制备含氟聚合物粉末材料的方法

文档序号:3696403阅读:231来源:国知局
专利名称:制备含氟聚合物粉末材料的方法
制备含氟聚合物粉末材料的方法 本发明涉及一种制备含氟聚合物粉末材料的方法。 含氟聚合物是长链聚合物,其主要含有烯属线性重复单元,其中一部分或全部氢 原子被氟代替。例子包括聚四氟乙烯、全氟甲基乙烯基醚(MFA)、氟乙烯丙烯共聚物(FEP)、 全氟烷氧基聚合物(PFA)、聚一氯三氟乙烯和聚氟乙烯。它们是所有聚合物中化学惰性最强 的,特征在于具有对酸、碱和溶剂的特殊耐性。它们特别具有低摩擦性能,并能忍受极限温 度。因此,含氟聚合物用于许多其中需要抵抗极限环境的应用中。目前的应用包括形成在 化学设备、半导体仪器、汽车部件和结构覆盖层中的管道和包装材料。 有一些需要使用粉末形式的含氟聚合物的应用。含氟聚合物可以通过粉末的静电 喷涂而施用到表面上。用途将包括作为家用炊具的涂层以提高不发粘性和耐磨性,以及作 为汽车部件的涂层以提高耐环境风化性。 目前,两种方法通常用于生产粉末形式的含氟聚合物。喷涂方法包括将含氟聚合 物进料的水分散体泵入雾化体系中,一般位于干燥室的顶部。将此液体雾化成受热气体料 流,从而蒸发水并产生干粉末。此方法存在一些限制。要求将水分散体泵入雾化体系中会将 此工艺限制为用于可泵送的材料,喷雾干燥的聚集体彼此紧密地结合并抵抗随后的解聚。 另外,仅仅能加工不能原纤化的材料,因为雾化会导致含氟聚合物的原纤化,导致获得难以 处理的难以控制的"棉花糖"材料。 另一种方法包括在水分散体内凝结粒子。凝结是通过使用高机械剪切、加入酸或
加入胶凝剂和随后用水不混溶性有机液体处理而促进的。凝结的粒子可以通过过滤从残余
液体中分离出来,随后干燥,通常使用盘式、带式或快速干燥器进行。凝结的颗粒通常进行
表面硬化,从而易于处理。但是,聚集体的形成导致粒径对于常规粉末喷涂技术而言过大。
研磨通常用于调节粒径分布,但会引起粒子的原纤化,从而产生难以处理和难以控制的材
料。经过表面硬化的材料也产生紧密的聚集体,其抵抗随后的解聚。 在这两种方法中,都难以引入显著量的改性剂以改进含氟聚合物抗渗性。 所以,本发明的目的是提供一种制备改性的含氟聚合物粉末材料的方法,所述材
料具有改进的抗渗性。 根据本发明,提供一种制备改性的含氟聚合物粉末材料的方法,此方法包括以下
步骤形成含氟聚合物的固体粒子与作为改性剂的聚四氟乙烯(PTFE)粒子一起在含水液
体载体中的悬浮液;将水悬浮液冷冻;随后使已冷冻的水悬浮液进行升华,从而产生粉末
形式的且被所存在的PTFE改性剂改性的含氟聚合物干粒子。 本发明方法允许使用常规技术将更多的改性剂加入聚合物中。 改性剂粒子有效地分散在含水载体中的含氟聚合物粒子之间,从而向粉末材料产
品赋予优异的抗渗性。制得了 PTFE/含氟聚合物合金,其结晶性质比未改性的含氟聚合物
更强。对已冷冻干燥的改性含氟聚合物材料的后研磨或辐照操作也能改进其作为粉末涂料
材料的适用性。 优选,含氟聚合物是全氟甲基乙烯基醚聚合物(MFA)。优选,含氟聚合物的粒径 是30-350nm,优选200-250nm,例如约230nm。优选,PTFE改性剂的粒径是30-350nm,优选
3200-250nm,并作为MFA/PTFE混合物的最多50重量% 、优选20-30重量% 、例如约25重量% 存在,基于干重计。 此方法特别适用于加工全氟甲基乙烯基醚聚合物(MFA)、氟乙烯丙烯共聚物 (FEP)和全氟烷氧基聚合物(PFA)。 优选,改性的含氟聚合物粉末材料具有足够小以允许通过常规粉末喷涂技术施用 的粒径。所产生的聚集体(具有约0. 2 ii m的初级粒径)可以具有1-100 ii m的平均直径, 更优选20-30 ii m。 优选,固体含氟聚合物粒子在液体载体中的悬浮液是在冷冻器中于低于ot:的温 度冷冻的。更优选,悬浮液于-6(TC至-2(TC范围内的温度冷冻。通常,冷冻可以在6-24小 时内完成。 优选,固体含氟聚合物粒子在液体载体中的悬浮液在冷冻之前被倾倒、舀取或转 移到盘中。优选,装有固体含氟聚合物粒子的悬浮液的盘然后放到冷冻器中,并在盘内冷 冻。 优选,含水载体是不含或含有表面活性剂以及含有或不含桥接溶剂(用于辅助额 外树脂的分散/溶剂化的有机溶剂)的水。如果使用桥接溶剂,则它们应当处于足够低的 浓度并具有足够高的熔点,从而不会抑制冷冻。 优选,升华是采用低于一大气压的压力或真空进行的。采用减压导致载体从冷冻 状态直接升华到气态,避免了从固体到液体和从液体到气体的转换。优选,减压是用真空泵 产生的。优选,减压是在0.01-0. 99atm的范围内,更优选0. 04-0. 08atm。通常,升华可以在 12-48小时内完成。 此方法优选在实际比含氟聚合物的玻璃化转变温度更低的温度下进行。聚合物的
玻璃化转变温度Tg是聚合物从玻璃态形式转化成橡胶态形式时的温度。Tg的检测值将取
决于聚合物的分子量、其热历史和老化,并取决于加热和冷却速率。典型的值是MFA的Tg
为约75 °C , PFA的Tg为约75 °C , FEP的Tg为约-208 °C , PVDF的Tg为约-45 °C 。 控制温度以辅助升华过程并避免载体液体的熔融。有利的巧合是这些控制也保持
温度低于一些所列材料的Tg。因此,此方法可以在环境温度下进行。或者,此方法可以在高
于环境温度的温度下进行,从而减少完成工艺所需的时间。 改性的含氟聚合物粒子可以在升华出现后或在本发明方法期间的任何时候进行 处理。这些改性可以包括研磨或辐照含氟聚合物。含氟聚合物的辐照将一般在研磨后进行, 从而帮助粒径控制。研磨调节改性含氟聚合物的粒径分布,例如降低平均粒径以产生更细 的粉末。通常,研磨将一般在针式或喷射磨机中进行。 当本发明另外包括对改性含氟聚合物粒子的辐照操作时,这将一般对粉末进行, 但是也可以对悬浮液进行。辐照调节改性含氟聚合物的熔体特征,例如降低了熔融温度/ 玻璃化转变温度并提高熔体流速。 本发明方法不会导致粒子的紧密聚集,而是产生了细粉末,这适用于挤出、常规粉 末喷涂技术或用于在含水介质或有机介质中的再分散。这种脆的粉末可以容易地碎裂而用 于粒径改进。 与公知的涉及喷雾干燥和凝结的且要求远远超过IO(TC温度的现有技术方法相 比,本发明方法可以在比含氟聚合物的玻璃化转变温度更低的温度下进行。环境温度的使用允许更大的能量效率,而使用高于环境温度但低于玻璃化转变温度的温度也可以用于提 高升华的速度。高于环境温度的温度也可以用于辅助二次干燥,从而驱除任何剩余的痕量 液体载体。 本发明方法可以用于制备改性的含氟聚合物粉末材料,不论此含氟聚合物是能原 纤化还是不能原纤化的。能原纤化的聚合物是当暴露于剪切力时会形成纤维的聚合物。公 知的涉及喷雾干燥和凝集的方法都使得固体含氟聚合物粒子暴露于剪切力,这会导致产生 难以控制的材料。本发明在任何阶段中都不涉及剪切力,所以适用于能原纤化的聚合物。
本发明方法可以用于从固体含氟聚合物粒子在液体载体中的可泵送或不可泵送 的悬浮液制备改性含氟聚合物粉末材料。此悬浮液可以是不可泵送的,因为具有高粘度或 剪切敏感性。此方法不涉及任何必须泵送悬浮液的步骤。相反,此悬浮液可以被倾倒或舀 取到用于冷冻的盘中,冷冻的固体块料可以被转移到真空室中。 本发明可以以不同的方式进行,下面的实施例并参考附图将描述一些实施方案, 其中

图1是MFA的DSC曲线;
图2是PTFE的DSC曲线;禾口 图3是按照本发明被PTFE改性的MFA的DSC曲线。
实施例1 采用MFA和作为改性剂的PTFE的实验 将被在PTFE固体上的0. 6% D6483 (100%聚硅氧烷)稳定的SFN-DNPTFE水分散 体加入6202-lMFA分散液中,得到25 :75PTFE :MFA固含量。将此分散体在缓慢搅拌下混合。 将此混合物冷冻并冷冻干燥。将所得的干粉用静电喷涂枪涂到在喷铁砂的铝板上的Xylan 4018/G0916底漆上。将此板在15(TC闪蒸并在40(TC固化20分钟。将粉末熔化以形成连续 的膜。 参见图1-3所示的三组DSC数据。从纯聚合物(图l-MFA和图2-PTFE)向合金 (25PTFE,75MFA)的熔点位移的比较显示聚合物形成了真合金并一起共结晶。MFA的结晶热 是21J/g,而合金的结晶热是30J/g,这表示结晶百分比提高了 30%。也在熔融热中发现了 相似的现象(第二熔融曲线)。 通过此方法生产的MFA/PTFE共混物具有特定的优点。MFA聚合物的结晶性质的提 高可以通过考虑在DSC数据中的熔化热来证明。高度结晶的聚合物具有更好的抗渗性能。 而且,喷雾干燥工艺产生了 PTFE和MFA的均匀共混物。在纳米级别上的混合以及冷冻干燥 将聚合物粒子锁定在原地;没有出现聚合物的宏观聚集。
权利要求
一种制备改性的含氟聚合物粉末材料的方法,此方法包括以下步骤形成含氟聚合物的固体粒子与作为改性剂的聚四氟乙烯(PTFE)粒子一起在含水液体载体中的悬浮液;将水悬浮液冷冻;随后使已冷冻的水悬浮液进行升华,从而产生粉末形式的且被所存在的PTFE改性剂改性的含氟聚合物干粒子。
2. 权利要求1的方法,其中含氟聚合物是全氟甲基乙烯基醚聚合物(MFA)。
3. 权利要求1或2的方法,其中含氟聚合物的粒径是30-350nm。
4. 前述权利要求中任一项的方法,其中PTFE改性剂的粒径是30-350nm。
5. 前述权利要求中任一项的方法,其中PTFE作为MFA/PTFE混合物的最多50重量%存 在,基于干重计。
6. 前述权利要求中任一项的方法,其中升华是通过低于一大气压的压力实现的。
7. 权利要求6的方法,其中减压是在0. 01-0. 99atm的范围内。
8. 前述权利要求中任一项的方法,其中升华是在比含氟聚合物的玻璃化转变温度更低 的温度下进行的。
9. 权利要求8的方法,其中升华是在环境温度下进行的。
10. 权利要求8的方法,其中升华是在环境温度与含氟聚合物玻璃化转变温度之间的 温度下进行的。
11. 前述权利要求中任一项的方法,其中固体粒子在含水载体中的悬浮液是在-6(TC 至-20°C范围内的温度下冷冻的。
12. 前述权利要求中任一项的方法,其中固体粒子在含水载体中的悬浮液是在盘中冷 冻的。
13. 前述权利要求中任一项的方法,其中使改性的含氟聚合物粒子进行研磨和/或辐昭。
14. 前述权利要求中任一项的方法,其中含氟聚合物是能原纤化的和/或不可泵送的。
全文摘要
本发明公开了一种制备改性的含氟聚合物粉末材料的方法。使固体含氟聚合物粒子与PTFE粒子一起在含水载体中的悬浮液冷冻,随后通过在低于一大气压的压力下升华除去已冷冻的载体,从而产生改性含氟聚合物粒子的干粉末。
文档编号C08J3/12GK101784586SQ200880102912
公开日2010年7月21日 申请日期2008年7月15日 优先权日2007年7月17日
发明者A·J·梅尔维尔, J·K·赖特, J·吉恩斯, L·W·哈维, M·科茨 申请人:惠特福德塑料制品有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1