一种装饰用木塑板及其制备方法与流程

文档序号:18553052发布日期:2019-08-30 22:14阅读:228来源:国知局
本发明涉及板材制备
技术领域
,尤其涉及一种装饰用木塑板及其制备方法。
背景技术
:木塑板是近几年来兴起的合成材料,以塑料(pvc、pp、pc)和木粉为主要原料,通过与各种助剂混合后经热压压制而成;由于其兼具塑料和木材的性能,使其能够广泛应用于室内装修、外墙装饰等领域。当木塑板应用于室内装修时,要求木塑板必须无甲醛释放;另外,随着科技的进步和人们对木塑板要求的进一步提高,甚至提出木塑板在不释放甲醛的同时,还能够吸附部分空气中有害物质。为实现上述目的,科研人员通过添加功能材料比如活性炭、二氧化钛等物质来赋予木塑板吸附有害物质的特性,但是上述物质的加入,会使木塑板材的力学性能达不到要求。因此,提供一种兼具力学性能和吸附性能的木塑板材是板材厂家研究的热点。技术实现要素:有鉴于此,本发明的目的在于一种装饰用木塑板材及其制备方法,本发明提供的木塑板材无甲醛释放,且能够吸附部分有害气体,同时具有优异的力学性能。为了实现上述发明目的,本发明提供以下技术方案:本发明提供了一种装饰用木塑板,由包括以下重量份数的原料制备得到:pvc100份、碳酸钙40~60份、木粉40~60份、活性炭2~5份、硅藻土10~15份、偶联剂0.5~3份、发泡剂0.5~2份、硬脂酸锌2~5份、钙锌稳定剂5~10份、发泡调节剂0.1~0.5份。优选地,所述活性炭的比表面积为1000~1200m2/g。优选地,所述活性炭由硬质果核制备得到。优选地,所述活性炭、硅藻土的质量比为0.3~0.4∶1。优选地,所述木粉由树木粉和秸秆粉混合而成。优选地,所述木粉中树木粉和秸秆粉的质量比大于1∶1。优选地,所述发泡剂包括ac发泡剂。优选地,所述碳酸钙的粒径为800~1200目。优选地,所述偶联剂为硅烷偶联剂。本发明还提供了上述技术方案所述的装饰用木塑板的制备方法,包括以下步骤:(1)将pvc、发泡剂、硬脂酸锌、钙锌稳定剂和发泡调节剂初混炼,得到初混料;(2)在所述初混料中加入提前混合好的碳酸钙、木粉、活性炭、硅藻土和偶联剂混合料,继续混炼,得到混料;(3)将所述步骤(2)得到的混料经挤出成型,得到所述装饰用木塑板。本发明提供了一种装饰用木塑板,由包括以下重量份数的原料制备得到:pvc100份、碳酸钙40~60份、木粉40~60份、活性炭2~5份、硅藻土10~15份、偶联剂0.5~3份、发泡剂0.5~2份、硬脂酸锌2~5份、钙锌稳定剂5~10份、发泡调节剂0.1~0.5份。本发明在木塑板中加入偶联剂能够提高木粉、碳酸钙、活性炭和硅藻土与树脂基体pvc的混合效果,增强活性炭和硅藻土的吸附性、碳酸钙的加强效果;碳酸钙除了作为增强材料提高力学性能,还可以作为发泡剂通过调节板材的孔隙提高了木塑板材的吸附性。另外,活性炭和硅藻土的加入也提高了木塑板的吸附性。本发明通过控制pvc、碳酸钙、木粉等原料的含量,使得所得木塑板无甲醛且具有吸附性的前提下,也具有优异的力学性能。实施例的数据表明:本发明提供的木塑板的抗弯强度为17.14~18.93mpa,抗压强度为19.3~21.87mpa;在30℃的条件下放置5天,本发明提供的木塑板对甲醛的吸附能力为690~810μg/g。具体实施方式本发明提供了一种装饰用木塑板,由包括以下重量份数的原料制备得到:pvc100份、碳酸钙40~60份、木粉40~60份、活性炭2~5份、硅藻土10~15份、偶联剂0.5~3份、发泡剂0.5~2份、硬脂酸锌2~5份、钙锌稳定剂5~10份、发泡调节剂0.1~0.5份。制备本发明提供的装饰用木塑板的原料包括重量份数为100份的pvc。本发明对pvc的来源不做具体限定,采用本领域技术人员熟知的市售产品或废弃产品均可。本发明中的pvc作为塑料基体,使木塑板具有塑料的性能。制备本发明提供的装饰用木塑板的原料包括重量份数为40~60份的碳酸钙,优选为45~55份,进一步优选为50份。在本发明中,所述碳酸钙的粒径优选为800~1200目。本发明以碳酸钙为增强材料,提高了木塑板的力学性能,同时碳酸钙还能作为发泡剂,提高木塑板的吸附性。制备本发明提供的装饰用木塑板的原料包括重量份数为40~60份的木粉,优选为45~55份,进一步优选为50份。在本发明中,所述木粉优选由树木粉和秸秆粉混合而成;所述木粉中树木粉和秸秆粉的质量比大于1∶1。在本发明中,所述树木粉优选包括杉木粉、松木粉和杨木粉中的一种或多种;所述秸秆粉优选包括小麦秸秆粉、玉米秸秆粉和水稻秸秆粉中的一种或多种。由于树木粉的韧性和硬度要优于秸秆粉,将树木粉和秸秆粉的质量比控制为大于1∶1,即木粉中树木粉的量高于秸秆粉;降低了高含量木粉对木塑板力学性能的影响;因此,在使用高含量木粉时,通过控制木粉的组成,使木塑板也具有优异的力学性能。制备本发明提供的装饰用木塑板的原料包括重量份数为2~5份的活性炭,优选为3~4份。在本发明中,所述活性炭优选由果核制备得到;所述果核优选包括枣核、杏核。在本发明中,所述活性炭的比表面积优选为1000~1200m2/g。本发明对活性炭的来源不做具体限定,采用本领域技术人员熟知的市售产品或自制产品均可。本发明将活性炭的重量份数控制为2~5份,不会影响木塑板的装饰性;将活性炭的比表面积控制为1000~1200m2/g,既保证了活性炭的吸附性,也避免了活性炭因孔道多在使用时容易塌陷的问题,另外由于果核一般比较硬,由果核制备的活性炭机械性能优异,也避免了活性炭的塌陷失效,保证了木塑板的吸附性。制备本发明提供的装饰用木塑板的原料包括重量份数为10~15份的硅藻土,优选为11~14份,进一步优选为12~13份。本发明在木塑板中加入硅藻土,利用硅藻土的吸附性,使木塑板具有吸附性。在本发明中,所述活性炭、硅藻土的质量比优选为0.3~0.4∶1。本发明将活性炭与硅藻土的质量比控制为0.3~0.4∶1,能够进一步使木塑板具有优异力学性能的同时,具备优异的吸附性;且硅藻土的大量使用,降低了木塑板的成本。制备本发明提供的装饰用木塑板的原料包括重量份数为0.5~3份的偶联剂,优选为1~2.5份,更优选为1.5~2.0份。在本发明中,所述偶联剂优选包括硅烷偶联剂。本发明的偶联剂能够使塑料基体pvc与无机材料(活性炭、碳酸钙、硅藻土)的混合效果,提高物料分散均匀性,进而提高木塑板的综合性能。制备本发明提供的装饰用木塑板的原料包括重量份数为0.5~2.0份的发泡剂,优选为1.0~1.5份。在本发明中,所述发泡剂优选为ac发泡剂。本发明加入发泡剂,能够提高木塑板的孔隙率,提高木塑板对有害气体的吸附性。制备本发明提供的装饰用木塑板的原料包括重量份数为2~5份的硬脂酸锌,优选为3~4份。在本发明中,所述硬脂酸锌作为润滑剂能够进一步提高物料的混合程度。制备本发明提供的装饰用木塑板的原料包括重量份数为5~10份的钙锌稳定剂,优选为6~9份,进一步优选为7~8份。本发明采用的稳定剂无毒无害,使木塑板能够应用于室内装饰。制备本发明提供的装饰用木塑板的原料包括重量份数为0.1~0.5份的发泡调节剂。本发明的发泡调节剂与发泡剂相互协调,使发泡效果稳定,提高木塑板的性能。本发明在pvc、碳酸钙、木粉、活性炭、硅藻土、偶联剂、发泡剂、硬脂酸锌、钙锌稳定剂和发泡调节剂的共同作用下,使木塑板具有优异力学性能的同时,具有有害物质吸附性。本发明还提供了上述技术方案所述的装饰用木塑板的制备方法,包括以下步骤:(1)将pvc、发泡剂、硬脂酸锌、钙锌稳定剂和发泡调节剂初混炼,得到初混料;(2)在所述初混料中加入提前混合好的碳酸钙、木粉、活性炭、硅藻土和偶联剂混合料,继续混炼,得到混料;(3)将所述混料经挤出成型,得到所述装饰用木塑板。本发明将pvc、碳酸钙、发泡剂、硬脂酸锌、钙锌稳定剂和发泡调节剂初混炼,得到初混料。在本发明中,所述初混炼的温度优选为130~150℃,进一步优选为135~145℃,更优选为140℃;所述初混炼的时间优选为30~60min,进一步优选为40~50min。得到初混料后,本发明在所述初混料中加入提前混合好的木粉、活性炭、硅藻土和偶联剂混合料,继续混炼,得到混料。在本发明中,所述木粉、活性炭、硅藻土和偶联剂的混合温度优选为80~100℃;所述混合的时间优选为20~40min。本发明先将木粉、活性炭、硅藻土和偶联剂混合,使偶联剂对木粉、硅藻土和活性炭进行改性,使其能够与塑料基体pvc混合。在本发明中,所述混炼的温度优选为135~145℃,更优选为140℃;所述混炼的时间优选为30~60min,进一步优选为40~50min。混炼结束后,本发明将混炼后的物质冷却至室温,得到混料。得到混料后,本发明将所述混料经挤出成型,得到所述装饰用木塑板。在本发明中,所述挤出成型的温度优选为180~230℃,进一步优选为200℃;所述挤出成型的压力优选为30~40mpa。下面结合实施例对本发明提供的装饰用木塑板及其制备方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。实施例1pvc100份、碳酸钙50份、木粉60份(杉木粉30份,水稻秸秆30份)、活性炭5份(比表面积为1200m2/g)、硅藻土15份、硅烷偶联剂2份、ac发泡剂1.5份、硬脂酸锌4份、钙锌稳定剂5份、发泡调节剂0.3份。制备方法为:(1)将pvc、ac发泡剂、硬脂酸锌、钙锌稳定剂和发泡调节剂在135℃初混炼30min,得到初混料;(2)将碳酸钙、木粉、活性炭、硅藻土和偶联剂在80℃混炼30min。得到混合料;在所述初混料中加入混合料在145℃混炼45min,得到混料;(3)将所述混料在30mpa、200℃下挤出成型,得到所述装饰用木塑板。实施例2pvc100份、碳酸钙50份、木粉60份(杉木粉40份,水稻秸秆20份)、活性炭5份(比表面积为1200m2/g)、硅藻土15份、硅烷偶联剂2份、ac发泡剂1.5份、硬脂酸锌4份、钙锌稳定剂5份、发泡调节剂0.3份。制备方法与实施例1相同。实施例3pvc100份、碳酸钙60份、木粉40份(松木粉20份,水稻秸秆20份)、活性炭3份(比表面积为1000m2/g)、硅藻土12份、硅烷偶联剂3份、ac发泡剂0.5份、硬脂酸锌3份、钙锌稳定剂5份、发泡调节剂0.3份。制备方法与实施例1相同。实施例4pvc100份、碳酸钙40份、木粉50份(杉木粉30份,水稻秸秆20份)、活性炭5份(比表面积为1100m2/g)、硅藻土10份、硅烷偶联剂2份、ac发泡剂2份、硬脂酸锌2份、钙锌稳定剂10份、发泡调节剂~0.5份。制备方法与实施例1相同。实施例5pvc100份、碳酸钙50份、木粉60份(杉木粉30份,水稻秸秆30份)、活性炭5份(比表面积为1200m2/g)、硅藻土10份、硅烷偶联剂2份、ac发泡剂1.5份、硬脂酸锌4份、钙锌稳定剂5份、发泡调节剂0.3份。制备方法与实施例1相同。对比例1与实施例1类似,区别仅在于,所述活性炭的比表面积为1600m2/g。参照gb/t1041-2008和gb/t9341-2008测试所得木塑板的抗弯强度和抗压强度,结果如表1所示。从表1可以看出:本发明提供的木塑板的抗弯强度为17.14~18.93mpa,抗压强度为19.3~21.87mpa,显然本发明提供的木塑板具有优异的力学性能。表1实施例1~5及对比例1所得木塑板的力学性能测试结果序号实施例1实施例2实施例3实施例4实施例5对比例1抗弯强度(mpa)17.7418.1318.9317.1418.6517.25抗压强度(mpa)19.9520.8021.8719.321.219.25将1g木塑板材置于在密闭的箱子中,箱子中注入1mg甲醛气体,在30℃的环境中放置5天,观察所得木塑板对甲醛的吸附量,结果如表2所示。从表2可以看出:在30℃的条件下放置5天,本发明提供的木塑板对甲醛的吸附能力为690~810μg/g。表2实施例1~5及对比例1所得木塑板的甲醛吸附量序号实施例1实施例2实施例3实施例4实施例5对比例1原始浓度(μg)100010001000100010001000最终浓度(μg)190200310285245210本发明通过控制pvc、碳酸钙、木粉等原料的含量,使得所得木塑板无甲醛且具有吸附性的前提下,也具有优异的力学性能。实施例的数据表明:本发明提供的木塑板的抗弯强度为17.14~18.93mpa,抗压强度为19.3~21.87mpa;在30℃的条件下放置5天,本发明提供的木塑板对甲醛的吸附能力为690~810μg/g。以上所述仅是本发明的优选实施方式,应当指出,对于本
技术领域
的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1