石油进料源。
含氧有机物转化为烯烃的反应在较高温度下进行,一般要高于约250℃,优选高于约300℃。由于转化反应为放热反应,流出物的温度一般要高于反应器中的初始温度。已提出许多方法和/或工艺流程来控制反应器内由含氧有机物转化反应产生的热量,避免出现温度激增和过热点现象,从而降低催化剂失活活速度并减少不期望产物如甲烷、乙烷、一氧化碳和含碳沉积物或焦碳的生成量。若有一种能够有效利用从含氧有机物转化反应器排出产物中所含热量,使热回收最优化,并且能降低含氧有机物转化为烯烃过程总动力能耗的方法将会非常有益。这样的方法从环保、经济和工业化角度看都是非常有吸引力的。
发明概述本发明提供一种能够提高热量回收和热量综合利用的含氧有机物转化为烯烃的方法,所述方法包括将具有第一热含量的包括所述含氧有机物在内的进料经过从1到约3级依次具有更高热含量的阶段从第一温度加热到的第二温度;将处于第二温度下的所述的进料与包括分子筛的催化剂在能有效生成带有含碳沉积物的减活催化剂和包括所述烯烃在内的产物的条件下接触,其中所述分子筛包括孔径小于约10埃的微孔,并且产物的温度为高于所述第二温度的第三温度;将所述产物用一种温度为初始温度且用量足以用来形成轻质产物级分和重质产物级分的介质急冷,其中所述的轻质产物级分包括轻质烯烃,重质产物级分的出口温度高于所述第一温度至少约5℃;在所述的一或多级升温阶段中使用所述的重质级分提供热量达到所述的较高热含量。
发明详述本发明提供一种在含氧有机物转化为烯烃过程中提高热量回收和减少能量和动力需求的方法。本方法包括从含氧有机物转化反应器中取出包括任何未反应的含氧有机物进料在内的产物混合物,不对产物进行分馏,直接将产物混合物用适当介质优选水急冷,这类急冷方法在下文称作“直接产物急冷法”。直接产物急冷法从反应物混合物中撤出热量,使沸点较高的组分如水和不希望的含氧有机物进料冷凝下来并形成重质产物级分。重质产物级分与包括气态烃组分如轻质烯烃、甲烷、乙烷、丙烷和丁烷在内的轻质产物级分进行分离。重质产物级分可进一步分成若干级分。重质产物级分或是若干级分的任何一种或全部可经不同技术或方法处理,将急冷介质与其它组分分离。由急冷介质分离过程生成的重质产物级分或是若干级分或料流的任何一种或全部可用于在含氧有机物进料引入含氧有机物转化反应器与含氧有机物转化催化剂接触之前,将含氧有机物进料汽化或以其它方式经1到约3级阶段提高热含量过程提供至少一部分所需的热量。这些不同阶段使含氧有机物进料的热含量依次升高。
大多数含氧有机物转化过程所用催化剂包括沸石型(沸石)和非沸石型的分子筛。本发明对实质上使用任何分子筛催化剂而不考虑其结构类型和孔径的过程都可实现许多理想的改进。也可使用沸石型和非沸石型分子筛混合物。按照本发明,优选使用的分子筛催化剂包括“小”或“中”孔型分子筛催化剂。“小孔”型分子筛催化剂的定义是孔径小于约5.0埃的催化剂。“中孔”型分子筛催化剂的定义是孔径范围从约5.0到约10.0埃的催化剂。“大孔”型分子筛催化剂的定义是孔径大于约10.0埃的催化剂。一般来说,不推荐使用未经另外适当改性和/或处理的大孔径分子筛催化剂作为含氧有机物转化为轻质烯烃反应的催化剂。
适用于本发明的具有不同程度效力的沸石型分子筛催化剂包括但不必限于AEI、AFI、CHA、ERI、LOV、RHO、THO、MFI、FER型以及这些结构类型的替换型实例,参见引为参考的W.M.Meier和D.H.Olson所著的《沸石结构类型图》一书(Butterworth Heineman-第三版,1997)中的描述。优选的沸石催化剂包括但不必限于3A型沸石、4A型沸石、5A型沸石(下文合并称作A型沸石)、ZK-5、ZSM-5、ZSM-34、毛沸石、菱沸石、硅铝钾沸石、硅质岩、硼硅酸盐及其混合物,参见Meier和Olson的书。这些沸石可从许多公司和市场获得,如从Mobil公司、AMOCO公司、UCI公司、Engelhard公司、Aldrich化学公司、Johnson Matthey公司、联合碳化物公司及其它公司获得。
硅铝磷酸盐(“SAPO”分子筛)是一类适用于本发明的非沸石型分子筛。适用的SAPO类分子筛包括但不必限于SAPO-17、SAPO-18、SAPO-34、SAPO-44及其混合物。优选小孔型SAPO分子筛用于生产轻质烯烃。优选的SAPO分子筛是SAPO-34,可按US-A-4,440,871方法(引入作为参考)和Zeolites,17卷212-222页(1996)方法(引入作为参考)合成。SAPO-18分子筛可按J.Chen等人在第十届国际催化协会学报第84卷17-31页(1994)发表的“表面科学和催化研究”的方法合成。
替换型硅铝磷酸盐(替换型SAPO分子筛)形成另一类称作“MeAPSO”的非沸石分子筛,适合在本发明中用作催化剂。在引为参考的US-A-4,567,029和US-A-5,126,308中描述了MeAPSO分子筛。合成后引入替换金属的APSO分子筛也适合用于本发明。适宜的替换金属“Me”包括但不必限于镍、钴、锰、铬、铁、锌、锶、镁、钡和钙。优选的MeAPSO分子筛包括但不必限于NiSAPO-17、NiSAPO-34、CoSAPO-34、Sr改性的SAPO-17(SrSAPO-17)、Sr改性的SAPO-18(SrSAPO-18)、Sr改性的SAPO-34(SrSAPO-34)、SrSAPO-44及其混合物。可在硅铝磷酸盐合成过程中或合成后引入不同的替换金属。
称作MeALPO的替换型铝磷酸盐(ALPO)也可作为非沸石型分子筛催化剂用于本发明。MeAPO分子筛包括但不必限于ZnAPO、ZrAPO、TiAPO及其混合物。这些分子筛可按US-A-4,861,743、US-A-4,567,029和US-A-5,126,308的方法合成。
由于催化剂要在不同类型的含氧有机物转化反应器内和/或不同反应条件下使用,它可包含粘结剂、填料或其它能够提供更好催化性能、抗磨性和其它针对特殊类型反应器所需性能的材料。当用于流化床反应器时,催化剂应在反应条件下可流体化。可进一步将催化剂进行各种处理,以达到所希望的物理、机械和催化性能。这类处理方法包括但不必限于焙烧、磨碎、球磨、研磨、喷雾干燥、在高温-从约400℃到约800℃下用蒸汽进行水热处理、酸处理、碱处理以及数种处理方法并用。
含氧有机物转化为烯烃的方法优选使用包括“含氧有机物”的有机起始物料一进料。本文所用术语“含氧有机物”的定义包括但不必限于脂族醇、醚、羰基化合物(醛、酮、羧酸、碳酸酯等),还包括含杂原子的化合物,如卤化物、硫醇、硫化物、胺、及其混合物。脂族基部分优选应包含从约1到10个范围的碳原子且更优选包含从约1到4个范围的碳原子。相应的含氧有机物包括但不必限于直链或支链低碳脂族醇、它们的不饱和对应物和它们的氮、卤素和硫的类似物。适宜的化合物包括但不必限于甲醇,乙醇,正丙醇,异丙醇,C4-C10醇类,甲乙醚,二甲醚,二乙醚,二异丙基醚,甲硫醇,二甲硫,甲胺,乙硫醇,二乙硫醚,二乙胺,氯乙烷,甲酸甲酯,乙酸甲酯,甲醛,碳酸二甲酯,原甲酸三甲酯,丙酮,正构烷基部分包括从约3到10个范围碳原子的正构烷基胺类、正构烷基卤化物类、正构烷基硫化物类,及其混合物。优选的含氧有机物进料包括但不必限于甲醇、二甲醚、碳酸二甲酯、甲酸甲酯及其混合物。本文所用术语“含氧有机物”仅指用作进料的有机物料。送入反应区的总物料中可包含另外的混合物如稀释剂。
含氧有机物优选应至少部分汽化,并于适宜的反应器内,在能够以合理的转化率同时按所希望的选择性生成所希望烯烃的有效生产条件下与选定的分子筛催化剂接触。
转化过程所采用的温度范围很宽,至少部分取决于压力、选定的催化剂、反应器构造、重时空速和其它反应参数。尽管并不限定某一特定的温度,但若反应过程在从约200℃到约750℃范围,优选从约250℃到约650℃范围且更优选从约300℃到约600℃范围的温度下实施的话将会得到最佳结果。
由于含氧有机物进料在用于转化过程之前一般是在环境温度下储存,因此必须将进料加热到具有较高热含量的较高温度,使之适合与含氧有机物转化催化剂接触。优选进料经过从1到约3级中间阶段来提高其热含量和/或温度,每一阶段具有依次升高的热含量。在含氧有机物转化过程中有许多料流适合用来提供增加热含量所需的热量。这些料流包括由来自急冷塔的重质产物级分得到的料流和来自将急冷介质与其它组分进行分离的分馏塔的料流,这些会在下文有更详细的说明。应指出的一点是即使料流在热交换后的温度降低,它也可能因主要由压力变化和/或相变化如液体汽化的缘故而具有更高的热含量。
轻质烯烃将在宽范围的压力,包括但不必限于低于或高于大气压和自发压力-在从约1kPa到100MPa范围的压力下形成-尽管不必是最佳产量,优选的压力范围从约5kPa到50MPa,最优选的压力范围从约50kPa到500kPa。上述压力不包括可能存在的任何稀释剂的压力,是指与含氧有机物和/或其混合物有关的进料的分压。可采用上述范围以外的压力,且并不排除在本发明范围外。
要想达到或维持长时间稳态或半稳态生产轻质烯烃产品的目的,将主要取决于反应器类型、反应器构造、温度、压力、所选定的催化剂、再循环的废催化剂量(若有的话)、催化剂再生程度、留在再生或部分再生催化剂上的含碳物质量、重时空速(WHSV)、所用急冷介质的量和其它相关过程的设计特征。
本发明中进料的WHSV(定义为每单位重量催化剂每小时可送入的含氧有机物进料总重量)将在宽范围下操作。根据反应器类型、所希望的转化程度、进料组成和其它反应参数,WHSV一般在从约0.01小时-1到1000小时-1范围,优选在从约0.1小时-1到500小时-1范围,且更优选在从约0.5小时-1到200小时-1范围。由于催化剂可能包含起惰性组分、填料或粘结剂作用的其它物质,WHSV仅以含氧有机物和催化剂分子筛部分为基准计算。
可将一或多种稀释剂与含氧有机物一起送入反应器,使得总进料混合物包括从约1%(摩尔)到约99%(摩尔)范围的稀释剂。本方法所采用的稀释剂包括但不必限于氦气、氩气、氮气、一氧化碳、二氧化碳、氢气、水、烷属烃、其它饱和烃(如甲烷、乙烷、丙烷及其混合物)、芳族化合物及其混合物。优选的稀释剂包括但不必限于水和氮气。
含氧有机物的转化率应高至足以避免所需的再循环量达到工业化不能接受程度。优选含氧有机物的转化率为100%,以达到完全避免进料再循环的目的。但是,当含氧有机物,特别是甲醇的转化率约为98%或更低时,常常能观察到不希望副产物的量会降低。因此,在产物料流中,与包括烯烃、水和/或其它副产物在内的含氧有机物转化产物一起的通常还有约从0.05%(摩尔)到50%(摩尔)的未反应含氧有机物。优选尽可能回收大部分未反应的含氧有机物用于循环。在任何情况下,都必须将废水中的含氧有机物含量降低到环保允许范围后,才可将副产物水排放。
因此,当使用分馏塔回收未反应的含氧有机物时,最好在热量回收和热综合利用整体方案,即热量回收和综合利用最优化的方案中考虑含氧有机物不完全转化这一因素。若含氧有机物的转化率足够高和/或未反应的含氧有机物的回收不能保证经济和环保效果,那么本发明提倡直接利用来自重质产物级分或由重质产物级分分成的若干级分中任何一种或全部级分的热量。
催化剂与含氧有机物进料接触后,由于催化剂表面和/或微孔内积聚了含碳沉积物,催化剂会完全或部分失活。带有含碳沉积物的催化剂与其它含氧有机物转化产物分离。优选至少将一部分失活催化剂分离出来,并以间歇、半连续、连续或分批方式从含氧有机物转化反应器内取出。失活催化剂再循环回含氧有机物转化反应器并再次使用前,要对至少一部分取出的失活催化剂进行适当的再生处理,脱除从约0.1%(重)到99.9%(重)范围的至少一部分含碳沉积物,优选应脱除至少约1.0%(重)的含碳沉积物。也可进行完全再生处理-100%(重)脱除原来在全部失活催化剂上存在的含碳沉积物,但是发现完全再生处理往往会导致生成大量不希望的副产物如甲烷和/或氢气。
优选再生处理在含氧气或其它氧化剂的气体存在下进行。空气和用氮气、蒸汽和/或CO2稀释的空气为优选的再生气体。催化剂再生温度应在从约250℃到约750℃,优选从约300℃到约700℃范围。
几乎任何类型的反应器都能可作为含氧有机物转化为烯烃过程的一些装置。反应器类型包括但不必限于流化床反应器、立管式反应器、移动床反应器、固定床反应器、连续搅拌的釜式反应器、混合式反应器及数种并用。在本发明中,几乎采用任何类型的反应器都能达到增加热量回收和改进热量综合利用的效果。本发明优选的反应器系统是包括连续或半连续催化剂再生过程的循环式流化床反应器,类似于现代流化床催化裂化装置。可使用固定床反应器,但不推荐使用。
由于含氧有机物转化反应剧烈放热,含氧有机物转化反应产物流出物的温度一般要比进料在与催化剂接触之前时的温度要高。在本发明的一个具体实施方案中,来自储罐的处于第一温度且具有第一热含量的进料在与含氧有机物转化催化剂接触之前要在热交换器内经若干阶段被加热到所希望的第二温度。优选包括从1到约3级阶段的热交换过程,使料流的热含量依次升高。各种来自含氧有机物转化过程的温度不同的料流和外部热源如来自蒸汽的热源都可用作热交换器流体,来提高含氧有机物进料的热含量或温度或是二者同时提高。
含氧有机物进料与含氧有机物转化催化剂接触后,包括烯烃在内的含氧有机物反应产物流出物不用先进行产物分馏步骤,而是直接通过在急冷塔内与适当的急冷介质接触进行急冷。或者,产物流出物可直接用来为含氧有机物进料提供热量,之后产物流出物的温度和热含量降低到中间水平。将处于此较低温度和较低热含量的产物流出物送入急冷塔进行直接急冷。
流出物料流中,从急冷塔分离出来的急冷条件下为气态的化合物作为轻质产物级分,用于烯烃产品的回收和提纯。轻质产物级分包括轻质烯烃、二甲醚、甲烷、CO、CO2、乙烷、丙烷和其它少量组分如水和未反应的含氧有机物进料。流出物料流中从急冷塔分离出来的急冷条件下为液态的化合物作为重质产物级分,用于热量回收,且可以分成若干级分和分离出急冷介质。重质产物级分包括副产物水,一部分未反应的含氧有机物进料(急冷条件下为气态的含氧有机物除外),少部分含氧有机物转化反应副产物,尤其是重质烃(C5+),和通常占大部分的急冷介质。
优选急冷介质选自急冷条件下能基本保持液态的组合物,这样就能使必须经过费用更高的气态产物处理步骤来回收商品等级轻质烯烃产品的轻质气态产物级分中存在的急冷介质量最少。优选的急冷介质由水和基本为水的料流组成。更优选急冷介质是基本为水且选自由重质产物级分分成的若干级分的料流。
在产物急冷所采用的特定温度下,急冷塔内循环的急冷介质量应不大于使急冷塔出口生成的重质产物级分温度至少高于来自储罐的含氧有机物进料温度5℃所需的量。在另一个具体实施方案中,如上所述,含氧有机物转化反应器流出料流直接用作热交换器流体,在含氧有机物进料进入含氧有机物转化反应器与含氧有机物转化催化剂接触前为其提供热量。
急冷塔内的压力和重质产物级分流出物的温度优选维持在能有效回收最大热量和最高热能品位的程度。更优选重质产物级分流出物压力与进料汽化压力之差在约345kPa之间,更优选低于约207kPa。从急冷塔流出的重质产物级分的温度优选维持在不低于重质产物级分流出物泡点温度以下约30℃。重质产物级分流出物温度与其泡点温度之间维持一定的温差能在急冷塔中提供尽可能最高的塔底温度,并能最经济地从重质产物级分流出物中实际回收可利用的热量。
优选将从急冷塔流出的重质产物级分流出物(重质产物级分)加压并用来给其它料流提供热量。在一个具体实施方案中,重质产物级分或是重质产物级分分成的若干级分中的任何一种或全部,或者是来自急冷介质分离过程的料流直接用作热交换器流体,在一或多级热含量依次升高的阶段中将含氧有机物进料的热含量和/或温度提高。并且,若干级分中的任一种或由急冷介质分离过程中产生的料流可在整个含氧有机物转化反应过程和产品回收过程中用来提高其它料流的热含量。从这些级分和料流中回收的冷却的急冷介质可再回到急冷塔。
在优选的具体实施方案中,尤其是当含氧有机物的转化反应不完全且急冷介质基本由水组成时,重质产物级分被分成两个级分,第一级分和第二级分。第一级分与第二级分的相对量取决于在急冷操作中需要从产物流出物料流中撤出的总热量和引入急冷塔的急冷介质的温度。此相对量设定为使热量回收所用设备费用和动力能耗最优化。第一级分被冷却到所希望的温度并送回急冷塔再循环,即作为急冷水。可通过使用从含氧有机物转化反应器流出的产物料流作为热交换流体,在进料进入含氧有机物转化反应器之前和/或产物流出物料流进入急冷塔之前加热含氧有机物进料的方法减少冷却第一级分如冷却水所需的动力能耗。
重质产物流出物的第二级分被送入分馏塔,将急冷介质与级分中存在的其它化合物如未反应的含氧有机物和来自含氧有机物转化反应的某些重质烃分离,急冷介质基本由水组成--当含氧有机物进料至少含一个氧时,它的一部分可来源于含氧有机物转化过程中副产物水的再循环部分。若在含氧有机物转化反应过程及连带的产品回收过程中存在其它与第二级分组成类似或相容的料流,这些料流可先与第二级分合并,然后将合并后的料流送入分馏塔。
一般来说,最好将混合物尽可能精细地分馏成多种组分。在本发明中,塔顶的含氧有机物馏分和/或分馏塔中的含重质组分的馏分优选含有从约15%(摩尔)到约99.5%(摩尔),优选从约25%(摩尔)到约90%(摩尔)的重质产物级分的第二级分中所引入的水成分。塔顶馏分中水成分的增加会提高冷凝温度,并能从分馏塔的塔顶馏分中更经济地回收更多的热量,以改进整个过程的热量综合利用。优选所回收的塔顶含氧有机物馏分包含至少90%(摩尔)重质产物级分的第二级分中所含的含氧有机物。更优选所回收的塔顶含氧有机物馏分包含至少99%(摩尔)重质产物级分的第二级分中所含的含氧有机物。
分馏塔的塔顶馏分在热交换器即冷凝器中被冷凝,与处于某一级的含氧有机物进料进行热交换,经过从1到约3级热交换,含氧有机物进料的热含量依次升高。分馏塔塔顶馏分的压力优选至少要比冷凝器中含氧有机物进料的压力高出约69kPa。压差也能提高塔顶馏分的温度,能更经济地从塔顶馏分中回收热量。
优选所回收的塔顶含氧有机物馏分包含至少90%(摩尔)重质产物级分的第二级分中所含的含氧有机物。
分馏塔塔底馏分基本由来自含氧有机物转化反应器的副产物水组成。优选将此塔底馏分加压,并在含氧有机物进料进入含氧有机物转化反应器之前,在含氧有机物经从1到3级热交换使其热含量依次升高过程的某一级中加热含氧有机物进料。分馏塔的操作条件应使塔底馏分温度比来自储罐的含氧有机物进料的第一温度至少高出约5℃,优选至少高出25℃。分馏塔内的操作温度由若干参数决定,包括但不必限于分馏塔塔顶压力和分镏塔内的总压降。
附图
示出一个按本发明能提高热回收和改进热量综合利用的工艺流程图的具体方案。具有第一热含量和第一温度的液体含氧有机物进料1如甲醇在热交换器2中被料流35加热。料流35来自分馏塔24的分馏塔塔底料流33,经泵34加压。得到热含量高于液体含氧有机物进料料流1的第一级加热的含氧有机物进料料流3。然后,将第一级加热的含氧有机物进料料流3在另一个热交换器4中用分馏塔24的塔顶馏分26加热,形成热含量高于料流3的第二级加热的含氧有机物进料料流5,热交换器4是分馏塔24所用的冷凝器或分凝器。第二级加热的含氧有机物进料料流5通过蒸汽预热器6,形成第三级加热的含氧有机物进料料流7,料流7进一步在热交换器8中用含氧有机物转化产物流出物11加热,在含氧有机物进料转化过程所希望的有效条件-温度、压力和液汽比-下形成第四级加热的含氧有机物进料料流9。含氧有机物转化产物流出物11是含氧有机物转化反应器10的流出物,已与带有含碳沉积物的失活的含氧有机物转化催化剂分离。或者,热交换器8可以由含氧有机物转化反应器内的数根盘管构成。
第四级加热的含氧有机物进料料流9被送入含氧有机物转化反应器10,反应器10内装有适合将含氧有机物进料转化为烯烃的催化剂。含氧有机物转化反应器10可采用各类构造--固定床、流化床、立管、移动床或数类并用,可包括或不包括连续催化剂再生过程。由于固定床反应器很难将要再生的失活催化剂取出并将再生的催化剂返回到反应器中,因而不太合适。含氧有机物进料转化为包括轻质烯烃在内的产物,催化剂则由于积聚了作为含氧有机物转化反应副产物形成的含碳沉积物而失去活性或部分失活。
含氧有机物转化产物流出物11流经热交换器8后,成为冷却的含氧有机物转化产物流出物料流12,送入急冷塔13中。或者,可删去热交换器8,含氧有机物转化产物流出物11不经过中间冷却步骤而是直接送入急冷塔13。在急冷塔13中,含氧有机物转化产物料流12经过一系列适宜接触的设备直接与初始温度下的基本由水组成的急冷介质接触。急冷塔13中所需的急冷介质量取决于若干因素,包括但不必限于急冷介质的组成、引入急冷塔13急冷介质循环的温度和所希望的各股料流间的温差和压差。在适当的地方将对此温差和压差进行讨论。将气态产物分离,作为轻质产物级分料流14。以出口温度从急冷塔塔底排出的重质产物级分料流15包括大部分的副产物水,一部分未反应的含氧有机物进料(急冷条件下为气态的含氧有机物除外),少部分含氧有机物转化副产物尤其是重质烃(C5+),以及通常占大部分的急冷介质。
优选的急冷介质是实际上很难与副产物水区别开来的水,这样就可免除需要将急冷介质与重质产物级分中的副产物水分离的步骤。在所用急冷物料不是水且此急冷物料在急冷条件下基本为液态的情况下,可对重质产物级分15或者由重质产物级分分成的若干级分的任何一种或全部进行处理,将急冷介质与副产物水分离。例如,若急冷介质是高沸点烃如柴油燃料或类似料流,则它与副产物水不混溶。这类急冷介质可通过在急冷塔13塔底中设计适当堰板的方法,或者在本发明工艺过程的许多不同点配备的API分离器或其它类似设备中进行分离。而且,若在含氧有机物转化反应过程中形成任何重质烃C5+),它们也可从料流15的副产物水中移出或在工艺过程的其它点按同样方式移出,或是与急冷介质一起移出。若急冷介质为急冷条件下基本为气态的相对较轻物料,从而大量存在于轻质产物级分中,则此类急冷介质可在完成整个含氧有机物转化过程和烯烃回收及提纯过程之后的烯烃回收过程的下游进行分离。
不管何种情况,重质产物级分料流15的出口压力都应不低于液体含氧有机物进料压力以下约345×103帕(345kPa)。优选重质产物级分料流15的出口温度维持在不低于料流15中副产物水的泡点温度以下约25℃。优选重质产物级分料流15(低压)与液体含氧有机物进料(高压)间的压差不少于207kPa。
重质产物级分料流(急冷塔塔底料流)15可用来在热交换器2、4和/或6中为含氧有机物进料提供热量,增加进料的热含量。含氧有机物进料所含的热含量在此多级热交换阶段中依次升高。也可省去这些一或多级热交换步骤。优选将急冷塔塔底料流15分成两个级分,循环级分18和分馏塔进料级分21。循环级分18,即急冷水循环料流在热交换器19中被冷却,作为急冷料流20循环回急冷塔13。或者,循环级分18或20可进一步分成若干级分,并将这些级分在不同的热交换器中冷却到不同温度。这些不同温度的级分或其中的一些级分可在不同点引入急冷塔13,以使热量回收更整体化并使动力能耗最低。级分18的热含量可用来在热交换器2、4和/或6中为含氧有机物进料提供热量,或是在整个含氧有机物转化和烯烃回收及提纯过程的不同位置提供热量和增加热回收。
分馏塔进料级分21,可任选与料流22所含的另外水混合后,被送入分馏塔24。至少要由分馏塔进料级分21分馏出两股料流,分馏塔塔顶料流26和分馏塔塔底料流33。分馏塔塔顶料流26应至少含有约15%(摩尔),优选至少约25%(摩尔)来自含氧有机物转化反应的水。与此组成优选条件同时或二者择一的条件是,分馏塔塔顶料流26的温度应至少高于热交换器4条件下含氧有机物进料的沸点温度以上10℃。
借助再沸器25为分馏塔24增加足够的热量,再与分馏塔24内的足量塔板数相结合,使得所生成的分馏塔塔底料流33基本包括全部副产物水和随料流23引入的急冷介质。
优选急冷介质为水。当水用作急冷介质时,塔底料流33基本由来自含氧有机物转化反应的大部分副产物水组成,并且不需要进一步进行副产物水与急冷介质分离的步骤。若急冷介质是非水物料且急冷介质在引入急冷塔前未预先与副产物水分离时,则急冷介质可与塔底料流33中的副产物水进行分离,或是在如上所述的后续过程中进行分离。而且,若在含氧有机物转化过程中形成任何重质烃(C5+),它们也可从塔底料流33的副产物水中移出,或是在后续过程按同样方式移出,或者与随急冷介质同时移出。
分馏塔塔底料流33在离开分馏塔24之前,其温度至少要比进入热交换器2的由储罐引入的含氧有机物进料1的第一温度高5℃,优选至少高25℃。分馏塔24的塔顶压力应至少比热交换器4内的压力高69kPa,以增加热回收。料流35用来在热交换器2中加热液体含氧有机物进料1。为更好地进行热回收,从热交换器2出来的料流36的温度优选等于或低于料流22的温度。
进一步改进热量综合利用和增加热回收的一条途径是将分馏塔塔顶料流26用作热交换器4的热源。冷却的分馏塔塔顶料流27可进一步在分离器中分成排放气体料流29和回流液体30,回流液体30用泵31调节压力后送回分馏塔24。很重要的一点是要维持冷却的分馏塔塔顶料流27的温度高于第一级加热的含氧有机物进料3的沸点温度,以便提供良好的热传递。
参考以下的实施例将会更好地了解本发明,这些实施例仅用来例示说明,不应看作对本发明的限定。实施例1压力为386.1kPa且温度为38℃的液体甲醇进料1在热交换器2中吸收来自甲醇/水分馏塔24的温度为158℃且压力为1276kPa的料流35的热量,以提高其热含量,形成温度约100℃且压力为351.6kPa的第一级加热甲醇进料料流3。热含量为4722kJ/mol的第一级加热甲醇进料料流3在热交换器4中吸收来自分馏塔塔顶料流26的热量,形成热含量为6521kJ/mol的第二级加热甲醇进料料流5。料流5在热交换器6中用蒸汽进一步加热,形成热含量高于第三级加热甲醇进料料流7-7390kJ/mol的第三级加热甲醇进料料流7。第三级加热甲醇进料料流7在热交换器8中用来自含氧有机物转化反应器10的甲醇转化产物流出物11进行加热,形成第四级加热甲醇进料料流9。具有更高热含量17102kJ/mol的第四级加热甲醇进料料流9适合用于在含氧有机物转化反应器10中与催化剂接触,形成带有含碳沉积物的失活的含氧有机物转化催化剂和包括烯烃尤其是轻质烯烃在内的产物11。含氧有机物转化反应器10是一个带有连续催化剂再生和循环过程(未示出)的流化床反应器。含氧有机物转化产物11与带有含碳沉积物的失活的含氧有机物转化催化剂分离,用来加热料流9,形成冷却的甲醇转化产物料流12。取出一部分失活催化剂并转移到再生系统(未示出)。优选在再生过程中至少从失活催化剂中移出约1.0%(重)的含碳沉积物。还优选在再生过程中从失活催化剂中移出不超过约98.0%(重)的含碳沉积物。再生催化剂再循环回含氧有机物转化反应器10中,用于与含氧有机物进料接触。在反应器10中,料流9的甲醇有99.8%(重)转化,与其余未反应物料一起以料流11的形式排出。
将从热交换器8出来的冷却的甲醇转化产物料流12送入急冷塔13,直接与基本由水组成的急冷介质接触。急冷塔13内安装有适当的接触设备。大部分烃产物作为气态产物料流14分离出来,重质产物即水和未反应的甲醇的作为急冷塔塔底料流15以约116℃的温度和262kPa的压力从急冷塔13排出。急冷塔塔底料流15用泵16加压,形成压力约689.5kPa的加压急冷塔塔底料流17。约83%(摩尔)加压急冷塔塔底料流17形成循环级分18,并送经冷却交换器19,形成温度为塔温的急冷料流20。急冷料流20再回到急冷塔13。
其余约17%(摩尔)的加压急冷塔塔底料流17成为分馏塔进料级分21。分馏塔进料级分21与从含氧有机物转化及产物回收全过程的其它来源回收的另一甲醇/水料流22合并。将合并料流23送入分馏塔24。温度为152℃且压力为551.6kPa的含约89%(摩尔)水和约10.5%(摩尔)甲醇的分馏塔塔顶料流26被送至热交换器4。分馏塔24塔底用热交换器25中的蒸汽加热,生成温度为158℃且压力约为585.4kPa的主要含水和痕量其它组分的分馏塔塔底料流33。分馏塔塔底料流33加压至约1274kPa,得到的料流35用于热交换器2来加热液体甲醇进料1。热交换后,副产物热水料流36的温度为46℃且压力为861.2kPa。
表1示出用于得到表2和表3结果的甲醇转化过程中产物料流11的产物选择性和组成的数据。实施例1所述的各股料流的进料速度、组成、压力和温度示于表2。关键交换器2、4和25的热负荷列于表3。
表1
表2*
表3*
*使用仿真科学的Inc.Pro/Ⅱ化学过程模拟程序,利用对Soave-Redlich-Kwong状态方程进行改进的Panagiotopoulos-Reid改进方程汇编而成的结果这些结果显示,在含氧有机物转化过程中,使含氧有机物达到与催化剂接触的理想条件所需要的外部热量,即在优选的具体方案中用交换器6所代表的热,可以因热回收的提高和过程热量综合利用的改进而减少。
从事本领域工作的人员都能知道,在不背离本发明的精神和范围的前提下可以对本发明进行许多改进。本文所描述的具体实施方案只是例示性的,而不应看作是对以下权利要求书所要求的本发明范围的限定。
权利要求
1.一种能够提高热量回收和热量综合利用的含氧有机物转化为烯烃的方法,所述方法包括将具有第一热含量的包括所述含氧有机物在内的进料经过从1到约3级依次具有更高热含量的阶段从第一温度加热到的第二温度;将处于第二温度下的所述的进料与包括分子筛的催化剂在能有效生成带有含碳沉积物的减活催化剂和包括所述烯烃在内的产物的条件下接触,其中所述分子筛包括孔径小于约10埃的微孔,并且产物的温度为高于所述第二温度的第三温度;将减活催化剂从所述产物中分离出来;将所述产物用一种温度为初始温度且用量足以用来形成轻质产物级分和重质产物级分的介质急冷,其中所述的轻质产物级分包括轻质烯烃,重质产物级分的出口温度高于所述第一温度至少约5℃;和在所述的一或多级升温阶段中使用所述的重质级分提供热量达到所述的较高热含量。
2.按权利要求1的方法,其中使用至少一部分所述的重质产物级分来提供热量的步骤进一步包括以下步骤所述的重质产物级分被分成第一级分和第二级分;将所述的第一级分冷却到所述的初始温度;将所述的处于初始温度的第一级分循环,使其成为所述的用于所述急冷过程的混合物的一部分;将所述的第二级分分馏成第三级分和第四级分,所述的第三级分基本由水组成,所述的第四级分至少包括15%(摩尔)水。将所述的第三级分加热和加压到第四温度和第二压力,所述的第四温度比所述的第一温度至少高5℃且所述的第二压力高于所述的第一压力;和使用所述的第三级分在所述的几级加热阶段的一个阶段加热所述的进料,从而形成具有高于所述第一热含量的第二热含量的料流。
3.按前面权利要求任一项的方法,进一步包括如下步骤取出一部分与所述产物分离后的所述失活催化剂;从所述的失活催化剂取出部分中除去至少约1.0%(重)的所述含碳沉积物,生成再生催化剂;和将所述的再生催化剂循环用于所述的与所述进料接触的过程。
4.按前面权利要求任一项的方法,其中所述进料在所述的加热步骤之前维持在第一压力且所述的重质产物级分具有第二压力,所述第一压力低于所述第二压力的值不大于约345kPa。
5.按前面权利要求任一项的方法,其中所述的含氧有机物选自甲醇、二甲醚、乙醇、甲乙醚、正丙醇、碳酸二甲酯、甲酸甲酯、乙酸甲酯、二乙醚及其混合物。
6.按前面权利要求任一项的方法,其中所述催化剂选自沸石、硅铝磷酸盐(SAPO)、替换型硅铝磷酸盐、替换型铝磷酸盐及其混合物。
7.按前面权利要求任一项的方法,其中所述的进料进一步包括选自水、一氧化碳、二氧化碳、氮气、氢气、氩气、氦气、甲烷、乙烷及其混合物的稀释剂。
8.按权利要求6的方法,其中所述催化剂是SAPO,选自SAPO-17、SAPO-18、SAPO-34、SAPO-44及其混合物。
9.按权利要求2的方法,其中所述的第四级分包括至少约25%(摩尔)水。
10.按权利要求2的方法,其中所述的第四温度比所述第一温度至少约高25℃。
全文摘要
本发明涉及采用直接产物急冷法来增加热量回收和改进热量综合利用的催化转化包括含氧有机物的进料成为烯烃的方法。
文档编号C07C1/20GK1303360SQ99806685
公开日2001年7月11日 申请日期1999年4月16日 优先权日1998年4月29日
发明者K·H·库切勒, J·R·莱特纳 申请人:埃克森化学专利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1