聚合物膜的制作方法

文档序号:3639519阅读:292来源:国知局

专利名称::聚合物膜的制作方法
技术领域
:本发明涉及用于包装的膜。所述膜在阻止诸如水蒸气、二氧化碳、氧气和氮气等气体流动出入包装产品方面是特别有用的。这在固体和液体食品的包装中尤其重要,但也与其他用途如包括纸产品、卫生物品、洗衣和厨房产品的消费产品有关,其中重要的是保持包装产品新鲜和含水,或者相反,保持干燥和使例如湿气不能进入。保持包装内容物千燥的需求同样与诸如青贮饲料和报纸等物品的包装有关。在许多情况卜',还必须考虑所述包装和产品之间化学相互作用的可能性。
背景技术
:许多不同形状、化学性质和目的的产品的有效塑料包装是巨大的挑战。保持食物和饮料新鲜是迫切需求的一方面,其中产品之间的保存期相差很大,供应尺寸也显著不同。食物和饮料变质的最主要原因是氧气渗入导致产品的氧化。对于薄膜包装在美学上令人满意的最常见的的包装材料在阻止气体流动出入包装食品方面是非常差的。在过去的三十年里,已发展出提供阻挡膜层的工业。这些膜用以阻止诸如水蒸气、o2、C02和N2等气体流动出入食物和饮料。将塑料用作包装材料已超过六十年,并由于增长的市场需求和科技的发展而持续发展。诸如聚对苯二甲酸乙二酯(PET)、聚丙烯(PP)、聚氯乙烯(PVC)和聚乙烯(PE)等日用塑料,均具有阻止02和H20进出的部分阻挡性质。这些阻挡性质通常与所述阻挡层的厚度成比例。三条因素推动着对具有更好阻挡性质的塑料的需求;首先由于其重量、成本,以及玻璃情况下的易碎性,放弃了玻璃和锡/铝;其次塑料材料的低规格(downgauging)使其更加经济,以及第三,由于更多的食物包装到更小的供应尺寸中而因此需要延长的保存期。这些因素已导致显著增强了普通消费塑料包装的阻挡性质的材料的发展。首先成功的高性能阻挡材料是聚偏二氯乙烯(PVDC)。它是PVC的衍生物,因此可预见具有相似的负面环境影响。在当今市场上的其他普通阻挡材料是乙烯一乙烯醇共聚物(EVOH)、尼龙(例如MXD6)和腈。将所有这些用作除由日用塑料提供的结构层之外的阻挡层。可用作阻挡材料的已商业化的唯一的天然聚合物是玻璃纸,其在很多塑料工业之前也很好地得到了发展。与今日的阻挡树脂相比,并不认为其阻氧性为高性能,并且其成本较高。PET(聚对苯二甲酸乙二酯)饮料瓶的壁的常见阻挡结构是由包围含有更昂贵的阻挡材料的一层或多层芯层的PET结构层构成的多层结构。美国专利5498662、562102、65897960和6143384公开了聚甲基丙烯酸聚合物和多糖在阻挡层中的应用。WO00/49072公开了基于喷涂在PET吹塑成型瓶上的诸如蒙脱石等的粘土的阻挡涂层。美国专利屮MI2004/0087696公开了用于PET容器的水基涂层,其中将粘土材料与:三聚氰胺、甲醛和硼酸粘合剂以及诸如多糖和纤维素材料等水溶性有机粘合剂相混合。将阻挡材料用在不同塑料结构和方法的主体中,并且其每一种均带有其自身的功能性要求。阻挡结构的最常见用途是用于诸如糖果、新鲜食物、面包产品和近年来出现在市场上的诸如调料和脱水调味酱类等的即食方便食品的剩余袋装等包装食品的薄膜。这些膜中的一些是高度复杂的可以具有12层并薄于50^im的层压物。塑料的层压也是挑战性的。这些膜通常通过共挤出而进行制造。WO90/14938公开了适用于氧气阻挡层压物的高直链改性淀粉。美国专利6569539和6692801公开了具有由分散液涂覆的淀粉或改性淀粉的内部阻挡涂层的纸和/或塑料层压物。WO04/052646公开了使用淀粉层和可生物降解的聚酯层的多层阻挡膜。美国专利申请2002/0187340公开了聚乙烯醇和淀粉的气体阻挡涂/丄其中主要材料是淀粉而所述材料由分散液进行涂覆。阻挡物也用在果汁、一些碳酸软饮料和诸如水果和蔬菜酱等各种热填充食品的瓶子中。通常通过共注射拉伸吹塑成型形成瓶子。这要求将所述材料同时注射成型为预制件然后再次熔化并吹成瓶状。其他容器可以共挤出吹塑成型,其中在共挤出工序中抵着模具壁吹制型坯以在线获得所需形状。一些容器进一步要求通过注射成型形成的高阻气封闭物。阻挡材料也用于诸如肉托盘等刚性包装,虽然对于大多数应川,所述刚性塑料材料提供了充分的阻挡,而仅有位于顶部的薄膜需要改进性能。阻挡膜也可用于各种用途,如青贮饲料包装和家庭投送用成巻报纸的包装。减缓阻挡技术发布的一个问题是其对塑料回收性的影响-这对于瓶子市场是尤其如此。现在,目前许多PET瓶子具有位于外部的崭新材料和位于中间的回收PET和阻挡层的复杂的结构。如果所述阻挡树脂不能兼容于回收系统,则该技术的采用会具有相当的阻力。新材料进入市场是基于可持续的可再生的资源和/或可生物降解。可注射拉伸吹塑成型为瓶子或形成用于包装用途的薄膜的材料的一个例子是由苞谷合成的聚乳酸(PLA)。PLA具有较差的阻气性能以及也相对较差的水蒸气附ri忭能,并且为了维持可生物降解性或持续性状态,使用基于可再生资源的可生物降解性阻挡物将对现状有所裨益。制造阻挡膜的另一问题是适宜增塑剂的选择和处理。增塑剂是加入到聚合性材料中以促进可挠性、可加工性和延长性的物质。为了使阻挡膜更好地发挥作用,它们必须是非常干燥的。通常用于令人满意地干燥所述膜的温度可以为90。C28(TC或者更高量级。在这些温度下,增塑剂随着组合物中的水的逃逸而蒸发出来或者蒸馏出来。低分子量增塑剂尤其存在问题,因为它们在干燥和加工温度下具有可测量的蒸气压。保湿剂的加入并非总能有助于处理增塑剂,这是由于在更高的加工温度下,保湿剂吸引和保持水份的能力并不持久。在加工中甚至加工后可出现另一问题。当增塑剂由塑料体进入膜表面或者诸如粘合剂、表面材料等塑料复合物或层压物的其他组分,或者同时进入二者时发生增塑剂的迀移。这会导致吸附、加工和美观问题,如膜上的气泡和洞并且将粘合剂组分渗入表面材料之中。
发明内容在本发明的一个实施方式中,提供了聚合物组合物,所述聚合物组合物以干重计包括a)45重量%90重量°/。的淀粉;b)O.l重量%15重量%的水溶性聚合物,所述水溶性聚合物选自聚乙烯醇、聚乙酸乙烯酯、和乙烯与乙烯醇的共聚物,其具有与所述淀粉组分的熔融状态相容的熔点;和c)5重量%45重量%的一种或多种增塑剂,所述增塑剂的分子量为506000,更优选为502500,并且再更优选为100400,并理想地选自由山梨糖醇、丙三醇、麦芽糖醇、木糖醇、甘露醇、赤藓糖醇、甘油三油酸酯、三丁基柠檬酸酯、乙酰基三乙基柠檬酸酯、甘油基三乙酸酯、2,2,4-三甲基-1,3-戊二醇二异丁酸酯、聚氧化乙烯、乙二醇、二乙二醇或聚乙二醇组成的组。优选的是,所述淀粉是高直链淀粉和/或改性淀粉或接枝聚合物,所述改性淀粉选自通过与羟基垸基、乙酸酯或二羧酸酐反应而改性的淀粉。所述增塑剂优选为非重结晶增塑剂。在13(TC的干燥温度卜—,l人J—-:醇、山梨糖醇、赤藓糖醇和木糖醇均可伴随任何所存在的水而释放出来。也已发现一些增塑剂迁移或者起霜(bloom)。在这两种情况下,未能实现最佳结果。在优选的聚合物组合物中,增塑剂选自由麦芽糖醇、木糖醇和赤藓糖醇中的一种或多种组成的组。可选的是,所述聚合物组合物也可包括以干重计至多2.5重量%的012~22脂肪酸或(:1222脂肪酸盐。它们也可选地包括至多3%的亲水亲油平衡(HLB)值为122的乳化剂。其他传统的添加剂和填料也可包括在聚合组合物中。这些添加剂可包括除己说明的这些之外的其他处理助剂、增量剂、环氧化油、保湿剂、填料、颜料、防脱色和降解的热稳定剂和抗氧化剂、抗菌剂、UV/光稳定剂、润滑剂、阻燃剂、纳米颗粒和防粘连剂。7所述组合物可含有少量的结合水,但仅可达到在所选定的加工中的加工条件下水不会蒸发的程度。所述聚合组合物适用于挤出、共挤出或者铸造单独使用或者作为层压结构的一部分的薄膜。其他加工方法也可采用,包括共注射或注射成形,随之可能进行吹塑成型(注射-吹塑-成型和注射-拉伸-吹塑-成型)、挤出或共挤出成形,包括用于吹塑成型的管子(挤出-吹塑-成型)和挤出或共挤出和/或层压用于后续热成型的片材。发现当在共注射和共挤出l:序中采用高加工温度时,麦芽糖醇是特别有效的增塑剂。期望的是,由本发明的组合物形成的膜的阻气性在较高湿度下胜过淀粉类现有技术的组合物和目前常见的商业阻挡材料。由本发明的聚合物形成的膜具有优异的阻氧性,特别是具有的氧气渗透系数例如在相对湿度至多60%RH时低于0.1cm3mm/m^天'大气压和在相对湿度至多90%RH时低于0.7cm3mm/m^天'大气压。此外由本发明的组合物形成的膜具有的二氧化碳渗透系数在相对湿度至多60%RH时低于0.5cm3mm/n^天'大气压和在相对湿度至多90%RH时低于0.9cm3mm/m^天'大气压。由所述组合物形成的膜可与其他包装聚合物如PET、PE、(BO)PP、LDPE和聚乳酸通过共挤出、共注射成型、膜吹制或热层压技术进行层压。与PET和聚乳酸的层压物适合用作形成软饮料、啤酒或调味品用饮料瓶的预制件。其他注射拉伸吹塑成型层压产品包括用于汤、果汁和加「:水果的容器和化妆品瓶的热填充PET或PP容器。所述材料可用于阻氧阻C02用途的注射成型PP盖或封闭物。用于食物和药物用途的挤出吹塑成型PE瓶也含有本发明的共挤出膜。与PE、PP、BO-PP和聚乳酸(PLA)的层压物适合用于薄膜包装用途,如点心包装或者诸如肉等产品的改性空气包装用薄膜帽。采用诸如PET等极性材料时粘合性优异,然而,也指明了与诸如PP常见复合薄膜粘结层(tielayer)树脂等非极性材料的粘合性。适宜的复合薄膜粘结层材料包括基于PP、EVA、LDPE或LLDPE的接枝聚合物。还发现本发明的聚合物组合物在形成膜时可用作基底,在其上可涂覆上诸如临时性和永久性印刷物等市场、销售和促销材料,这将导致其被包装工业更多地采用,尤其是面向零售消费者产品的包装工业。所述材料可用在模内标签或模内装饰工序中以将阻挡膜施加在注射成型部件的表面上,或者以单次注射成型投料量制造印刷或装饰部件。用于所述模内装饰工序的基材可以是传统塑料,或者是可生物降解的聚合物。所述膜也可用作注射成型方法中的插入物以制造包封在注射成型组件如用于碳酸饮料的封闭物中的阻挡层。因为本发明的阻挡膜是可生物降解的和水溶性的,所以其适合于与可回收塑料一起使用。例如,它适合于与PET—起使用,这是因为它在PET回收中使用的碱洗工序中将溶解。它适合于与PLA'起使用,这足因为它是可堆肥的(compostable),并且可以至少与PLA—样快地被4-:物降解。具体实施例方式在所述组合物中,改性的和/或非改性的淀粉的量受限于所有其他组分的所需添加量它补齐总量。所述淀粉可源自于小麦、玉米、马铃薯、大米、燕麦、竹芋和豌豆来源。一种优选的来源是玉米(苞谷)淀粉。未改性的淀粉是来自可再生资源的廉价可生物降解性原材料,其有助于最终产品的阻挡性质,并且因此对本申请具有很大的吸引力。然而,其使用受限于退化(retrogmdation)的发生(由于脆性导致的结晶),限制了所得形成产品的光透明度,限制了成膜性质并限制了拉伸的弹性。作为淀粉总量的一部分的未改性淀粉的一个优选浓度范围是050%,尽管多至100%的水平也可以。如果存在改性淀粉,上限主要受制于其成本。该组分将向所得材料贡献结构上的益处,包括良好的成膜性质、良好的光学性质以及抗退化性。淀粉的退化和结晶涉及淀粉基塑料的诸多最重要的实际问题中的一个,这是因为它们有随着时间变脆的趋势,类似于烘烤食品中的老化(staling)过程。典型的改性淀粉包括具有羟基烷基C2-6基团的那些淀粉或者通过与二羧酸酐反应而改性的淀粉。一种优选的改性淀粉是羟丙基化直链淀粉。其他改性淀粉可以是羟乙基或羟丁基取代而形成羟基醚取代的淀粉。乙酸酯或诸如乙酸酐、马来酸酐、邻苯二甲酐酸或辛烯基琥珀酸酐等酸酐也可用于制造作为酯衍生物的改性淀粉。取代度[单元中被取代的羟基基团的平均数]优选为0.052。如果使用改性淀粉,一种优选的淀粉是高直链玉米(苞谷)淀粉,更优选的是羟丙基化高直链淀粉。在该产品中羟丙基化的最低水平为3.0%,更优选为6.0%。典型值为6.1%6.9%。出于节省成本的原因以及性质最优化的原因,可以用以下物质或方法来代替部分这种淀粉1)较高或较低水平的羟丙基化,2)较高水平的未改性淀粉。如果改性淀粉的羟丙基化水平增高,这是可能的,或者3)用辛烯基琥珀酸酐(OSA)改性的淀粉,其具有较高的疏水度。该改性淀粉的加入随着取代度的提高而提高了耐水性。当在含有流休的包装应用中加入由本发明的聚合物形成膜作为阻挡层时,由于这些情况下的相对湿度高至90%,从而是相关的。在OSA淀粉中的乙酰键确保了所述材料在接触水和生物活性环境时保持可生物降解性。4)淀粉共聚物,优选为由接枝有淀粉的苯乙烯丁二烯构成。该材料提高了产品的耐冲击性。所述组合物的聚合物组分b)优选为与淀粉相容,是水溶性的并且具有与所选择的一种或多种淀粉的加工温度相容的熔点。聚乙烯醇是一种优选的聚合物,但也可以使用乙烯-乙烯醇、乙烯-乙酸乙烯酯的聚合物或包含聚乙烯醇的混合物。所选择的聚合物应当优选为在室温条件F是非水溶性的。PVOH提供了优异的成膜和粘合剂特性、良好的弹性和淀粉基制剂辅助加工性的组合。通过聚乙酸乙烯酯的水解制造PVOH,聚乙酸乙烯酯是通过乙酸乙烯酯单体的聚合制成的。如果有的话,完全水解等级产物含有残留乙酸酯基团的量很低;而部分水解等级产物含有一些残留乙酸酯基团。完全水解等级产物溶解在热(90。C)水中,当冷却至室温时保持为溶液形式。优选等级的PVOH包括具有卯,000112,000的重均分子量,25mPa's70mPa's的特性粘度和99.0%99.8%的水解度的那些PVOH。较高分子量等级的PVOH似乎能提高耐冲击性并降低水敏感性。提高PVOH的水平显著提高了断裂时的伸长率并降低了杨氏模暴:。在低于6%时成膜可能变得困难。因此,薄膜阻挡材料的优选浓度范围是4%12%,并且用于注射-吹塑成型瓶的阻挡材料的优选浓度范围为4%12%。一定范围的增塑剂和保湿剂可用在本发明的组合物中以辅助加工以及控制和稳定所述阻挡材料的机械性质,尤其是降低对水份含量和相对湿度的依赖性。所需增塑剂含量主要取决于在(共)挤出或(共)注射成型工序和随后吹制或拉伸工序中所要求的加工行为,以及取决于最终产品所要求的机械性质。在选择适宜的增塑剂时,成本和诸如用在食物包装等的所述膜使用目的也是重要的因素。增塑剂扮演着三重角色它提供了挤出混合工序和层压工序的合适的流变性,它有利地影响产品的机械性质并且它可用作抗退化剂或抗结晶剂。优选的增塑剂是具有506000,更优选为502500和再更优选为100400的分子量的那些增塑剂,几且理想地选自由山梨糖醇、丙三醇、麦芽糖醇、木糖醇、甘露醇、赤藓糖醇、甘油三油酸酯、三丁基柠檬酸酯、乙酰基三乙基柠檬酸酯、甘油基三乙酸酯、2,2,4-三甲基-1,3-戊二醇二异丁酸酯、聚氧化乙烯、乙二醇、二乙二醇或聚乙二醇。优选的增塑剂是非结晶的。OH基团的数量越多,增塑剂在减少结晶方面更加有效。在一个优选实施方式中,增塑剂是麦芽糖醇。取决于具体用途和共挤出或层压工序,一种优选增塑剂的含量为10%40%。山梨糖醇、麦芽糖醇和木糖醇也可用作特别良好的保湿剂。在加工中,丙三醇协助溶解所述PVOH。一些多醇(尤其是山梨糖醇和丙三醇)可表现出迁移至膜的表面,或者在山梨糖醇的情况下可以形成不透明的结晶膜,或者在丙三醇的情况下形成油状膜。混合各种多醇在不同程度上抑制了这种效果。已知的是所述多醇具有与盐的协同作用,从而导致提高的机械性质。PEG化合物可用作乳化剂、增塑剂或保湿剂。聚氧化乙烯和聚乙二ii醇也可相互替代地或者共同提供提高的耐水性,从而防止会导致多层结构(MLS)分层的溶胀。在PVC工业中更常使用的其他增塑剂也是适宜的,包括三丁基柠檬酸酯、2,2,4-三甲基-l,3-戊二醇二异丁酸酯和乙酰二乙基柠檬酸酯。0%20%的保湿剂或水结合剂或胶凝剂可用作(共)增塑剂。适宜的例子有角叉胶、黄原胶、阿拉伯胶、瓜尔胶、明胶、糖或葡萄糖。通常用在食物产品中作为增稠剂并且在冷水中部分可溶而在热水中完全溶解的诸如角叉胶等生物聚合物适用于对机械性质进行调整。通过结合水,这些组分可具有显著的增塑功能。可加入明胶以改善机械性质和降低水份敏感性。黄原胶具有高的水保持能力并且也可用作乳化剂,并且在淀粉组合物中具有抗退化效果。阿拉伯胶也可用作组织形成剂(texturiser)和膜形成剂,而亲水碳水化合物和疏水蛋白使之具有水状胶体乳化和稳定性质。瓜尔胶具有相似的在淀粉组合物中的抗结晶作用。其他适宜的保湿剂是甘油基三乙酸酯。用诸如氯化钠和氢氧化钠等盐也可获得或增强增塑和保湿效果。钾盐、乙酸钾、氧化钙和碘化钠也是合适的。钙盐提高了挤出淀粉材料的刚度和尺寸稳定性,并可另外与角叉胶联合使川以辅助胶凝。诸如硬脂酸等脂肪酸和脂肪酸盐也可在所述组合物中用作润滑剂,这是因为其表现出比诸如蜡等更好的与淀粉的相容性。硬脂酸是疏水性的并因此提高了淀粉类材料的水份敏感性。与硬脂酸一样,也可以使用诸如硬脂酸钙等盐。乳化剂的脂肪酸部分的饱和度限制了其按要求发挥作用的能力,优选的是更饱和的脂肪酸。硬脂酸作为加工助剂是特别有用的,然而在PEO或PEG的存在下,其并非必须。硬脂酸的优选水平为0.5%1.5%。也可以使用硬脂酸的钠盐和钾盐。再次,成本是选择该组分的一个因素,但月桂酸、肉豆蔻酸、棕榈酸、亚油酸和山嵛酸也都是适用的。适宜的加工助剂的选择主要受限制于所要求的对MLS中分层的耐抗性。将亚硫酸化试剂(二氧化硫、亚硫酸钠、亚硫酸氢钠和亚硫酸氢钾和偏亚硫酸氢钠和偏亚硫酸氢钾)加入到许多食物中以抑制酶性或非酶性褐变,并且在本发明的组合物中用作抗氧化剂或还原剂。亚硫酸盐通过与羰基中间物反应从而防止它们进一步反应形成褐色颜料,从而抑制非酶性褐变。经常与抗坏血酸或亚硫酸氢钠联合使用的拧檬酸也早已用作酶性褐变的化学抑制剂。用于其中褐变是所不希望的用途中的亚硫酸氡钾的一个优选浓度为至多2%,可能联合至多2%的抗坏血酸。在1%以水平的柠檬酸未表现出有益。在所述膜需要进行高温加工的情况屮,量至多2重量%的诸如维生素E或受阻酚等热稳定剂是适合的。当在所述组合物中存在乳化剂,并且所述膜的用途是包装食物时,所述乳化剂优选为食品级乳化剂。通常,乳化剂的选择是基于其HLB值。优选的乳化剂选自HLB数为122的食品级乳化剂,并包括单硬脂酸丙二醇酯、单油酸甘油酯、三油酸甘油酯、单硬脂酸甘油酯、乙酰化单甘油酯(硬脂酸酯)、山梨聚糖单油酸酯、单月桂酸丙二醇酯、山梨聚糖单硬脂酸酯、硬脂酰-2-乳酸钙、单月桂酸甘油酯、山梨聚糖单棕榈酸酯、大豆卵磷脂、二乙酰化酒石酸单甘油酯、硬脂酰乳酸钠、山梨聚糖单月桂酸酯。硬脂酰乳酸钠和单硬脂酸甘油酯通常使用在淀粉体系中。表2—些乳化剂的疏水/亲水平衡(HLB)值<table>tableseeoriginaldocumentpage13</column></row><table>单硬脂酸甘油酯是亲脂的非离子表面活性剂,它特别适用于本申请,这是由于它在淀粉组合物中具有消泡作用和抗退化效果。以1%1.5%的水平加入的单硬脂酸甘油酯用作乳化剂以稳定混合物的机械性质并提高均一性。0.25%1.5%的硬脂酰乳酸钠可加入到增塑剂体系中以稳定混合物的机械性质并提高均一性。硬脂酰乳酸盐(钠盐或钙盐)也通常用作面团强化剂并因此用作抗退化剂。单硬脂酸甘油酯和硬脂酰乳酸钠的组合导致性质更快稳定。HLB值遵从加法规则,对于合适的SSL和GMS的混合物优选为410的量级。出于将淀粉"成胶状化"(也称之为变性(destmcturising)或融化(melting))为聚合性凝胶结构的目的而加入水。水也在最终产品中用作类似增塑剂,在其中它软化材料或者降低模量。阻挡材料的水份含鼂nj在水活性或相对湿度(RH)低于30%或高至75%卜—变化。在许多阻^脱和阻挡瓶用途中,所述阻挡材料暴露于其中的局部相对湿度可达到至多90%的值。为了稳定的机械、层压和阻挡性质以及在所有温度下便捷处理,优选非挥发性增塑剂。因此,在混合阶段之中或者之后和/或在随后注射成型或成膜的投料阶段中,部分或者全部水将干掉。这可通过排空挤出机桶和/或在线干燥粒料而实现。任何残留的水应当在保湿剂的辅助下被结合以避免在工序中起泡、或使用时机械性质的明显改变。未增塑的组合物的挤出工序可伴有低至10%的游离水浓度,具有多醇增塑剂的制剂可在注射成型前干燥至0%的游离水(在130"C通过Perkin-Elmer水分平衡进行测量)。优选的游离水分含量是由水分吸收试验所测定的在最终产品使用时的RH范围内制剂的平衡水含量。这取决于所述制剂的具体组成,但可在0%1%的范围内,更优选为在该范围的低端。可加入到成膜组合物中的填料包括碳酸钙、高岭土、粘土、二,l化钛、滑石、天然和合成纤维并可根据组合物的目的进行选择。实施例本发明的阻挡材料可由在表1中列出的配方的淀粉聚合物组合物形成。将选定的普通包装材料和用于包装目的的阻挡膜对氧气的渗透性提供在表2中进行比较。将选定的普通包装材料和用于包装目的的阻挡膜对二氧化碳的渗透性提供在表3中进行比较。表l:本发明的组合物<table>tableseeoriginaldocumentpage15</column></row><table>至230。C的。/。TGA损失6.5%1.2%6.5%3.8%1.1%0.7%0.8%1.1%1.2%在230。C保持10分钟的。/oTGA损失6.0%5.5%12.1%2.5%3.0%3.0%3.2%3.2%200780014141.7势溢1被12/17:a;表2在2(TC25"C下选定的商业聚合物和来自文献的阻挡材料的氧渗透性材料等级名称<table>tableseeoriginaldocumentpage16</column></row><table>PlasticsDesignLibrary,1995〃P/os"c^尸ac^ag/"g〃,HernandezSelke禾口Culter编,HanserVerlag[3]WO90/14938(引用的渗透性单位为ml(STP)cmxl0,cm2scmHg)对本发明的组合物的阻挡性能作出贡献的主要组分是淀粉和PVOH。多醇增塑剂也对所述阻挡性质作出了贡献。所述组分的协同作用,以及这些组分在挤出工序中可形成的任何复合物可有助于显著提高本发明的聚合材料的阻氧性。表3<table>tableseeoriginaldocumentpage17</column></row><table>[2]"尸/aWcsPacA^g/wg",HernandezSelke禾口Culter编,HanserVerlag[3]Hu等,Polymer46(2005)2685-2698本发明的阻挡层是透明的,并理想地适用于能看见产品的多层包装物。本发明的阻挡材料的光学性质在250微米片材上进行测量,结果为8。/010。/()的雾度(ASTMD1003-00)、85-95。/。的光透射率(ASTMDl746-92)和84.7%的60。镜面光泽(ASTMD2457-97)。当测试的膜为所涂覆的阻挡层的厚度的10倍时,该阻挡材料实现了在PET软饮料瓶中2040微米厚的阻挡层的所要求的光学性质,即大于90%的光透射率和小于3%的雾度,以及由labb*读数表征的黄化小于2。在15微米厚的层处EVOH-F具有1.5%的雾度,1214微米的PET具有2.5。/。3.9。/。的雾度。2022微米的PP具有2.2%3.5%的雾度。制造方法所述材料通过挤出混合制造,采用共或反旋转双螺杆挤出机或选定设计的单螺杆挤出机。优选工序是双螺杆共旋转混合,挤出压力为至少10Bar(巴),螺杆速度为至少100RPM。根据其他增塑剂的水平和性质,可将水加入到所述工序中(通过与增塑剂一起进行液体注射)。可通过对压出条、离心机和造粒用流化床的对流干燥、接触加热、IR加热或微波干燥,或者桶通风(barrelventing)或者这些的组合除去水。通过水下造粒、模面切割或条冷却和切割得到颗粒。用PET的共注射拉伸吹塑成型共注射可采用传统螺杆驱动或注射驱动工序以热或冷流道(runner)系统对所述组合物进行注射成型。本发明的组合物已经过设计与用于在较高温度下共注射成型的PET相容。可预计本发明的组合物将成功地在工业标准预制件共注射机上进行共注射成型。所述预制件模具的冷半部可预计为标准设计。热半部可以为特殊设计。两种材料可以在独立的支管中运输,并在喷嘴处混合以形成环状流图案。每个支管可以有独立的温度控制,具有良好的热分离。喷嘴是所述支管系统中两股材料流温度必须相同的唯一部分。该温度通常为约250"C28(TC以满足PET的要求。用于1/2L瓶子的典型的28g预制件的加工条件显示在表4中。可在标准工业减湿干燥机中按要求对材料进行干燥。表4-用于1/2L瓶子的典型的28g预制件的加工条件<table>tableseeoriginaldocumentpage18</column></row><table>瓶吹制本发明组合物可在传统拉伸吹塑成型生产线上容易地吹制为瓶子。预制件温度可以为100°C120°C,可以采用的吹塑成型压力为3545bar。粘合由于具有>50达因/cm的表面张力的阻挡材料的极性性质,以及由于没有与结晶相关的收縮,可以预测与PET的粘合将非常优异。机械性能阻挡层通常占多层结构的总层厚度的约520%。因此,其机械性能对最终产品的机械性能有一定程度上的贡献。当所述阻挡材料的机械性能更低时,可以通过以下方法进行一定的补偿,即稍微增加容器的壁厚度,但不超过阻挡层的厚度,因此最多增加10%,与传统阻挡材料相比,这可被在成本节约方面优异的阻挡性质的优点所抵消。同样重要的是伸长行为,在瓶吹制过程中,轴向拉伸为约1.5倍3.5倍,环向拉伸为约3.5倍5倍。该拉伸出现在热形式中,阻挡层由基质所支撑。在表5中将本发明的阻挡材料的机械性能与用于注射拉伸吹塑成型中的商业材料进行了比较。表5<table>tableseeoriginaldocumentpage19</column></row><table>铸膜挤出本发明的阻挡材料也可用作单层产品,可选地具有印刷物和漆膜。所得膜可以较薄,用于糖果棒或糖果袋,或者可以较厚,用于热成型用途,因为该材料也理想地适用于热成型加工。本发明的制剂适用于薄膜的挤出铸造。本领域技术人员能选择合适的增塑剂水平以获得对于所要求的用途而言所需的熔化强度和机械性能。在本发明中使用的优选组合物是可冷密封和热密封的。双轴取向膜挤出本发明的阻挡材料可共挤出为层压物或者在独立的层压步骤中与传统膜聚合物(例如双轴取向pp)相结合。其他材料可以是任何适宜的包装聚合物,如聚丙烯(PP)、聚乙烯(PE)或低密度聚乙烯(LDPE),或可生物降解聚合物如聚乳酸(PLA)或其他聚酯。本发明的阻挡材料优选用作三层层压物或者57层产品(如果额外的复合薄膜粘结层和保护涂层被认为是必需的)中的中间层。此外,如果仅在一侧需要耐水性或者对于所包装的产品不要求阻水汽性,它也可以是两层包装材料的内层或外层。本领域技术人员能选择合适的增塑剂水平以获得所需与感兴趣的聚合物组合相容的粘度。在大多数情况下,进料块(feedblock)足以控制各种材料层,在其他情况卜,更希望是多-支管模具。多层相容性本发明的膜与诸如PET等极性材料的粘合是优异的,而对于与诸如BO-PP等非极性材料的粘合,指明需要普通复合薄膜粘结层树脂。适宜的复合薄膜粘结层材料包括基于PP、EVA、LDPE或LLDPE的接枝聚合物。为了粘合于PP,来自Atofma的OrevacPPC适用于透明应用,来自Atofma的Orevac18729或18910用于不透明的应用。其他适货的复合薄膜粘结层包括EVA共聚物、丙烯酸共聚物和三元共聚物、离聚物、金属茂PE、乙烯丙烯酸酯三元共聚物和乙烯乙酸乙烯酯三元共聚物。酸酐改性聚合物(诸如DuPontBynelCXA50E662)也适用于本发明的干制剂。所述阻挡材料具有固有的抗静电性,并可用所有标准印刷技术进行印刷或涂覆。对于溶剂类油墨,与油墨和涂层的结合是优异的,这可由胶带剥离测试进行测定。耐撕裂增生为(ASTMD1938)200Nm400Nm,而动摩擦系数(ASTMD1434)为0.10.3。膜吹制遵循以上描述的用于多层双轴取向膜挤出的原则,该阻挡材料可共挤出为吹制膜,需要时采用相似的复合薄膜粘结层原则。在阻挡材料中,本发明的组合物在以下方面是独特的它们与最常用的材料(例如MXD6)相比可以以显著更低的成本提供更好的阻ri忭质,在层厚度和化合物价格方面都能节省成本。该阻挡材料成分属性保证了其与油类聚合物相比价格稳定,与MXD6相比,价格具有竞争力。它们通常可以以MXD6的80%的价格有利地得到。此外,组合物的水溶性提供了优异的与该阻挡相结合的基体材料的回收性。如果用作单层结构阻挡包装,该材料进一步为可堆肥的和可生物降解的,并在环境温度下作为垃圾分解和生物降解。这些独特的性质均源于制剂中化合物的组合。本领域技术人员将意识到本发明能以各种方式实施而不背离本发明的基本教导。权利要求1.一种聚合物组合物,所述聚合物组合物以干重计包括a)45重量%~90重量%的淀粉;b)0.1重量%~15重量%的水溶性聚合物,所述水溶性聚合物选自聚乙烯醇、聚乙酸乙烯酯、和乙烯与乙烯醇的共聚物,其具有与所述淀粉组分的熔融状态相容的熔点;和c)5重量%~45重量%的一种或多种增塑剂,所述增塑剂的分子量为50~6000,更优选为50~2500,并且再更优选为100~400,并理想地选自由山梨糖醇、丙三醇、麦芽糖醇、木糖醇、甘露醇、赤藓糖醇、甘油三油酸酯、三丁基柠檬酸酯、乙酰基三乙基柠檬酸酯、甘油基三乙酸酯、2,2,4-三甲基-1,3-戊二醇二异丁酸酯、聚氧化乙烯、乙二醇、二乙二醇或聚乙二醇组成的组。2.如权利要求1所述的组合物,其中,所述淀粉是高直链淀粉和/或改性淀粉或接枝聚合物,所述改性淀粉选自通过与羟基垸基、乙酸酯或二羧酸酐反应而改性的淀粉。3.如权利要求13中任一项所述的组合物,其中,所述增塑剂是选自由麦芽糖醇、木糖醇和赤藓糖醇组成的组的一种或多种增塑剂。4.如权利要求14中任一项所述的组合物,所述组合物另外包括以干重计至多2.5重量%的(312~22脂肪酸或(:12~22脂肪酸盐。5.如权利要求15中任一项所述的组合物,所述组合物另外包括至多30/。的亲水亲油平衡(HLB)值为122的乳化剂。6.如权利要求16中任一项所述的组合物,其中,组分b)是聚乙烯醇。7.聚对苯二甲酸乙二酯或聚乳酸与权利要求1所述的组合物的共注射成型层压物。8.如权利要求1所述的组合物的共挤出膜或单层膜,所述共挤出膜或单层膜用在模内标签工艺中以制造经印刷的或加标签的注射成型组件。9.如权利要求1所述的组合物的共挤出膜或单层膜,所述共挤出膜或单层膜用做模内标签和/或模内装饰工艺中的阻挡层。10.如权利要求7所述的共注射成型层压物预制件,所述预制件用于吹塑成型为饮料瓶。11.聚乙烯、聚丙烯或聚乳酸与权利要求1所述的组合物的共挤出层压物。12.如权利要求1所述的组合物的单层,所述单层用于薄膜包装应用。13.如权利要求10所述的共挤出层压物,所述层压物用于薄膜包装应用。全文摘要本发明涉及聚合物组合物及其用于薄膜包装的用途,所述聚合物组合物以干重计包括a)45重量%~90重量%的淀粉;b)0.1重量%~15重量%的水溶性聚合物,所述水溶性聚合物选自聚乙烯醇、聚乙酸乙烯酯、和乙烯与乙烯醇的共聚物,其具有与所述淀粉组分的熔融状态相容的熔点;和c)5重量%~45重量%的一种或多种增塑剂,所述增塑剂的分子量为50~6000,更优选为50~2500,并且再更优选为100~400,并理想地选自由山梨糖醇、丙三醇、麦芽糖醇、木糖醇、甘露醇、赤藓糖醇、甘油三油酸酯、三丁基柠檬酸酯、乙酰基三乙基柠檬酸酯、甘油基三乙酸酯、2,2,4-三甲基-1,3-戊二醇二异丁酸酯、聚氧化乙烯、乙二醇、二乙二醇或聚乙二醇组成的组。文档编号C08L3/00GK101426845SQ200780014141公开日2009年5月6日申请日期2007年4月18日优先权日2006年4月18日发明者基尚·赫马尼,尼克拉斯·约翰·麦卡弗里,尼古拉斯·罗伊·奥克利申请人:普朗蒂克科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1