专利名称:制备复合材料的方法
制备复合材料的方法本发明涉及制造复合材料的方法,包括在给定条件下制备基于碳纳米管的母料, 并将所述母料引入到热塑性和/或弹性体聚合物组合物中。
碳纳米管(或CNT)是已知的,并且其具有特殊的管状结晶结构,其为中空且封闭 的、由以五边形、六边形和/或七边形的形式规则排列的原子组成,并且得自碳。CNT 一般由 一个或多个卷起的石墨片构成。单壁纳米管(SWNT)和多壁纳米管(MWNT)由此区分。CNT可商购得到或者可通过已知的方法进行制备。存在若干用于合成CNT的方法, 特别是放电法、激光烧蚀法和CVD (化学气相沉积),所述CVD使得能够制造大量碳纳米管并 且因此以与其大量使用相适合的制造成本获得大量碳纳米管。这种方法具体在于在相对高 的温度下将碳源喷射到催化剂上,该催化剂自身可由负载于无机固体例如氧化铝、二氧化 硅或氧化镁上的金属例如铁、钴、镍或钼组成。所述碳源可为甲烷、乙烷、乙烯、乙炔、乙醇、 甲醇或者甚至一氧化碳和氢气的混合物(HIPC0方法)。因此,Hyperion Catalysis International Inc.的申请 WO 86/03455 Al 具体描 述了 CNT的合成。更具体地说,该方法包括在850°C 1200°C的温度下使基于金属(例如 特别是铁、钴或镍)的颗粒与基于碳的气态化合物接触,以干重计算,所述基于碳的化合物 与所述基于金属的颗粒之比至少为约100 1。从力学的观点看来,CNT呈现出可与钢相比的优异的刚性(通过杨式模量测量), 同时非常轻。而且,它们呈现出优异的导电性质和导热性质,使得有可能设想使用它们作为 添加剂,以赋予各种材料,特别是大分子材料(例如热塑性材料和弹性体)以这些性能。热 塑性材料构成了在各种应用中越来越多地使用的一大类合成材料。由于它们的质量轻、它 们的机械强度高以及它们对于环境影响的耐受性,热塑性材料构成了特别是对于建筑工业 (管道工程、管线等的设备)、容器、包装(瓶和盒)、电绝缘、电气商品、服装、窗框和机动车 工业而言的理想材料。关于弹性体,它们的高弹性使得它们在机械部件例如输送电能或卫 生领域中的机械部件的制造中是不可或缺的。因此,在文献US 2002/0185770中已经提出制备基于CNT和粉状热塑性或热固性 聚合物的片材或棒材。McNally 等人在 Polymer,Elsevier SciencePublishers B. V.,第 46卷,第19期,第8822-8232页(2005)中也提出通过挤出具有0. 1 10% CNT的中密度 聚乙烯粉末得到的纳米复合材料。然后将该挤出产物通过压缩进行成型以形成片材。然而,CNT证实是难以处理和分散的,这是由下列原因导致的它们的小尺寸;它 们的粉状;以及可能的是,当通过CVD技术得到CNT时它们的缠结结构,在希望提高其大规 模生产率以改进生产和减少残留灰分含量时CNT的缠绕结构甚至更是如此。纳米管之间的 强的范德华相互作用的存在也不利地影响它们的分散性和所得悬浮体的稳定性。CNT差的分散性显著影响了 CNT与将CNT引入其中的的聚合物基质形成的复合材 料的性能。具体地说,观察到以纳米管聚集体形成的纳米级裂纹的出现,其导致复合材料变 脆。而且,由于CNT分散差,必须提高它们的含量以得到给定的导电和/或导热性,这具有提 高最终复合材料的粘度的效国,该效果可诱发自加热,所述自加热可导致聚合物的降解和/ 或导致生产率的下降(生产线速度下降以限制由产物粘度产生的压力)。
在热塑性和/或弹性体聚合物基质的情况下,特别是当使用颗粒形式的聚合物 时,特别观察到碳纳米管差的分散性,具体如文献US 2004/026581中所述。 为了克服这些缺陷,现有技术中已经提出了各种解决方案。其中,已经提出制 备CNT与分散剂例如表面活性剂(包括十二烷基硫酸钠)在溶剂中的混合物(EP-1 495 171 ;Vigolo B.等人,Science, 290 (2000), 1331 ;Wang J.等人,J. of Chem. Society, 125, (2003), 2408 ;Moore V. C.等人,Nanoletters,3,(2003),2408)。然而,后者并未使分散大 量的CNT成为可能,仅仅在CNT浓度小于2或3g/l的情况下得到令人满意的分散体。而且, 在通常进行以除去溶液中过量的表面活性剂的透析步骤期间所述表面活性剂能够从CNT 的表面上完全解吸,这具有使所获得的悬浮体失稳的作用。另一在申请WO 2007/063253中所述的解决方案在于制造基于碳纳米管和化合物 A的粉状组合物,所述化合物A可为单体、熔融聚合物、单体和/或聚合物的溶液、表面活性 剂等,所述化合物A的物理形式可为液态、固态或气态。然而,由此得到的最终固体混合物 为不总是非常容易处理和储存的粉末形式,并且仍然必须进行其配混以得到最终材料。类似地,文献JP 2003/012939也公开了基于CNT和聚酰胺的粉状母料。而且,Qian等人在Fangzhi Xuebao,第26卷,第3期,第21-23页(2005)中的论 文公开了通过混合CNT和聚乙烯粉末,并将所获得的混合物挤出为小片而制备的母料,其 中没有指出CNT的含量。因此,仍需要提供用于制备这样的复合材料的简单和廉价方法,该复合材料基于 碳纳米管在热塑性和/或弹性体聚合物材料中的均勻分散体,并具有良好的机械性质(例 如,弹性体的耐高温蠕变性、热塑性材料的低温冲击强度)、热性质和电性质。特别希望能够 由以与粉末相比可更容易处理的物理形式的母料得到这些复合材料。本申请人已经发现,可通过使用由粉末形式的碳纳米管与粉末形式的热塑性和/ 或弹性体聚合物制备的母料满足此需求,该母料自身为附聚的固体物理形式例如颗粒。因此,本发明的一个主题是制造复合材料的方法,包括A-根据包括如下步骤的方法制备基于碳纳米管(以下称作CNT)的母料-将粉末形式的碳纳米管与至少一种粉末形式的热塑性和/或弹性体聚合物基质 混合,碳纳米管的量相对于总的粉状混合物的重量占2 30重量% ;和-将所述混合物处理成附聚的固体物理形式;和B-将所述母料引入到热塑性和/或弹性体聚合物组合物中。本发明的另一主题是前述母料在实施上述方法中的用途,特别是在赋予所述聚合 物基质至少电性质、机械性质和/或热性质中的用途。表述“母料”理解为指活性材料CNT的浓缩物,意图将其随后引入到聚合物(与已 经包含在这些母料中的聚合物相容或不相容)中。使用附聚的固体物理形式的母料具有许多优点,具体地说例如不存在细粒、在料 斗中良好的流动性、精确且无损失的计量、容易处理、良好的分散、与粉末相比较低的挥发 性和对湿汽较低的敏感性、降低的与处理相关的风险、低于液体的质量和体积、不存在溶液 或悬浮体的沉淀和沉降、以及由运输引起的风险的明显降低。可根据本发明使用的碳纳米管可为单壁、双壁或多壁类型。双壁纳米管可尤其如 Flahaut等人在Chem. Com. (2003),1442中所述那样制备。对于多壁纳米管来说,其可如文献TO 03/02456中所述那样制备。根据本发明使用的母料包含相对于总的粉状混合物的重量为2重量% 30重 量%、优选为5重量% 25重量%且更优选为10重量% 20重量%的CNT。所获得的复合材料优选地包含相对于总的粉状混合物的重量为0. 5重量% 20 重量%、优选为0. 5重量% 10重量%且更优选为0. 5重量% 5重量%的CNT。根据本发明使用的纳米管通常具有0. 1 200nm、优选0. 1 lOOnm、更优选0. 4 50nm且更优选1 30nm的平均直径和有利地具有超过0. 1 μ m并且有利地为0. 1 20 μ m 例如约6μπι的长度。它们的长/径比有利地大于10且通常大于100。因此,具体地说,这 些纳米管包括所谓的VGCF(气相生长碳纤维)。它们的比表面积例如为100 300m2/g,它 们的堆密度具体而言可为0. 05 0. 5g/cm3并且更优选为0. 1 0. 2g/cm3。多壁碳纳米管 可例如包括5 15个片层并且更优选包括7 10个片层。具体地说,原始(raw)碳纳米管的实例可以牌号Graphistrength C100从Arkema 公司商购得到。在将纳米管用于根据本发明的方法之前可对其进行纯化和/或处理(特别是氧 化)和/或研磨。它们也可通过溶液中的化学方法例如胺化或与偶联剂的反应来进行官能 化。纳米管的研磨可特别地使用已知的处理技术在如下设备中以冷的或热的方式进 行,所述设备例如球磨机、锤磨机、研磨机、切碎机或桨式磨机、气体射流磨机或任何其它能 够减小纳米管的缠结网络尺寸的研磨系统。优选该研磨步骤使用气体射流研磨技术,特别 地在空气射流磨机中进行。纳米管可通过如下而纯化使用硫酸或其它酸的溶液进行洗涤,以使它们不含由 其制备方法导致的任何残留的金属或无机杂质。纳米管与硫酸的重量比可特别地为1/2 1/3。纯化操作也可在90 120°C的温度下进行例如5 10小时。该操作之后可有利地进 行其中所述经纯化的纳米管使用水进行洗涤并且对其进行干燥的步骤。有利地,通过使纳米管与含有0. 5 15重量% NaOCl、且优选1 10重量% NaOCl 的次氯酸钠溶液以例如1/0.1 1/1的纳米管/次氯酸钠的重量比接触来进行纳米管的氧 化。有利地,氧化在低于60°c的温度下并且优选在室温下进行几分钟 24小时。该氧化 操作之后可有利地进行其中对所述经氧化的纳米管进行过滤和/或离心、洗涤和干燥的步 马聚ο在根据本发明的方法中,使所述纳米管(原始的或经研磨的和/或经纯化的和/ 或经氧化的和/或被非增塑分子所官能化的纳米管)与至少一种热塑性和/或弹性体聚合 物基质接触。在本发明中,表述“热塑性聚合物基质”理解为指加热时熔融并且可形成为熔融状 态的聚合物或聚合物的混合物。目前,有许多类型的提供各种有利性质的热塑性材料。可使它们像橡胶一样柔韧, 像金属和混凝土一样刚硬,或者将它们制造成像玻璃一样透明以用于各种管道工程产品和 其它部件中。它们不氧化并具有高的耐腐蚀性。在可根据本发明的方法使用的主要的热塑性聚合物中,可特别提及聚酰胺(PA) 例如聚酰胺6 (PA-6)、聚酰胺11 (PA-Il)、聚酰胺12 (PA-12)、聚酰胺6,6 (PA-6,6)、聚酰胺4,6 (PA-4,6)、聚酰胺6,10 (PA-6,10)和聚酰胺6,12 (PA-6,12),这些聚合物中的一些具体地 说由Arkema以名称Rilsan 出售并且优选的聚合物为流体级别的那些例如RilSan AMNO TLD。还可提及聚偏氟乙烯(PVDF),例如由Arkema以商标Kynar 出售的产品;丙烯腈-丁 二烯-苯乙烯(ABS);丙烯腈/甲基丙烯酸甲酯(AMMA);醋酸纤维素(CA);乙烯/丙烯共聚 物(E/P);乙烯/四氟乙烯共聚物(ETFE);乙烯/乙酸乙烯酯(EVAC);乙烯/乙烯醇(EVOH); 甲基丙烯酸甲酯/丙烯腈_ 丁二烯_苯乙烯(MABS);甲基纤维素(MC);甲基丙烯酸甲酯/ 丁二烯-苯乙烯(MBS);聚酰胺-酰亚胺(PAI);聚对苯二甲酸丁二醇酯(PBT);聚碳酸酯 (PC);聚乙烯(PE);高密度聚乙烯(HDPE);聚酯碳酸酯(PEC);聚醚醚酮(PEEK);聚醚酯 (PEEST);聚醚酮(PEK);聚萘二甲酸乙二醇酯(PEN);聚醚砜(PESU);聚对苯二甲酸乙二醇 酯(PET) ’聚(多)对苯二甲酸乙二醇酯(PETP);全氟烷氧基烷烃聚合物(PFA);聚酰亚胺 (PI);聚酮(PK);聚丙烯酸酯和/或聚甲基丙烯酸酯,例如聚甲基丙烯酸甲酯(PMMA);聚甲 基戊烯(PMP);聚甲醛或聚缩醛(POM);聚丙烯(PP);聚苯醚(PPE);聚氧丙烯(PPOX);聚苯 硫醚(PPS);聚苯乙烯(PS);聚砜(PSU);聚四氟乙烯(PTFE);聚乙酸乙烯酯(PVAC);聚氯 乙烯(PVC);聚氟乙烯(PVF);聚(苯乙烯-丁二烯)(S/B);苯乙烯/马来酸酐(SMAH);乙 烯基酯树脂(VE);聚磷腈(polyphosphazene);聚醚酰亚胺(PEI);聚三氟氯乙烯(PCTFE); 聚芳基砜等。在本发明中,表述“弹性体聚合物基质或弹性体”理解为指弹性体聚合物,即经受 住比100%大得多并且(几乎)完全可逆的非常大的变形的聚合物。弹性体由在静止时聚 集为“线球”的长分子链组成。这些链通过交联点、缠结或者与无机填料的极性键彼此连接, 并形成网络。
清楚地理解到,可根据本发明的方法使用的聚合物中的一些可同时为热塑性和弹 性体类型的。在所述弹性体中,可特别提及含氟弹性体,例如由DuPont PerformanceElastomers以商标Kalrez 和Viton 出售的那些;天然或合成胶乳;基于 氯丁二烯的橡胶,例如由DuPont Chemicals以商标Neoprene 出售的那些;聚丙烯酸 类;聚丁二烯;聚醚嵌段酰胺;聚异丁烯;聚异戊二烯;聚氨酯;聚硅氧烷;天然橡胶(苯 乙烯 _ 丁二烯橡胶,即 SBR);由 ExxonMobile Chemical 以商标 Vistamaxx 、Vistaflex Thermoplastic Elastomers、 Dytron Thermoplastic Elastomers、 禾口 Santoprene Thermoplastic Vulcanizates 出售的弹性体;等等。根据本发明的术语“聚合物”也涵盖了低聚物、以及热塑性聚合物与热塑性聚合物 的合金、弹性体与弹性体的合金、或者热塑性聚合物与弹性体的合金。优选根据本发明使用的母料包含相对于总的粉状混合物的重量为95重量% 70 重量%且优选为90重量% 80重量%的聚合物基质。因此,根据本发明得到的复合材料有利地包含相对于总的粉状混合物的重量为 99. 5重量% 80重量%且优选为99. 5重量% 95重量%的聚合物基质。聚合物基质粉末的平均颗粒尺寸优选为0. Ιμπ! 1000 μ m、优选为10 μ m 800 μ m、且还更优选为50μπι 300μπι。有利地,所述聚合物基质粉末的平均颗粒尺寸为 100 μ m 150 μ m。为了得到该聚合物粉末,可例如将可商购得到的聚合物颗粒研磨至期望的尺寸。
根据本发明的方法的第一步骤在于将CNT与聚合物基质粉末混合,然后在第二步 骤中对其进行处理。CNT和聚合物粉末可在集成到处理设备中或者位于处理设备上游的混合器中进行
混合ο 粉末的这种混合可在常规合成反应器、叶片式混合器、流化床反应器中或者布拉 本德型、Z-叶片式混合器型或挤出机型混合设备中进行。根据本发明的一个变型,因此可 使用桨式或叶片式混合器。另外,CNT与至少一种聚合物基质的粉状混合物还可包含一种或多种其它粉状填 料。可特别提及炭黑、活性炭、二氧化硅、金属、陶瓷材料、玻璃纤维、颜料、粘土、碳酸钙、硼 和/或氮和/或过渡金属的纳米管、金属或陶瓷材料。粉末干法混合的该第一步骤或者干法共混步骤之后优选进行热处理步骤,其中使 聚合物以液态或气态形式通过以确保所述聚合物与CNT的紧密和均勻混合。该热处理步骤 在于提高所述粉末的温度从而改进其物理化学性质。该热处理有利地在挤出机中进行。根据本发明的方法的第二步骤在于对所述混合物进行处理以得到附聚的固体物 理形式。该步骤可通过本领域技术人员已知的任何方法进行。具体地说,可提及流化床附聚,这是从粉末得到颗粒的常规方法。对经流化的粉末 进行润湿直至颗粒之间形成液桥。可喷射水、溶液、悬浮液或熔融材料以实现期望的产品品 质。由于这种技术,细粒的含量显著减少,流动性和在水中的分散性得以改善,所获得的颗 粒是非常松散的(aerated)并且非常容易溶解。通过该附聚过程的作用,该附聚过程解决 了粉末状混合物的稳定性问题。另一处理方法是喷雾造粒,该方法是一种同步方法。流体蒸发期间形成颗粒。这 些颗粒比通过附聚形成的颗粒更硬且更致密。作为变型,可使用湿法造粒方法,其在于将粉末引入到垂直的造粒机中并且通过 喷雾而使其彻底润湿。然后通过叶轮和切碎机强烈混合该混合物。在对所述粉末进行压缩 的该方法中,结果是比通过流化床附聚形成的颗粒更致密的颗粒。可使用的另一方法为注射压缩成型法,其在于注入熔融状态的材料饼,然后将其 压缩以填充模具。然后得到经压缩的固体产物。可根据本发明使用的又一优选方法为配混法,其为包括捏合、冷却和造粒步骤的 连续方法。CNT与聚合物的混合物以粉末形式到达挤出机的头部或者挤出机的第一段,并 且被倾倒到料斗中以向挤出机的螺杆进行进料,该挤出机优选为双螺杆挤出机或共捏合机 (co-kneader)。在所述挤出机中,混合物通过被加热的筒(管)中的蜗杆而加热并软化以 使所述材料有延展性。该螺杆将所述材料推向出口。挤出机的出口端将其形状给予离开材 料。连续排出管或棒,将其冷却以便然后切割成颗粒。在本发明的一个有利实施形式中,将其中必须引入母料的粉状热塑性和/或弹性 体聚合物进料到用于制造这种母料的挤出机或者混合器的第二段中。在该实施形式中,可 在该相同的设备中连续进行复合材料的制造。本发明上下文中的表述“附聚的固体物理形式”理解为指在已经严格地根据本发 明进行处理之后的最终混合物,所述最终混合物例如基本上为圆柱形、球形、卵形、矩形或 棱柱形式。作为附聚的固体物理形式,可提及例如颗粒、粒料和卵石。该附聚的固体物理形式的直径可为Imm 10mm,但更优选为2mm 4mm。意图将如上述那样得到的母料引入到热塑性和/或弹性体聚合物组合物中以形成复合材料。一般优选使用与所述母料中包括的热塑性和/或弹性体聚合物相同类型的聚 合物。因此,可使用的聚合物的实例为以上提及的那些。另一方面,在一些情况下,可有利 地使用与所述基质不相容的聚合物以得到所谓的“双逾渗”效应。根据本发明的一个特别优选的实施形式,所述聚合物选自聚酰胺、聚偏氟乙烯、聚 碳酸酯、聚醚醚酮、聚苯硫醚、聚烯烃、其混合物及其共聚物。其中引入母料的聚合物组合物也可含有各种辅料和添加剂,例如润滑剂、增塑剂、 颜料、稳定剂、填料或增强物、抗静电剂、防雾剂、杀菌剂、阻燃剂和溶剂。如上所述,根据本发明的方法可改善纳米管在聚合物基质中的分散和/或所述聚 合物基质的机械性质(特别是拉伸强度和/或冲击强度)和/或导电性和/或导热性。所述发明方法的另一优点在于,其可使包含低于现有技术中CNT含量的CNT的复 合材料有传导性。因此,可赋予含有少于5重量%碳纳米管的所述复合材料这样的电导率对于耗 散应用而言,电导率小于IMohm ;和对于抗静电应用而言,电导率小于101(lOhm。现在,本发明将通过如下非限制性实施例并借助于附图对本发明进行说明,在附 图中-
图1和图3说明对比复合材料的分散体;-图2和图4说明根据本发明制备的复合材料的分散体;和-图5表示对比复合材料和根据本发明制备的复合材料的两条逾渗曲线。
实施例实施例1 制备CNT/聚酰胺12 (PA-12)复合材料使用BUSS 15D 共捏合机,以 10kg/h 的产量、250°C /250°C /250°C /220°C 的机筒 温度分布、210°C的螺杆温度分布、和250rpm的螺杆速度将5%的粉末状CNT(来自Arkema 的 Graphistrength C100)混入到 95% 的粉末状聚酰胺-12 (来自 Arkema 的 Rilsan AMN0 TLD-流体聚酰胺级别)中,以得到含有5重量% CNT和95重量% PA-12的复合材料。作为对比,进行相同的实验,但是不再使用聚合物粉末而是使用聚合物颗粒。使用透射光光学显微镜对在平行于挤出方向上具有2μπι切割厚度的截面以每个 截面6张照片的速率、以200倍的标称放大倍数进行拍照。然后评价这些复合材料的表面 被CNT聚集体所占据的百分比。计算对于6张照片中的各张照片所得的值的平均值。所得结果在下表1中进行比较。表 1 因此,从表1以及图1和图2中观察到,根据本发明所获得的复合材料具有CNT在 聚酰胺基质中的较好的分散,这导致较好的机械性质,特别是例如它们的冲击强度或者抗 裂性。实施例2 制备基于聚酰胺12 (PA-12)的母料使用BUSS 15D 共捏合机,以 10kg/h 的产量、250°C /250 V /250 V /210°C 的机筒 温度分布、210°C的螺杆温度分布、和280rpm的螺杆速度将20%的粉末状CNT (来自Arkema 的 Graphistrength C100)混入到 80% 的粉末状聚酰胺-12 (来自 Arkema 的 Rilsan AMN0 TLD-流体聚酰胺级别)中,以得到含有20重量% CNT和80重量% PA-12的复合材料。作为对比,进行相同的实验,但是不再使用聚合物粉末而是使用聚合物颗粒。使用透射光光学显微镜对在平行于挤出方向上具有2μπι切割厚度的截面以每个 截面6张照片的速率、以200倍的标称放大倍数进行拍照。然后评价这些复合材料的表面 被CNT聚集体所占据的百分比。计算对于6张照片中的各张照片所得的值的平均值。所得结果在下表2中进行比较。表2 因此,从表2以及图3和图4中观察到,根据本发明所得的复合材料具有CNT在聚 酰胺基质中的较好的分散,这导致较好的机械性质,特别是例如它们的冲击强度或者抗裂 性。实施例3 制备CNT/聚偏氟乙烯(PVDF)复合材料将5%的粉末状CNT (来自Arkema的Graphistrength C100)混入到95%的粉末 状PVDF(来自Arkema的Kynar 721)中,然后使用DSM微型混料机(compounder)对该混 合物进行处理。通过两个同向旋转的螺杆(螺杆速度IOOrpm)在230°C的温度下进行捏合10分 钟。捏合结束时,在230°C下在预热至90°C的模具中进行注射成型以得到粒料。实施例4 测量根据本发明得到的复合材料的电阻率为了电阻率测量的精确性和稳定性起见,使用四探针(wire)测量系统来进行电 阻率的测量。
根据实施例3的程序制备CNT/PVDF复合材料,得到含有1重量% 10重量% CNT(来自 Arkema 的 Graphistrength C100)的、基于 Kynar 721 的复合材料。在这些复合材料(Kynar 721)和以相同方式制备的基于Kynar 720的复合材料 之间进行对比测试,其中,Kynar 721的初始PVDF为粉末形式而Kynar 720的初始PVDF 为颗粒形式。Kynar 721和Kynar 720之间没有组成差异,除了它们存在的初始物理形式 不同之外。实际上,Kynar 721为粉末形式且颗粒尺寸通常小于30μπι,而Kynar 720为 颗粒形式,其直径为0. 4 0. 5cm且厚度为0. 2 0. 4cm。所得逾渗曲线如附图5所示。结果
如图5中所示,当复合材料所含的CNT的含量增加时复合材料的电阻率下降。而 且,从约3. 4%的CNT含量至约10%的CNT含量,根据本发明所获得的复合材料的电阻率总 是低于由颗粒状聚合物所获得的复合材料的电阻率,这通过它们更好的电导率和CNT在这 些根据本发明的复合材料中较好的分散来表示。
更具体地说,使用粉末形式的PVDF(Kynar 721)而不使用颗粒形式的 PVDF(Kynar 720)导致具有5% CNT含量的注射成型粒料的电导率的显著改善。实际上, 在由粉末得到的复合材料上测得的电阻率为454Ω. cm而在基于颗粒的复合材料上测量的 电阻率至少为其100倍高。实施例5 用于处理复合材料的方法的对比下表3在2%和5%的CNT含量下比较DSM微型挤出和Rheocord密炼机这两种混 合系统,以及粉末/颗粒这两种处理技术。表3 制备组合物A D通过如下方式得到组合物Α:将98%的熔融的颗粒形式的PVDF(Kynar 720)引 入到Rheocord Haake 90型混合器中,然后引入2 %的粉末形式的CNT (来自Arkema的 Graphi strength C100)。通过如下方式得到组合物B 将2 %的粉末形式的CNT (来自Arkema的 Graphistrength C100)与98 %的粉末形式的PVDF(Kynar 720)手工干法混合,然后在 Rheocord Haake 90型混合器中对该混合物进行处理。Rheocord的混合条件如下-混合温度230°C-布拉本德型转子的旋转速度IOOrpm
-捏合时间10分钟通过根据包括如下步骤的方法的压缩成型使组合物A和B形成为粒料,所述步骤在于-切碎CNT和Kynar 混合物并将其置于模具中;-在压机中在230°C的温度下使其流动10分钟;-在高温下、在250巴的压力下压模5分钟;-保持压力并停止对板的加热,冷却20分钟;和-脱模。得到直径约2cm且厚度约0. Icm的粒料。可进行电阻率的测量。通过如下方式得到组合物C 将95%的颗粒形式的PVDF(Kynar 720)与5%的粉 末形式的CNT (来自Arkema的GraphiStrength C100)手工干法预混,然后将该预混物引入 到来自DSM的Micro 15 compounder 型微型挤出机中。通过两个同向旋转的螺杆(螺杆 速度IOOrpm)在230°C的温度下进行捏合10分钟。捏合结束时,在230°C下在预热至90°C 的模具中进行注射成型以得到粒料。通过如下方式得到组合物D 将5 %的粉末形式的CNT (来自Arkema的 Graphistrength C100)与95%的粉末形式的PVDF(Kynar 720)手工干法预混,然后将该 预混物引入到来自DSM的Micro 15 compounder 型微型挤出机中。通过两个同向旋转的 螺杆(螺杆速度100rpm)在230°C的温度下进行捏合10分钟。捏合结束时,在230°C下在 预热至90°C的模具中进行注射成型以得到粒料。从而,通过注射成型使组合物C和D形成为粒料。结果由Kynar 粉末通过压缩成型制造的粒料(CNT含量为2% )具有比由Kynar 颗粒 所得的那些低的电阻率值。对于通过注射成型制造的具有5% CNT含量的粒料来说,该现象更加明显,这可能 是由于它们非常接近于逾渗阈值的事实所引起的。
权利要求
制造复合材料的方法,其包括A-根据包括如下步骤的方法制备基于碳纳米管的母料-将粉末形式的碳纳米管与至少一种粉末形式的热塑性和/或弹性体聚合物基质混合,碳纳米管的量相对于总的粉状混合物的重量占2~30重量%;和-将所述混合物处理成附聚的固体物理形式;和B-将所述母料引入到热塑性和/或弹性体聚合物组合物中。
2.权利要求1的方法,特征在于在所述用于制造母料的方法中,碳纳米管的量相对于 总的粉状混合物的重量为5重量% 25重量%,且优选为10重量% 20重量%。
3.权利要求1或2的方法,特征在于所述热塑性聚合物基质和/或所述热塑性和/或 弹性体聚合物选自聚酰胺、聚偏氟乙烯、丙烯腈_ 丁二烯_苯乙烯、丙烯腈/甲基丙烯酸甲 酯、醋酸纤维素、乙烯/丙烯共聚物、乙烯/四氟乙烯共聚物、乙烯/乙酸乙烯酯、乙烯/乙烯 醇、甲基丙烯酸甲酯-丙烯腈_ 丁二烯_苯乙烯、甲基纤维素、甲基丙烯酸甲酯-丁二烯-苯 乙烯、聚酰胺-酰亚胺、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚乙烯、高密度聚乙烯、聚酯碳 酸酯、聚醚醚酮、聚醚酯、聚醚酮、聚萘二甲酸乙二醇酯、聚醚砜、聚对苯二甲酸乙二醇酯、聚 (多)对苯二甲酸乙二醇酯、全氟烷氧基烷烃聚合物、聚酰亚胺、聚酮、聚丙烯酸酯和/或聚 甲基丙烯酸酯例如聚甲基丙烯酸甲酯、聚甲基戊烯、聚甲醛或聚缩醛、聚丙烯、聚苯醚、聚氧 丙烯、聚苯硫醚、聚苯乙烯、聚砜、聚四氟乙烯、聚乙酸乙烯酯、聚氯乙烯、聚氟乙烯、聚(苯 乙烯-丁二烯)、苯乙烯/马来酸酐、乙烯基酯树脂、聚磷腈、聚醚酰亚胺、聚三氟氯乙烯、聚 芳基砜、和它们的混合物。
4.权利要求1或2的方法,特征在于所述弹性体聚合物基质和/或所述热塑性和/或弹 性体聚合物选自含氟弹性体、天然或合成胶乳、基于氯丁二烯的橡胶、聚丙烯酸类、聚丁二 烯、聚醚嵌段酰胺、聚异丁烯、聚异戊二烯、聚氨酯、聚硅氧烷、天然橡胶、和它们的混合物。
5.权利要求1 4中任一项的方法,特征在于所述纳米管具有0.1 lOOnm、优选 0. 4 50nm且更优选1 30nm的直径。
6.权利要求1 5中任一项的方法,特征在于所述粉末形式的聚合物基质由平均尺 寸为0. 1 μ m 1000 μ m、优选10 μ m 800 μ m、更优选50 μ m 300 μ m、且进一步更优选 100 μ m 150 μ m的颗粒组成。
7.权利要求1 6中任一项的方法,特征在于所述纳米管具有0.1 20 μ m的长度。
8.权利要求1 7中任一项的方法,特征在于所述附聚的固体物理形式选自颗粒、粒料 和卵石。
9.权利要求1 8中任一项的方法,特征在于所述附聚的固体物理形式具有Imm 10mm、并且优选2mm 4mm的直径。
10.权利要求1 9中任一项的方法,特征在于所述混合物的处理通过配混进行。
11.基于碳纳米管的母料在实施权利要求1 10中任一项的方法中的用途,所述母料 根据包括如下步骤的方法得到_将粉末形式的碳纳米管与至少一种粉末形式的热塑性和/或弹性体聚合物基质混 合;和-将所述混合物处理成附聚的固体物理形式。
12.权利要求11的用途,用于赋予所述热塑性和/或弹性体聚合物基质至少电性质、机械性质和 /或热性质。
全文摘要
本发明涉及制造复合材料的方法,其包括a)根据包括如下步骤的方法制备基于碳纳米管的母料混合物将粉末形式的碳纳米管与至少一种粉末形式的热塑性和/或弹性体聚合物基质混合,碳纳米管的量相对于所述粉状混合物的总重量占2~30重量%;并将所述混合物处理成附聚的固体物理形式;和b)将所述母料混合物引入热塑性和/或弹性体聚合物混合物中。本发明还涉及以上母料混合物在实施所述方法中的用途。
文档编号C08J3/22GK101848959SQ200880115022
公开日2010年9月29日 申请日期2008年9月19日 优先权日2007年9月24日
发明者亚历山大·柯曾科, 凯瑟琳·布卢蒂厄, 帕特里克·皮乔尼, 贝努瓦·布鲁尔 申请人:阿克马法国公司