热固化、热膨胀性的模制件的制作方法

文档序号:3653082阅读:217来源:国知局
专利名称:热固化、热膨胀性的模制件的制作方法
技术领域
本发明涉及一种热固化热膨胀性、在室温下无粘性的模制件,其用途及将其用于加固和/或加强车身制造部件的方法。
轻质金属部件已越来越频繁地用于制造精密、坚硬和高强度产品。特别是在汽车制造过程中,为了减轻车身重量而又保证其具有足够的硬度和结构强度,就需要采用由薄层金属制造的轻质金属部件。
EP-A-0 798 062提出一种由泡沫金属材料制造的部件,这种泡沫材料是由金属粉末和发泡剂制成,并选择性地在高温高压下经金属夹板压制成形。这种加工过程只适用于大尺度部件的制造,由汽车装配线外制造,再插入到正常的装配线中。在普通汽车生产线的条件下,泡沫金属材料的引入和发泡是不可能的。
US-A-4,978,562描述了一种特别轻质加固门栅的制作方法。这种门栅是由包含金属管材的复合材料制造,部分管中填充有特殊的具有微孔结构轻质聚合物。其制造过程是,将环氧树脂、乙烯酯树脂、不饱和聚酯树脂、聚氨酯树脂等可固化树脂,与适当的固化剂、填充剂、造孔剂置于一挤压机中进行混合,使之固化形成泥芯,然后将其注入金属管中,依靠摩擦力或机械的办法将其固定。或者,将液体或糊状聚合物采用浇铸的方法制备聚合物泥芯,然后压入空心管中。这一专利没有提及活性、热固化和热膨胀性模制件。
US-A-4,769,391描述了一种用于填入空心构件的预制复合填充料。这一填充料含有大量的由热塑性树脂与不可或可膨胀空心微球组成的热塑性颗粒,以及粘接上述颗粒物的泡沫聚苯乙烯树脂基质。组成颗粒物的热塑性树脂,可选用热塑性塑料,如热塑性聚酯,也可选用热固化环氧树脂。当将这些填充料填入空心构件之后,加热升温使泡沫聚苯乙烯“蒸发”。这里“蒸发”一词是指热膨胀性聚苯乙烯分解成薄膜或焦炭。同时,热塑性颗粒膨胀或者固化,根据膨胀程度不同,在膨胀颗粒之间或多或少留下大量空间。
类似地,US-A-4,861,097和US-A 4,901,500描述了一种由泡沫聚合物和金属构件制作的轻质复合管材,用于制造增强的汽车车门。根据专利中讲授,先制备出液体或糊状增强性材料,然后注入或倾入一槽型模具中,成型固化制成聚合物泥芯。最后将其注入空心金属构件中。另一方法是先将泥芯注模成型或预浇铸成型,然后再镶入构件的空心部分。
WO 89/08678描述了一种采用聚合物增强结构部件的方法和该聚合物的组成。采用的聚合物增强材料由双组分环氧树脂组成,其中一组份为糊状环氧树脂,而另一组分含有填充剂、着色剂和具有捏塑性的液体固化剂。将这两组分混合后,立即引入空心构件中进行固化。在引入之前最好将空心构件预热。
WO96/37400描述了一种采用热膨胀性树脂类材料进行加强的W-形增强构件,树脂在注入构件的空心处再进行固化。这一起增强作用的聚合物基质优选为单组分膏状物,含有环氧树脂、丙烯腈-丁二烯橡胶、填充料、高强度玻璃球、一种固化剂、促进剂和一种偶氮或酰肼类发泡剂。
WO98/15594描述了一种用于汽车制造的泡沫材料,该材料优选由液体双组分环氧树脂制成。其一组分含有液体环氧树脂、金属碳酸盐或碳酸氢盐;另一组分含有颜料、选择性的空心球和磷酸。当这两组分混合后,体系伴随有气体的释放开始固化。专利中未提及空心构件的加固或加强。
上述现有专利所提及的聚合物材料,或者不适合于制造需预压成型再固化成具有热膨胀性和热固化的模制件,或者即使适合,由于其表面粘性高也会导致表面污染,甚至与表面脏物一起固化。另外,高表面粘性将使后加工特别是保存变得困难,比如会引起部件间的粘接。由于这一原因,采用现有技术制造的模制件需要裹上一层保护膜,在使用前再将这层保护膜揭开。然而,保护膜的使用,不仅增加了产品的生产和使用费用,而且还要付出额外的费用来处理揭下来的保护膜。
与现有技术不同,本发明的目的是提供一种无胶粘性的模制件,用于加固和/或增强金属薄板或空心金属构件。这一模制件具有以下特点—是热固化的,—是热膨胀性的,—具有优越的加固和/或加强金属薄板结构的作用—在加工过程,特别是固化过程,极少产生异味气体。
根据本发明,实现上述目的的具体方法可见权利要求书。这一方法主要是采用以下组分制造热固化、热膨胀性模制件(a)至少一种固体活性树脂;(b)至少一种液体活性树脂;(c)至少一种活性树脂柔韧剂;(d)至少一种固化剂和/或促进剂;和(e)一种发泡剂。
本发明也涉及上述热固化、热膨胀性模制件在加固和/或加强金属平板和/或空心金属构件的应用,特别是在用于制造车身构架、支撑和支柱等空心部件的应用。本发明所提供的模制件同样适用于加固和/或加强门的空心型材和管材部件,以提高其对侧面冲击力的保护作用。
本发明还涉及一种加固和/或加强机车车身部件的方法。首先将粘合剂与填充料、固化剂、发泡剂、选择性的颜料和纤维进行混合,选择性地将其缓缓加热,然后压入或倾入铸模中。当模体冷却至室温后,其表面完全没有粘性。接着这一模制件应用于金属基材或待加固的空心构件中,选择性地加热使之处于软化状态,然后加热至110-220℃,此时模制件的体积将膨胀50-100%。活性树脂基质固化成为热固体。
原则上,用作固体、液体和增韧作用的活性树脂,可采用带有游离或保护的异腈酸酯聚氨酯,也可采用不饱和聚酯/苯乙烯树脂、聚酯/多元醇混合树脂、聚硫醇、功能化硅氧烷活性树脂或橡胶,但尤为适合采用活性环氧树脂。
上述环氧树脂包括各种分子中至少含有2个环氧基的聚环氧化物。这些聚环氧化物的环氧基当量值为150~50000,优选为170~5000,主要包括各种饱和、不饱和,有环、无环,脂肪、脂环,芳香或杂环的聚环氧化物。这类聚环氧化物的实例是,由环氧氯丙烷或环氧溴丙烷与多元酚在碱性条件下得到的聚甘油醚。用于制备聚甘油醚所采用的多元酚包括例如间二酚、邻二酚、对二酚、双酚A[双(4-羟苯基)-2,2-丙烷]、双酚F[双(4-羟苯基)甲烷]、双(4-羟苯基)1,1-异丁烷、4,4’-二羟基苯甲酮、双(4-羟苯基)-1,1-乙烷、1,5-羟基萘。其它可用于制取聚甘油醚的多元酚包括由苯酚与甲醛或乙醛缩聚得到的酚醛类树脂。
原则上,适合采用的其它聚环氧化物也包括由多元醇或二胺得到的聚甘油醚。这些聚甘油醚可由如乙二醇、二甘醇、三甘醇、1,2-丙二醇、1,4-丁二醇、三甘醇、1,5-戊二醇、1,6-己二醇或三羟甲基丙烷等多元醇制取。
其它的聚环氧化物是由多元羧酸制取的聚甘油醚,比如由甘油或环氧氯丙烷与脂肪族或芳香族多元羧酸的反应产物。此类多元酸包括乙二酸、琥珀酸、戊二酸、对苯二甲酸或二聚脂肪酸。
其它环氧化物得自不饱和烯烃脂环化合物的环氧化物或来自天然油脂化合物的环氧化物。
本发明特别优选采用的环氧树脂是双酚A或双酚F与环氧氯丙烷的反应产物。液体环氧树脂最好采用双酚A为单体制取,并且具有足够低的分子量。在室温下处于液体状态的环氧树脂其环氧基当量重量为150~约480,优选为182~350。
室温下为固体的环氧树脂同样可由多元酚和环氧氯丙烷反应制得,特别优选的固体环氧树脂是双酚A或双酚F和环氧氯丙烷的反应产物,熔点为45~90℃,优选为50~80℃。与液体环氧树脂的主要不同在于,固体环氧树脂的分子量高,因此在室温下处于固态。根据本发明,固体环氧树脂的环氧基当量重量≥400,更合适的范围是450~约900。
用作环氧树脂柔韧剂的是羧酸端基的丁二烯-丙烯腈共聚物(CTBN)和双酚A双甘油醚液体环氧树脂的已知加合物,如由B.F.Goodrich公司生产的丁腈橡胶CTBN1300×8,1300×13或1300×15与液体环氧树脂反应得到的产物。也可采用由端氨基聚亚烷二醇(Jeffamine)与过量液体聚环氧树脂的反应产物。上述反应产物在,如WO93/00381,已有描述。原则上,本发明所采用的环氧树脂柔韧剂还可由疏基官能团的预聚合物或液体聚硫橡胶与过量聚环氧化物反应制取。特别合适的柔韧剂为聚脂肪酸,特别是二聚脂肪酸,与环氧氯丙烷、乙二醇(特别是双酚A的二甘醚化物DGBA)的反应产物。
由于本发明所提供的热固化的模制件为单组分组成,且要求在高温下固化,因此还需加入一种固化剂和/或一种或多种促进剂。
上述(a)、(b)和(c)组成的环氧树脂粘合剂体系可用作热激发或潜在的固化剂,包括胍、取代胍、取代脲、三聚氰胺树脂、胍胺衍生物、三级环烷基胺、芳香胺和上述组分的混合物。这些固化剂可计量地参与固化过程中的反应,也可只起催化作用。取代胍包括甲基胍、二甲基胍、三甲基胍、四甲基胍、甲基异双胍、二甲基异双胍、四甲基异双胍、六甲基异双胍、七甲基异双胍、特别是氰基胍。适合的胍胺衍生物有苯并胍胺树脂、烷基苯并胍胺树脂、甲氧基甲乙氧基甲基苯并胍胺。对于热固化、热熔化的单组分粘合剂体系,选择固化剂的原则当然是要求固化剂在室温下在树脂中的溶解度低。因此最好选择固体粉末类固化剂,特别是双氰胺。选择这样的固化剂可保证组合物具有良好的贮存稳定性。
除上述固化剂外,也可采用具有催化活性的取代脲,包括对氯苯基-N,N-二甲基脲(灭草隆),3-苯基1,1-二甲基脲(非草隆)或3,4-二氯苯基-N,N-二甲基脲(敌草隆)。原则上,也可采用具有催化活性的三级丙烯基或烷基胺,比如苯基二甲基胺、三(二甲氨基)苯酚、哌啶或哌啶衍生物。但在通常情况下,它们在粘合体系中溶解度太高,而使单组分体系没有足够的贮存稳定性。各种咪唑衍生物,尤其是固体咪唑衍生物,也可作为催化活性的促进剂,具体的实例有2-乙基-2-甲基咪唑、N-丁基咪唑、苯并咪唑和N-C1~C12-烷基咪唑,或者N-丙烯基咪唑。本发明特别优选使用固化剂和促进剂的复合剂,如所谓的促进的双氰胺细粉末。这样就不必单独在环氧固化体系中加入催化活性的促进剂。
一般说来,本发明所提供的粘合剂还应加入填充剂,比如各种粉末或沉淀白垩、炭黑、钙镁碳酸盐、重晶石、尤其是象硅灰石、绿泥石这类的Al、Mg、Ca硅酸盐类填料。
本发明的目的之一是使用热膨胀性、热固化模制件生产轻质构件,因此除上述提及的“常规”填料外,还需加入所谓的轻质填料。这种轻质填料可选用空心玻璃球、燃灰(Fillite)、由酚醛树脂、环氧树脂、聚脂等材料制成的空心塑料球、空心陶瓷球,或者天然有机轻质填料,如腰果、椰子、花生等果壳粉,以及软木和焦炭粉。最好选用空心微球轻质填料,这样能确保固化后模制件基质具有很高的抗压性能。
本发明特别优选的实施方式中,在热固化、热膨胀性模制件的基质材料中还含有纤维,可采用芳香族聚酰胺纤维、碳纤维、玻璃纤维、聚酰胺纤维、聚乙烯纤维或聚酯纤维。这些纤维最好采用长0.5~6mm,直径5~20μm的纸浆纤维或人造纤维。上述纤维中尤其优选的是芳香族聚酰胺纤维和聚酯纤维。
尽管原则上,可选用已知的任何发泡剂,如偶氮、酰肼类化合物,但最好选择可膨胀或已膨化的空心聚氯乙烯共聚物的中空塑料微球。Pierce & Stevens和Casco Nobel公司均已有此类塑料微球商品供应,商品名称分别为Dualite和Expancel。
本发明所提供的粘合剂组合物也可包括其它普通的助剂或/和添加剂,比如增塑剂、活性稀释剂、流动助剂、增湿剂、增粘剂、抗老化剂、稳定剂和/或着色剂等。根据对模制件的加工性能、柔韧性、对基材增强程度及粘接强度等指标的不同,各成分的相对量可在较宽范围内调变。典型的组成范围如下(a)固体环氧树脂 25~50重量%(b)液体环氧树脂 10~50重量%(c)环氧树脂柔韧剂1~25重量%(d)固化剂和促进剂1.5~5重量%(e)发泡剂0.5~5重量%(F)轻质填料 20~40重量%(g)填充料5~20重量%(h)纤维 0.1~5重量%.
(i)颜料 0~1重量%
将固体、液体和柔韧剂活性树脂与纤维混合,通过压模、冲模、注模或热涂于金属或塑料型材的方法,可制成尺寸稳定、无粘性的模制件。令人惊奇的是,将各种原料混合后所制成的混合物,即使未经固化,也不容易变形,且不需费力就能将其挤入各种物体或型材的空心处。由此带来的优点是不会引起玻璃或球体的破碎,而这一点在采用现有技术进行塑模成型过程中是常见的现象。由此带来的另一优点是可使模制件具有优良的加工性能、很好的耐热性能、即使是在40℃下也没有表面粘性。这就可简化加工过程、降低成本(避免保护膜),同时提高加工的可靠性。
与现有技术相比,本发明提供的固化模制件得到以下改进—更高的抗压性能—降低了脆性—提高了抗冷热性能—降低了抗压能力对温度的依赖性(-30℃至90℃)—扭曲力矩恒定—密度低(单位体积重量)—吸水率低。
对使用者来说,由于不需要采用保护膜,本发明带来的好处是简化了加工步骤、降低了环境污染。在现有技术中,模制件的固化过程往往放出大量的异味气体,这是因为在固化过程中,会分解出有毒气体并释放出来。本发明所提供的模制件其突出的特点是在固化过程中几乎无异味气体的释放,因此不需安装昂贵的排气设备。不受该理论的限制,采用本发明的制造过程,气味低主要归功于选用了本发明提供的环氧树脂,其具有更高的平均分子量。另外,还选用少量活性更高的固化剂和促进剂,并避免了偶氮类发泡剂的使用。
本发明所提供的模制件用于汽车的制造,可提高汽车的安全性和舒适性,因为在增加车身强度的同时,减小了车辆的总重量。
以下提供的实施例是为了进一步详细说明本发明的实施过程,而不是对本发明涉及范围的限制。实施例中所提供的组成,除非特别说明,指的是重量份组成。
表1
如上表可见,树脂中加入纤维后,耐热性容量,也即未固化模制件的抗冷流能力,得到显著提高,而耐压性能和脆性与未加纤维的组合物相当。
为测定耐热性容量,将组合物压制成一个80×50×8mm的长方形模块,并将其附着在一100×200×0.8mm垂直放置的板上端。
在室温下放置30min后,将其垂直放置于80℃烘箱中30分钟。冷却后,测定样品的伸缩量。再将其在垂直位置放置于180℃烘箱中30分钟,冷却后再测定其伸缩量,以mm表示。
为测定耐压性能,将样品置于一大小为30×30×100mm的开口塑模中固化制备测试样品。将所得固化物裁成三个30×30×30mm的样品,并置于压感装置的两块测压板之间测定抗压性能。测定压力随形变量的变化情况。测得样品所能承受的最大负荷时的抗压性能值。
脆度的测定,测定形变方向的最大受力值与稳定期平均受力值之差。两者差越小,脆性越低。
本发明所提供的模制件在挤出或成型并冷至室温后,完全没有粘性,仍保持热固化和热膨胀性。而采用现有技术制备的模制件具有很高的表面粘性。
根据本发明制备的模制件,在180~200℃固化过程中,几乎检测不到异味气体的释出。采用现有技术制备模制件,固化过程中,往往放出大量异味气体,因此需在强排风设备中进行固化。
权利要求
1.一种热固化、热膨胀性模制件,该模制件含有(a)至少一种固体活性树脂,(b)至少一种液体活性树脂,(c)至少一种活性树脂柔韧剂,(d)一种固化剂和/或促进剂,和(e)一种发泡剂。
2.权利要求1所述的模制件,其特征在于在室温下不具有粘性。
3.权利要求1或2所述的模制件,其中的固体树脂(a)、液体树脂(b)、柔韧性树脂(c)是环氧树脂。
4.权利要求3所述的模制件,其中的固体环氧树脂(a)熔点为45~90℃,优选为50~80℃。
5.权利要求3或4所述的模制件,其中的液体环氧树脂(b)的分子量大于350,优选大于450。
6.权利要求3~5所述的任一模制件,其中的柔韧性环氧树脂选自橡胶改性的环氧树脂、聚氨酯改性的环氧树脂、端氨基聚氧化烯与聚环氧化物的加合物、二聚脂肪酸与双酚A二甘油基醚的加合物、聚醚多元醇与环氧树脂的加合物、聚硫化物或聚硫醇改性的环氧树脂,或上述各种树脂的混合物。
7.权利要求3~6所述的任一模制件,其中用作固化剂的双氰胺的用量基于组合物的总量最高为5重量%,并还选用一种或多种促进剂。
8.上述各权利要求所述的任一模制件,其中含有填充剂,且至少部分为轻质填充剂,该轻质填充剂选自空心玻璃球,燃灰,由酚类树脂、环氧树脂或聚酯制成的空心塑料球,空心陶瓷球,或坚果壳、软木和焦炭粉等天然轻质有机填料。
9.上述权利要求所述的任一模制件,其中的发泡剂(e)为可膨胀的空心微球。
10.上述权利要求所述的任一模制件,其中还含有基于聚芳香酰胺纤维、炭纤维、玻璃纤维、聚酰胺纤维、聚乙烯纤维或聚酯纤维的纤维。
11.权利要求3~10所述的任一模制件,该模制件含有a)固体环氧树脂 25~50重量%;b)液体环氧树脂 10~50重量%;c)环氧树脂柔韧剂1~25重量%;d)固化剂和促进剂1.5~5重量%;e)发泡剂0.5~5重量%;f)轻质填料 20~40重量%;g)填充料5~20重量%;h)纤维 0.1~5重量%.;i)颜料 0~1重量%;合计100重量%。
12.以上权利要求所述的任一模制件的应用,适用于加固和/或加强金属薄板和/或空心金属构件,特别适应用于加固和/或加强汽车构架、支撑和栅柱等空心部件。
13.一种加固和/或加强机车构造部件的方法,包括以下步骤一将权利要求1~11任一项所述的各组份混合,—在60~110℃,最好是70~90℃下,将上述混合物挤压或铸造成型得到模制件,—将所得模制件冷却,—将上述模制件敷于金属基材或引入待加固构件的空心处,选择性地加热到模制件的软化温度,—将上述模制件加热至110~200℃,最好是130~180℃,此时其模制件的体积膨胀50~100%,活性树脂基质固化成热固体。
14.一种汽车或金属部件,其特征在于采用了权利要求13所述的方法进行了加固和/或加强。
全文摘要
本发明涉及一种热固化、热膨胀性的模制件,它是由至少一种固体活性树脂、至少一种液体活性树脂、至少一种活性树脂柔韧剂、以及固化剂、促进剂、发泡剂组成的混合物制成。这一模制件可用于加固和/或加强薄层金属板和轻质空心金属元件。与现有技术所提供的同类产品相比,根据本发明所制得的热固化、热膨胀性模制件具有固化前不易变形、固化后表面胶粘性低、加工过程中异味气体的释放减小到最低等优点。
文档编号C08G59/18GK1342182SQ00804439
公开日2002年3月27日 申请日期2000年2月23日 优先权日1999年3月3日
发明者德克·赖特巴赫, 克萨韦尔·明茨 申请人:汉克尔特罗森公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1