专利名称:从基本上为结晶的α烯烃聚合物中除去低聚物的方法
技术领域:
本发明涉及合成树脂。更具体地说,本发明涉及α烯烃聚合物,以及除去不需要的组份(如合成时产生的不需要的组份)的处理方法。
众所周知,α烯烃聚合物可在选定的时间、温度和压力条件下催化聚合α烯烃而制成,以产生有所需性质的聚合产物。每种情况下的所需产物(一般是指聚合物)是α烯烃单元分子链的混合物,这些链有许多不同的链长。虽然绝大多数链的长度达几千个碳原子,但必然有长度过分短的链,这些链可以短到含2个α烯烃单元,长到含45个或更多α烯烃单元。这些链长较短的分子称为低聚物。在聚合反应中,除形成所需产物以外也形成低聚物。在某种程度上说,这些低聚物不会成为所需聚合物颗粒的一部分,它们通常在聚合步骤后进行的未反应的α烯烃清除步骤中与聚合物颗粒分离。低聚物也在聚合后处理过程如包括熔融挤塑的减粘裂化中形成。
在大多数市售α烯烃聚合物的情况下,聚合物颗粒中低聚物浓度不足以引起问题。实际上,存在低聚物可有利于聚合物的流变性。然而,特别在基本上为结晶的、熔体流动速率高(>5dg/min,AST-MD1238,条件L)的丙烯聚合物(聚合物中低聚物浓度常在1000-10,000ppm之间)情况下,聚合物中较高浓度的低聚物会在制造有用制品的熔融挤塑过程中从聚合物中产生“烟”。例如参见属于Ho-erauf等的美国专利4,233,429,该专利揭示了一种在工作区域收集和清除从离开挤塑模具的熔融聚合物中产生的挥发物质的方法和装置。然而并不是所有低聚物可从离开模具后且在冷却到固化温度前的熔融聚合物中挥发掉。挤塑聚合物中残余的低聚物会在这种挤塑聚合物制品(如包装膜、容器等)中产生讨厌的味道和气味。
一种已公开的减少聚合物中低聚物浓度的方法必须将聚合物颗粒熔化,并让一种能溶解低聚物且不能溶解聚合物的液体或气体通过该熔融体。这种方法的例子被揭示在属于Beckemeier等的美国专利5,200,486和属于Miyakawa的美国专利5,237,048中。这种方法的主要缺点是所得的经提纯的聚合物经受加热过程,也就是说,所得的经提纯的聚合物有某种程度的热降解和物理性质的变化。当聚合物再经受熔融过程如在制造树脂产品时的熔融配混和制造有用制品时的注塑、热成型、熔纺和熔铸等时会加剧这些降解和变化。
因此,本发明面临的主要问题是提供一种不需熔融就可从α烯烃聚合物中除去不需要的低聚物的方法。
属于Saito等的美国专利4,365,057揭示了一种“干燥”α烯烃聚合物的方法,这种α烯烃聚合物已与含6-7个碳原子的烃类介质形成浆料,从浆料中分离后对这种聚合物进行处理(如在诸如流化床干燥器之类的常规干燥器中与加热过的氮气接触),以将残余烃类介质的浓度降低到0.2-2%(重量)。按照该专利,当在这种烃类介质中形成聚合物时,当在这种烃类介质中用醇使催化剂失活时,以及当为除去无规馏份时用这种烃类介质进行处理时,可以形成这类浆料。该方法包括将聚合物加入容器(silo)的上部,在容器(silo)的下部通入露点为-10℃或-10℃以下的氮气或将聚合物沉降到容器的下部,该专利强调,在容器内排放的聚合物从容器的下部靠重力下降,并从容器上部排出含烃类介质的氮气。干燥过程在70-130℃温度内进行,聚合物在容器中的停留时间为0.5-20小时,通入的氮气量为20-40Nm3/吨处理的聚合物。该专利没有揭示含8个或更多个碳原子的脂肪烃介质,没有涉及低聚物,也没有描述在容器中形成流化床的聚合物粉末。
属于DeNicola的美国专利5,047,446揭示了一种处理辐射过的含自由基的丙烯聚合物颗粒的方法。在一个实施方案中处理聚合物颗粒的方法是,在温度约为40-110℃的用氮气或其它对自由基惰性的气体流化的颗粒床中将聚合物颗粒加热10分钟-2小时。在另一个实施方案中,聚合物颗粒再在温度约为130-150℃的第二个流化床中处理至少约20分钟。第一步的目的是更好地控制颗粒中自由基的重新结合,而第二步的目的是更好地控制残余自由基的失活。该专利中没有任何内容说明从任一个含低聚物的床中流化气体。
本发明提供一种从含较大浓度低聚物、基本上为结晶的α烯烃固体细颗粒中汽提低聚物的非熔融方法。一般来说,该方法包括在足以从所述颗粒中蒸发低聚物,但不足以使所述颗粒发粘到大量结块和粘合到壁上等程度的温度下形成含所述颗粒的床;在选定的条件下将一股对聚合物颗粒和低聚物惰性的气流以使床流化的速度通过所述的床,从而使床流化,在这过程中将低聚物蒸发并使其排出该床;将所述的床在所述的流化条件和温度下保持一段时间,以保证使所述颗粒中大部分的低聚物蒸发,并被排出该床。
本发明的一个实施方案是基于如下发现即在本方法实施过程中除去的低聚物的比例和链长是聚合物颗粒在流化床中温度和停留时间的函数。也发现,除去的低聚物比例是聚合物颗粒在流化床中停留时间的直接函数。还发现,除去的低聚物的链长是聚合物颗粒在流化床中温度的直接函数。
在该实施方案中,通过调节聚合物颗粒在流化床中温度和停留时间可以控制从聚合物颗粒中除去的低聚物的比例和链长,由此提供含残余量低聚物的聚合物产物,所述低聚物的浓度和链长是用于制造有用制品的产物中,或制品本身中必需的或需要的。
按本发明处理的聚合物是一般在实用温度范围内如100-140℃呈固态的或非粘性的,以及含有显著量低聚物的α烯烃聚合物。这种α烯烃聚合物通常有足够的结晶度,因此它在一个较高温度(一般高于25℃)内呈固体且是非粘性的,并在该温度或超过这个温度时会被熔化。众所周知,这种聚合物熔化的温度称为熔点。具有这种结晶度的α烯烃聚合物的例子包括模塑级聚合物、薄膜级聚合物和纤维级聚合物如聚乙烯,包括高、中和低密度型聚乙烯;乙烯共聚物,包括线型低密度聚乙烯和超低密度聚乙烯;聚丙烯(丙烯均聚物);丙烯和其它α烯烃(如乙烯和1-丁烯等)的共聚物和三元聚合物,所述的三元聚合物包括二烯,聚丁烯,聚苯乙烯;以及包括这些聚合物的混合物。所述混合物由顺序聚合法和熔融配混法制备。
这种α烯烃聚合物中低聚物的浓度可以在一个很宽的范围内。通常的浓度为占聚合物重量的1000-10000ppm,但更高的和更低的浓度也在本发明更宽的范围内。然而,在低聚物起始浓度低于约250ppm的情况下,本发明的方法不太可行。一个理由是降低这个值以下的低聚物浓度似乎没有任何有效的方法。
根据本发明,需处理的含低聚物的α烯烃聚合物是固体颗粒。按本发明方法减少低聚物的程度似乎不受颗粒度的显著影响。因此,聚合物颗粒可以是任何大小。然而,聚合物颗粒度一般在5-200目范围内(本文所有的颗粒度是美国筛号),从操作上考虑,聚合物颗粒度最好在5-80目范围内。
在所需温度下建立和维持颗粒流化床、向流化床中输入颗粒和气体以及从流化床中排出颗粒和气体的方法和装置是众所周知的,在本文中无需作描述。
流化和汽提气体可以是任何在选定条件下对聚合物颗粒惰性的气体,它是一种被蒸发的低聚物的溶剂,且不会被低聚物所饱和。优选气体的例子是氮气、氦气、氩气、二氧化碳等。虽然可以使用氧气和空气,但由于存在尘爆的危险一般不用这些气体。输入流化床的气体最好少含或不含低聚物。在大多数本发明实施方案中,出于经济上的考虑循环使用从流化床中排出的气体。通常为从这种回收气体分离出低聚物蒸汽需对其进行处理。这种处理的一个例子是将该气体冷却到低聚物蒸汽冷凝为止,并从气体中分离出冷凝的低聚物(一般呈油状)。在这些实施方案中,通常将分离出冷凝低聚物后的气体再加热到流化床温度后重新输入流化床。
将流化床的温度设定并保持在一个范围内,该范围的上限取决于需处理聚合物的软化点或粘膜点。它的下限取决于要从聚合物中除去的低聚物蒸汽压或沸点。对于聚丙烯而言,该范围在约100-140℃之间。对于聚合的乙烯含量为约2-5%(重量)的丙烯—乙烯无规共聚物而言,该范围在约100-125℃之间。
聚合物颗粒在流化床中停留时间取决于颗粒的孔隙率、床温和需除去的分子量最大的低聚物在床温下从颗粒的空隙迁移到表面的速率。对于大多数片状聚合颗粒的含低聚物的α烯烃聚合物而言,其平均颗粒度一般为约60目,对于这种球状聚合颗粒的聚合物而言,其平均颗粒度一般约为10目,为降低低聚物含量而优选的停留时间在约1-3小时内。
本发明的一个实施方案是基于如下发现通过调节聚合物颗粒在流化床中床温和停留时间,不仅可以有效控制从聚合物颗粒中汽提出来的低聚物的比例,而且还可以控制低聚物的最大链长。这种情况下的优点在于聚合物颗粒中可以容许保留一定量的分子量较高的低聚物,结果节约了能耗,或由于这些低聚物的存在有利于聚合物颗粒的熔流变性而需要这样做。一般来说,流化床温度越高,被除去的低聚物的链长越长,分子量越高,而停留时间越长,从聚合物颗粒中汽提出来的较长链低聚物的比例越大。因与具体情况的环境是密切相关的,所以进一步作一般论述是无意义的。然而根据本文所揭示的内容,无需进一步的实验就可确定每种情况下为在处理过的聚合物颗粒中得到最佳浓度和最短链长的残余低聚物所需的流化床温度和停留时间的结合。
本发明方法可按间歇方式和连续方式进行。
当本发明方法按间歇方式进行时,将需处理的聚合物颗粒按足以形成固定床的量加入合适的流化床容器中,用汽提低聚物的气体使所述的床流化,同时回收离开床的气体,并将床温设定在除去低聚物的范围内。在该温度范围内将该床保持在流化态,直至将低聚物清除到所需的程度。在本发明的一个间歇法实施方案中,停止向床中输入汽提气体后,或者让颗粒冷却到可以处理的温度,然后将其排出容器,或者先将颗粒排出容器,然后再让其冷却到该温度。在更优选的实施方案中,通过不断向床中输入汽提气体使该床保持在流化状态,并回收离开该床的气体,当该床被冷却到处理温度时,在该温度下停止输入汽提气体,并从容器中排出处理过聚合物颗粒。
在连续方式中,在合适的流化床容器中形成待处理的聚合物颗粒床,将汽提气体以足以使该床流化的速率连续地通入该容器,设定流化床温度,并将其维持在所述聚合物的处理温度范围内,从容器中连续地排出离开该床的气体,将需处理的聚合物颗粒连续地加入流化床的某一部分或区域,并从流化床的另一部分或区域中连续地排出聚合物颗粒。在该方式中,选择聚合物颗粒输入流化床和排出流化床的速率,以维持该床并提供聚合物颗粒在床中所需的平均停留时间。
本发明的特征用如下实施例作进一步说明。在这些实施例中,“ppm”表示每百万聚合物重量份之几。所有熔体流动速率按美国材料试验协会D1238,条件L进行测定。
实施例1本实施例说明床温和停留时间对降低α烯烃聚合物中低聚物含量的影响。
本实施例所用的α烯烃聚合物是含常规浓度常用抗氧化剂的半结晶聚丙烯。它的标称熔体流动速率为30dg/min。用气相色谱分析法测定的低聚物含量为3220ppm。聚合物是有如下颗粒度分布的球形颗粒。<
流化床装置包括46cm×46cm×61cm装有烧结金属扩散板的流化床容器。与该容器操作组合的是一个封闭的环道,所述的环道用一个标牌速率为1000scfm的鼓风机和一个用热油加热的在线细管热交换器循环氮气体系。可用二个热油源,其中一个热油源为80℃,另一个热油源为140℃。每个热源用一个有阀管道连接到与热交换器偶合的歧管上,这样可以选择任何一个热源给热交换器供热。
将11.4千克聚合物加入容器,形成固定床,该床用80℃的氮气流化120分钟,在这期间,每隔15分钟提取处理过的聚合物试样。然后将气体温度升高到140℃,将流化床中的聚合物颗粒再处理105分钟,同时每隔15分钟从流化床中提取试样。在后105分钟中通过流化床的氮气量等于233333m2/kg处理过的聚合物。试样的气相色谱分析结果列于下表。
表I
从表中可知,在80℃时对聚合物处理120分钟没有明显地从最初的3220ppm中降低低聚物的总浓度。另一方面,在140℃时处理105分钟使低聚物浓度降低了40%,降至1940ppm。
如下的实施例说明温度和停留时间不仅影响按本发明方法处理后α烯烃聚合物中低聚物总含量的降低,而且还影响处理后聚合物中残余低聚物的浓度和链长。
在这些实施例中采用实验室规模的流化床系统。内径为约5分米、长度为约0.9米的管子和位于下端的多孔烧结金属扩散板构成流化床容器。容器壁温度用容许误差为±3℃的电加热带控制,流化气流用1200瓦通气流电加热器预热。流化气体温度用位于扩散板上游约5分米的热电偶测量,气体温度用反馈式控制器控制。气体流速用气体加热器上游的旋转流量计测量。对于“片”状聚合物,气体流速一般设定为50scfm,对于颗粒度较大的球形颗粒,气体流速一般设定于200scfm。没有气体循环。
在每个实施例的每次运转中,流化容器中装入300克未处理的聚合物,并流化所得的床。流化气体和低聚物的汽提物为氮气。流化床设定的温度和流化床在该温度下保持的时间列于下表。在每次操作结束时,在处理过的聚合物颗粒冷却后,将容器排空,取出聚合物颗粒的试样,并用气相色谱法分析低聚物的总含量以及100℃操作外的低聚物的碳原子含量。所得的气相色谱分析(“GCA”)数据列于下表。表中的“nd”是指没有确定。
实施例2本实施例所用的α烯烃聚合物是含常规浓度常用抗氧化剂的半结晶聚丙烯。它的标称熔体流动速率为30dg/min。聚合物是有如下颗粒度分布的球形颗粒。
所得的气相色谱分析数据列于下表II。
表II
实施例3本实施例所用的α烯烃聚合物是含常规浓度常用抗氧化剂的片状半结晶聚丙烯。它的标称熔体流动速率为30dg/min。聚合物的颗粒度分布如下
所得的气相色谱分析数据列于下表III。
表III<
>实施例4本实施例所用的α烯烃聚合物是含常规浓度常用抗氧化剂的半结晶聚丙烯。它的标称熔体流动速率为440dg/min。聚合物是有如下颗粒度分布的球形颗粒。
所得的气相色谱分析数据列于下表IV。
表IV
实施例5本实施例所用的α烯烃聚合物是含常规浓度常用抗氧化剂的半结晶聚丙烯。它的标称熔体流动速率为70dg/min。聚合物是有如下颗粒度分布的球形颗粒。
实施例6本实施例所用的α烯烃聚合物是含常规浓度常用抗氧化剂的半结晶聚丙烯。它的标称熔体流动速率为20dg/min。聚合物是有如下颗粒度分布的球形颗粒。
所得的气相色谱分析数据列于下表VI。
表VI
实施例7
本实施例所用的α烯烃聚合物是另一种片状半结晶聚丙烯,它也含有常规浓度常用抗氧化剂。它的标称熔体流动速率为9.5dg/min。聚合物颗粒的颗粒度分布如
所得的气相色谱分析数据列于下表VII。
表VII
上述数据表明,本发明方法不仅可以通过调节床温和停留时间有效地从半结晶α烯烃聚合物颗粒中汽提低聚物,而且可根据低聚物的链长或分子量控制其除去的程度。当因为较高分子量的低聚物有利于聚合物的熔体流变性而要求在聚合物中保留这种低聚物时,它是一个优点。
本技术领域中熟练技术人员在阅读了本公开书后,其它在上述公开书精神范围内的以及在仅根据专利法所解释的权利要求书所限定的本专利范围内的特征、优点、实施方案、改进、细节和用途都是显而易见的。同样地,虽然相当详细地描述了本发明的具体实施方案,但只要不偏离本发明的精神和范围也可作各种变化和改进。
权利要求
1.一种从含显著浓度低聚物的基本上为结晶的α烯烃聚合物细颗粒中汽提低聚物的方法,其特征在于所述的方法包括在足以从所述颗粒中蒸发低聚物,但不足以使所述颗粒发粘到大量结块和粘结到壁上程度的温度下形成含所述颗粒的床;在选定的条件下将一股对聚合物颗粒和低聚物惰性的气流以使床流化的速度通过所述的床,从而使床流化,在这过程中将低聚物蒸发并使其排出该床;将所述的床在所述的温度下保持一段时间,这段时间足以使所述颗粒中大部分的低聚物蒸发。
2.如权利要求1所述的方法,其特征在于通过将含显著浓度低聚物的所述聚合物颗粒输入所述床的一个区域,并从所述床的另一个区域中排出已大大降低了低聚物浓度的聚合物颗粒而实施所述步骤。
3.如权利要求1所述的方法,其特征在于所述的气体是氮气。
4.如权利要求1所述的方法,其特征在于所述的温度和时间的选择系根据需从所述颗粒中汽提低聚物的比例和最大链长来进行。
5.如权利要求1所述的方法,其特征在于所述的聚合物颗粒是半结晶丙烯聚合物颗粒。
6.如权利要求5所述的方法,其特征在于所述的温度为100-140℃,所述的时间在1-3小时。
7.如权利要求1所述的方法,其特征在于需用本方法处理的聚合物颗粒中低聚物的最小链长是9个碳原子。
8.如权利要求7所述的方法,其特征在于用本方法处理后的聚合物颗粒中低聚物的最小链长是18-36个碳原子。
全文摘要
本申请公开了一种从基本上为结晶α烯烃聚合物颗粒中无需将该颗粒熔化就可除去低聚物的方法。本发明包括用可溶解低聚物的气体使颗粒床流化,在所述的床处于聚合物颗粒是非粘性的,而较低分子量的低聚物至少可从中蒸发的温度。将流化床中的颗粒维持到大部分低聚物被蒸发并被流化气体排出为止。通过调节床中颗粒的床温和停留时间可以控制除去低聚物的比例和链长。
文档编号C08F6/00GK1138590SQ9610378
公开日1996年12月25日 申请日期1996年3月29日 优先权日1995年3月31日
发明者R·J·费扎, S·D·威廉斯 申请人:蒙岱尔北美股份有限公司