α-烯烃单体与一种或多种乙烯基或亚乙烯基芳族单体的共聚体的组合物的制作方法

文档序号:3655106阅读:268来源:国知局
专利名称:α-烯烃单体与一种或多种乙烯基或亚乙烯基芳族单体的共聚体的组合物的制作方法
技术领域
本发明涉及α-烯烃单体与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体的组合物,其中混有一种或多种导电添加剂和视需要的一种或多种附加聚合物。
α-烯烃/乙烯基或亚乙烯基单体基本上无规共聚体(包括α-烯烃/乙烯基芳族单体的共聚体)类物质及其制备是本领域已知的,描述于EP416815A2。
Y.W.Cheng,M.J.Guest在Proc.Antec‘96的第1634-1637页中,描述了包含最高50%摩尔苯乙烯的乙烯与苯乙烯的基本上无规共聚体的结构、热转变和机械性能。据说,该共聚体在-20℃至+35℃之间存在玻璃化转变,且在苯乙烯加入量超过25%摩尔时没有测得其结晶度,即,它们基本上是无定形的。
基本上无规乙烯/苯乙烯共聚体之类的物质具有宽范围的物质结构和性能,使得它们可用于各种场合,如用作沥青改性剂或用作聚乙烯与聚苯乙烯的共混物的相容剂(如美国专利5460818所述)。尽管本身具有用途,但工业上仍然不断寻求提高这些共聚体的适用性。为了很好地用于某些场合,这些共聚体可根据需要,例如在导电率和/或磁导率上进行改进。
在许多场合中,赋予材料以导电率或磁导率是重要的。例如,材料的半导率(10-9-10-2S/cm)性能特性有助于其在需要静电涂漆、电子元件制造和运输、用于静电地毯和衣服的导电纤维、抗静电地板、以及用于半导体膜的场合中的应用。在电缆屏蔽、可复位保险丝、EMI屏蔽、和直接在塑料上电镀之类的场合中也要求较高的导电率。一般来说,已有材料导电改性的关键之处在于,保持主体材料的可接受性能,同时将增加导电率所需的导电添加剂的量最小化,否则也是一个成本问题。
在电磁波衰减,即,将许多电子装置中的电子设备和电路屏蔽不受环境中电磁干涉(EMI)不利影响的各种场合中,磁导率是一种所需的特性。EMI屏蔽的重要之处还在于将EMI包含在EMI生成源内,如由政府和私人工业加在电子设备上的说明书所述。
我们现在已经发现,α-烯烃单体与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体可通过熔体或溶液混入低含量的导电添加剂如导电碳而具有半电导性(10-9-10-2S/cm)。我们现在还已发现,这些共聚体在进入大量导电添加剂时明显更加导电(>0.01S/cm)。
我们现在还已发现,与没有任何共聚体的场合相比,如果所有其它因素如导电添加剂含量和加工参数保持恒定,将较少量的α-烯烃与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体、导电添加剂、和附加聚合物结合在一起可以提高该共混物的导电率。
我们现在还已发现,这种提高可在否则会产生绝缘表面的条件下赋予该复合体表面以导电性。
最后我们还发现,使用两种或多种具有不同乙烯基或亚乙烯基单体含量的α-烯烃与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体也可明显提高该复合体表面以及整体的导电率。
在本发明的另一方面,α-烯烃与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体可与本质导电聚合物(ICP)如某些合适掺杂的聚苯胺进行混合,例如在由溶液铸塑时制成具有抗静电性能的相对透光膜。某些合适掺杂的聚苯胺(例如,描述于由Susan J.Babinec于1997年10月15日递交的题为“导电聚合物”的待审临时美国专利申请,在此将其作为参考并入本发明)表现出与α-烯烃与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体混溶。这些混合物由于良好的相容性而可制成透明的而不是浑浊或不透明的膜,这样在高至500倍放大倍数的光显微镜下也看不到离散颗粒。这些有效透明膜是半导性的且不含离散颗粒,因此是一种较理想的产品,例如用于与电子元件制造和运输有关的抗静电场合。在吹制泡沫材料和膜的工艺中,细小微结构同样是至关重要的,这时某些聚苯胺在α-烯烃与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体中的相容性也是一个重要的特性。
总之,本发明涉及聚合物材料的共混物,包含(A)基于组分A、B、和C总重的1-99.99%重量的至少一种基本上无规共聚体;且其中所述共聚体(1)包含0.5-65%摩尔的衍生自以下单体的聚合物单元(a)至少一种乙烯基或亚乙烯基芳族单体,或(b)至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体,或(c)至少一种乙烯基或亚乙烯基芳族单体与至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体的混合物;(2)包含35-99.5%摩尔的衍生自至少一种具有2-20个碳原子的脂族α-烯烃的聚合物单元;(3)分子量(Mn)大于1000;(4)熔体指数(I2)为0.01-1000;(5)分子量分布(Mw/Mn)为1.5-20;和(B)基于组分A、B和C总重的99-0.01%重量的一种或多种导电添加剂和/或一种或多种具有高磁导率的添加剂;和(C)基于组分A、B和C总重的0-98.99%重量的一种或多种除A之外的聚合物。


图1是测定表面导电率的方法的图。
图2是测定芯导电率的方法的图。
定义本文涉及属于某族的元素或金属时的所述的元素周期表是指由CRCPress,Inc.,1989出版和拥有版权的元素周期表。同样,涉及“族”时应该是指在该元素周期表中使用IUPAC族命名体系时所给出的“族”。
本文所用的所有数值包括从较低值至较高值的所有值,增量为一个单位,只要在任何较低值和任何较高值之间相差至少2个单位。例如,如果将组分的量或工艺的可变值如温度、压力、时间叙述为例如1-90,优选20-80,更优选30-70,那么意味着在本说明书中列举了数值如15-85、22-68、43-51、30-32等。对于低于1的数值,一个单位可根据需要被认为是0.0001、0.001或0.1。这些只是具体含义的例子,因此所列最低值与最高值之间的任何可能数值组合都认为在本申请中得到类似表述。
本文所用的术语“烃基”是指任何脂族、环脂族、芳族、芳基取代脂族、芳基取代环脂族、脂族取代芳族、或脂族取代环脂族基团。
术语“烃氧基”是指在它与所连接的碳原子之间具有一个氧键的烃基。
本文所用的术语“共聚物”是指这样一种聚合物,其中至少两种不同的单体聚合形成该共聚物。
本文所用的术语“共聚体”是指这样一种聚合物,其中至少两种不同的单体聚合形成该共聚体。它包括共聚物、三元聚合物等。
在包含α-烯烃和一种或多种乙烯基或亚乙烯基芳族单体或位阻脂族或环脂族乙烯基或亚乙烯基单体的基本上无规共聚体中,本文所用的术语“基本上无规”是指,所述共聚体的单体分布可通过伯努里统计模型或通过一级或二级Markovian统计模型来描述,例如描述于J.C.Randall的《聚合物序列测定,碳-13核磁共振法》(PolymerSequence Determination,Carbon-13 NMR Method,Academic PressNew York,1977,71-78页)。这种包含α-烯烃和乙烯基或亚乙烯基芳族单体的基本上无规共聚体优选使得,在具有3个以上乙烯基或亚乙烯基芳族单体单元的嵌段中的乙烯基或亚乙烯基芳族单体总量不超过15%。更优选的是,该共聚体不是以高度全同立构或间同立构为特征。这意味着在该基本上无规共聚体的碳-13核磁共振谱中,代表内消旋二单元组序列或外消旋二单元组序列的主链亚甲基碳和次甲基碳相对应的峰面积应该不超过主链亚甲基碳和次甲基碳的总峰面积的75%。
基本上无规乙烯/乙烯基或亚乙烯基共聚体本发明的基本上无规共聚体共混组分包括由一种或多种α-烯烃单体和一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体聚合得到的共聚体。
合适的α-烯烃单体例如包括含有2至20,优选2至12,特别是2至8个碳原子的α-烯烃。特别合适的是乙烯、丙烯、丁烯-1、4-甲基-1-戊烯、己烯-1和辛烯-1。这些α-烯烃不含芳族部分。优选的是乙烯与C3-8α-烯烃的混合物,更优选乙烯。
其它视需要的可聚合烯属不饱和单体包括降冰片烯和C1-10烷基或C6-10芳基取代的降冰片烯,共聚体的一个例子为乙烯/苯乙烯/降冰片烯。
适用于该共聚体的乙烯基或亚乙烯基芳族单体例如包括由以下结构式的所代表的那些单体
其中R1选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;每个R2独立地选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;Ar为苯基或被1至5个选自卤素、C1-4烷基和C1-4卤代烷基的取代基所取代的苯基;且n的值为0至4,优选为0至2,最优选0。
乙烯基芳族单体的例子包括苯乙烯、乙烯基甲苯、α-甲基苯乙烯、叔丁基苯乙烯和氯代苯乙烯,包括这些化合物所有的异构体。特别合适的这类单体包括苯乙烯及其低级烷基或卤素取代衍生物。优选单体包括苯乙烯、α-甲基苯乙烯和低级烷基-(C1-4)或苯基环上取代的苯乙烯衍生物,例如邻-、间-和对甲基苯乙烯、环卤化的苯乙烯、对乙烯基甲苯或其混合物。更优选的芳族乙烯基单体是苯乙烯。
术语“位阻脂族或环脂族乙烯基或亚乙烯基化合物”是指对应于以下结构式的可加成聚合的乙烯基或亚乙烯基单体
其中A1为含有至多20个碳原子的空间位阻大的脂族或环脂族取代基,R1选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;每个R2独立地选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;或R1和A1也可以构成环体系。术语“空间位阻大”是指,带有该取代基的单体在标准Ziegler-Natta聚合反应催化剂下进行加成聚合的速度一般要比乙烯聚合的速度要小。但简单线型α-烯烃(包括例如具有3-20个碳原子的α-烯烃,如乙烯、丙烯、丁烯-1、4-甲基-1-戊烯、己烯-1或辛烯-1)不是位阻脂族或环脂族乙烯基或亚乙烯基化合物的例子。
优选的位阻脂族或环脂族乙烯基或亚乙烯基化合物是其中一个带有烯属不饱和度的碳原子被三级或四级取代的那些单体。这类取代基的例子包括环脂基如环己基、环己烯基、环辛基、或其环上烷基或芳基取代的衍生基团、叔丁基、降冰片基。最优选的位阻脂族或环脂族乙烯基或亚乙烯基化合物是环己烯和取代环己烯的各种异构的乙烯基-环取代衍生物、和5-乙叉基-2-降冰片烯。特别合适的是1-、3-和4-乙烯基环己烯。
基本上无规共聚体可通过本领域熟知的典型接枝、氢化、官能化、或其它反应进行改性。按照已有方法,聚合物往往通过磺化或氯化产生官能化衍生物。该基本上无规共聚体可通过各种扩链或链交联方法进行改性,其中包括(但不限于)过氧化物-、硅烷、硫-、辐射-或叠氮化物-基固化体系。有关各种交联方法的详细说明描述于待审美国专利申请号09/921641和08/921642(都在1997年8月27日递交),在此将其作为参考并入本发明。综合利用热、水分固化、和辐射步骤的双固化体系也可有效采用。1995年9月29日递交的美国专利申请号536022(申请人为K.L.Walton和S.V.Karande)公开和要求了双固化体系,在此将其作为参考并入本发明。例如,可能需要结合使用过氧化物交联剂与硅烷交联剂、过氧化物交联剂与辐射、含硫交联剂与硅烷交联剂等。基本上无规共聚体还可通过各种交联方法进行改性,这些方法包括(但不限于)在其制备过程中,加入二烯组分作为第三单体,随后通过前述方法以及其它方法(包括使用例如硫作为交联剂,通过乙烯基进行硫化)进行交联。
一种制备基本上无规共聚体的方法包括,在一种或多种金属茂催化剂或受限几何催化剂以及各种助催化剂的存在下,将可聚合单体的混合物进行聚合,如C.Stevens等人的EP-A-0416815和FrancisJ.Timmers的美国专利5703187所述,在此将其作为参考并入本发明。这些聚合反应优选的操作条件为大气压至3000个大气压的压力以及-30℃至200℃的温度。在高于各单体自聚合温度之上的温度下进行聚合反应和去除未反应单体可能导致形成一定量的通过游离基聚合反应得到的均聚物聚合产物。
适用于制备基本上无规共聚体的催化剂和方法的例子公开于1991年5月20日递交的美国专利申请702,475(EP-A-514,828);以及美国专利No.5,055,438、5,057,475、5,096,867、5,064,802、5,132,380、5,189,192、5,321,106、5,347,024、5,350,723、5,374,696、5,399,635、5,470,993、5703187和5721185,这些专利和专利申请所描述的全部内容均作为本申请书的参考文献并入本文。
基本上无规α-烯烃/乙烯基或亚乙烯基芳族共聚体还可通过JP07/278230所述的方法制备,其中采用了由以下通式表示的化合物
其中Cp1和Cp2相互独立地为环戊二烯基、茚基、芴基、或其取代形式;R1和R2相互独立地为氢原子、卤素原子、具有1-12个碳原子的烃基、烷氧基、或芳氧基;M为IV族金属,优选Zr或Hf,最优选Zr;且R3是用于交联Cp1和Cp2的亚烷基或硅烷二基。
基本上无规α-烯烃/乙烯基或亚乙烯基芳族共聚体还可通过John G.Bradfute等(W.R.Grace & Co.)在WO 95/32095;R.B.Pannell(Exxon化学专利公司)在WO 94/00500;以及在《塑料技术》(PlasticsTechnology)1992年9月,第25页所描述的方法进行制备,这些参考文献所描述的全部内容均并入本文。
同样适用的还有Francis J.Timmers等人于1996年9月4日递交的美国专利申请U.S.No.08/708,869中所公开的含有至少一种α-烯烃/乙烯基芳族单体/乙烯基芳族单体/α-烯烃四单元组的基本上无规共聚体。这些共聚体含有其峰比噪音峰强度大3倍的其它信号。这些信号的化学位移在43.70至44.25ppm和38.0至38.5ppm之间。具体地说,主峰的化学位移为44.1、43.9和38.2ppm。质子测试核磁共振实验表明,化学位移在43.70至44.25ppm的信号属于次甲基碳,化学位移在38.0至38.5ppm的信号属于亚甲基碳。
这些新信号据信是由于在两个头尾相接的乙烯基芳族单体的前后插入至少一个α-烯烃而形成的序列,例如乙烯/苯乙烯/苯乙烯/乙烯四单元组,其中苯乙烯单体只以1,2(头尾相接)的方式插入该四单元组中。本领域熟练技术人员懂得,对于含有苯乙烯之外的乙烯基芳族单体和乙烯之外的α-烯烃的四单元组,这种乙烯/乙烯基芳族单体/乙烯基芳族单体/乙烯四单元组可具有类似的碳-13核磁共振峰,但在化学位移上有微小差别。
这些共聚体是在-30℃至250℃的温度下,在以下结构式所示的那些催化剂的存在下,以及视需要但优选在活化助催化剂的存在下进行的聚合反应制备的
其中每个Cp分别独立地为与M以π键相连的取代环戊二烯基;E为C或Si;M为第IV族金属元素,优选为Zr或Hf,最优选Zr;每个R分别独立地为氢原子、烃基、硅杂烃基或烃基硅烷基,含有至多30个、优选1至20个、更优选1至10个碳原子或硅原子;每个R’分别独立地为氢原子、卤素、烃基、烃氧基、硅杂烃基或烃基硅烷基,含有至多30个、优选1至20个、更优选1至10个碳原子或硅原子,或两个R’基团共同可以构成C1-10烃基取代的1,3-丁二烯;m为1或2。尤其是,适用的取代环戊二烯基包括以下结构式所示的那些基团
其中每个R分别独立地为氢原子、烃基、硅杂烃基或烃基甲硅烷基,含有至多30个、优选1至20个、更优选1至10个碳原子或硅原子,或两个R基共同可以构成该基团的二价衍生基团。每个R分别独立地优选为(包括所有异构体,如果合适的话)氢原子、甲基、乙基、丙基、丁基、戊基、己基、苄基、苯基或甲硅烷基,或(如果合适的话)两个R基团连接起来构成一稠环体系,如茚基、芴基、四氢茚基、四氢芴基或八氢芴基。
特别优选的催化剂例如包括外消旋(二甲基甲硅烷二基)-二-(2-甲基-4-苯基茚基)二氯化锆、外消旋(二甲基甲硅烷二基)-二-(2-甲基-4-苯基茚基)1,4-二苯基-1,3-丁二烯锆、外消旋(二甲基甲硅烷二基)-二-(2-甲基-4-苯基茚基)二C1-4烷基锆、外消旋(二甲基甲硅烷二基)-二-(2-甲基-4-苯基茚基)二C1-4烷氧基锆,或其任意组合形式。
还可使用以下的钛基受限几何催化剂[N-(1,1-二甲基乙基)-1,1-二甲基-1-[(1,2,3,4,5-η)-1,5,6,7-四氢-S-环戊二烯并茚(indacen)-1-基]硅烷氨基(2-)-N]二甲基钛、(1-茚基)(叔丁基氨基)二甲基-硅烷二甲基钛、((3-叔丁基)(1,2,3,4,5-η)-1-茚基)(叔丁基氨基)二甲基硅烷二甲基钛、和((3-异丙基)(1,2,3,4,5-η)-1-茚基)(叔丁基氨基)二甲基硅烷二甲基钛、或其任意组合形式。
本发明基本上无规α-烯烃/亚乙烯基芳族单体共聚体共混组分的其它制备方法在文献中已有描述。Longo和Grassi(大分子化学(Makromol.Chem.).1990年,第191卷,2387-2396页)和D’Anniello等(应用聚合物科学杂志,1995年,第58卷,1701-1706页)报道了采用基于甲基铝氧烷(MAO)和环戊二烯基三氯化钛(CpTiCl3)的催化剂体系来制备乙烯-苯乙烯共聚物。Xu和Lin(美国化学学会高分子化学分会,聚合物预印集(Polymer Preprints,Am.Chem.Soc.,Div.Polym.Chem.),1994年,第35卷,686,687页)报道采用MgCl2/TiCl4/NdCl3/Al(iBu)3催化剂进行共聚以制备苯乙烯与丙烯的无规共聚物。Lu等(应用聚合物科学杂志,1994年,第53卷,1453-1460页)报道采用TiCl4/NdCl3/MgCl2/Al(Et)3催化剂将乙烯与苯乙烯进行共聚合。α-烯烃/乙烯基芳族单体共聚体如丙烯/苯乙烯和丁烯/苯乙烯共聚体的制造在三菱石化工业株式会社(Mitsui PetrochemicalIndustries Ltd)拥有的美国专利No.5,244,996或三菱石化工业株式会社拥有的美国专利No.5652315中有描述或公开于DE19711339A1(Denki Kagaku Kogyo KK)。所有上述所公开的制备共聚体的方法均作为本申请的参考文献并入本文。
作为共聚体共混组分,还包括C4-C7异烯烃/对烷基苯乙烯共聚体,它是C4-C7异单烯烃如异丁烯与对烷基苯乙烯共聚单体(优选对甲基苯乙烯)的无规共聚物,其中包含至少80%重量,更优选至少90%重量的对位异构体。这些共聚体还包括官能化共聚体,其中苯乙烯单体单元上的至少某些烷基取代基包含卤素或某些其它的官能团,这些官能团通过苄基卤与其它基团如醇盐、酚盐、羧酸盐、硫醇盐、硫醚、硫代氨基甲酸酯、二硫代氨基甲酸酯、硫脲、黄原酸盐、氰化物、丙二酸盐、胺、酰胺、咔唑、邻苯二甲酰胺、马来酰胺、氰酸盐及其组合形式的亲核取代而引入。
优选物质的特征在于包含沿着聚合物链无规间隔的以下单体单元的异丁烯共聚体。这些官能化异单烯烃共聚体及其制备方法更具体地公开于美国专利5162445中,在此将其作为参考完全并入本发明。
最有用的这类官能化物质是异丁烯与对甲基苯乙烯的弹性无规共聚体,其中包含0.5-20%摩尔的对甲基苯乙烯,其中苄基环上的最高60%摩尔甲基取代基包含溴或氯原子,优选溴原子。这些聚合物具有基本上均匀的组成分布,使得至少95%重量聚合物的对烷基苯乙烯含量与聚合物平均对烷基苯乙烯含量相差在10%以内。更优选的是,该聚合物还特征在于低于5,更优选低于2.5的窄分子量分布(Mw/Mn)。优选的粘均分子量为200000-2000000,优选的数均分子量为25000-750000,通过凝胶渗透色谱测定。
这些共聚体可通过使用Lewis酸催化剂将单体混合物进行淤浆聚合,然后在卤素和游离基引发剂如热和/或光和/或化学引发剂的存在下,在溶液中进行卤化(优选溴化)而制成。
优选的共聚体是溴化共聚体,它一般包含0.1-5%摩尔的溴甲基,其中大多数是一溴甲基,共聚物中二溴甲基取代基的量低于0.05%摩尔。更优选的共聚体包含具有该共聚体重量0.05-2.5%重量的溴,最优选0.05-0.75%重量的溴,而且基本上没有环上卤素或聚合物主链上的卤素。这些共聚体、其制备方法、其固化方法、以及由其衍生的接枝或官能化聚合物更具体地公开了以上引用的美国专利5162445中。这些共聚体可购自Exxon Chemical,商品名为ExxproTM特种弹性体(Speciality Elastomers)。
交联共聚体一种或多种二烯可视需要加入该共聚体中以在该共聚体上产生可例如参与交联反应的不饱和官能位。尽管共轭二烯如丁二烯、1,3-戊二烯(即,戊间二烯)或异戊二烯可用于此,但优选非共轭二烯。典型的非共轭二烯包括,例如开链非共轭二烯烃如1,4-己二烯(参见美国专利2933480)和7-甲基-1,6-辛二烯(也称作MOCD);环二烯;桥环二烯,如二环戊二烯(参见美国专利3211709);或亚烷基降冰片烯,如亚甲基降冰片烯或亚乙基降冰片烯(参见美国专利3151173)。非共轭二烯并不限于具有仅两个双键,而是还可包括具有三个或更多双键的非共轭二烯。
在本发明的共聚体中,二烯的加入量为基于所述共聚体总重的0-15%重量。如果使用二烯,其量优选为基于所述共聚体总重的至少2%重量,更优选至少3%重量,最优选至少5%重量。另外,如果使用二烯,其量不超过基于所述共聚体总重的15%重量,优选不超过12%重量。
导电添加剂导电添加剂可通过各种参数而区别,这些参数包括化学性质、颗粒形状(例如是纤维束还是球状颗粒还是片状)、粒径和粒径分布、比表面积、表面张力、颜色、在可见光谱中的光密度、导电率大小、玻璃化转变温度(Tg)、热稳定性、溶解度、化学反应活性、环境稳定性、密度和堆集密度、以及亲水性。
对于导电共混组合物,需要加以平衡的重要共混性能为导电率、熔体流变学/分散性(为了可加工性)、冲击性能、机械强度、吸水性、均匀性、成本、介电强度、光泽、美学效果、耐磨性和耐撕裂性、玻璃化转变温度、填料与基质的粘附性。此外,对于半导性共混组合物,重要性能还包括透光率、耐化学性、对相对湿度变化的不敏感度。共混性能的任何特定平衡都取决于特定的最终用途,因此部分地决定了对导电添加剂的选择。
1)导电添加剂a)导电炭黑导电添加剂包括(但不限于)所有已知种类的导电炭黑。有各种各样的炭黑,它们都具有一定的导电率、可工业生产或另外通过各种不同的方法来生产。但本文中的“导电炭黑”是指在混入某些基料中时能很好产生导电性的那些炭黑。通常,导电炭黑具有高或甚高含量的可通过几种试验测定的结构。一级粒径和碳微结构通过透射式电子显微镜(TEM)来评估。具有高结构的炭黑往往在TEM观察时表现出明显键接且分立的聚集体数目低。此外,按照ASTM D2314进行的吸油试验可得到空隙腔体积的数值。在本文中认为具有导电性的炭黑具有相对较高的吸油值,通常大于500%,优选大于400%。
聚集作用是与碳结构有关的另一参数,通过邻苯二甲酸二丁酯(DBP)吸收来评估。可用于本发明的导电炭黑包括(但不限于)DBP吸收值大于100毫升/100克,优选大于70毫升/100克的那些炭黑。堆积密度(DINISO 787/11)也可评估结构化程度。就本发明而言,导电炭黑包括(但不限于)堆积密度低于500克/升的那些。另一非常重要的数值是炭黑表面上的极性基团的比例。极性基团可降低导电率。表面极性基团的含量是一种容易以百分挥发物确定的参数,按照ASTM D 1620测定。可用于本发明的导电炭黑包括(但不限于)挥发物含量低于2%重量的那些。导电率还与污染物(例如,灰、硫、各种过渡金属)在导电炭黑中的含量有关,在具有良好导电率的炭黑中,其浓度一般要求低于20ppm。
本领域还熟知,熔体和溶液处理的具体细节可显著影响聚合物或具有导电添加剂的聚合物共混物的导电率。这些影响在将导电炭黑分散到聚合物中时尤其显著,因为导电炭黑结构在共混时几乎随着积聚到该体系中的总剪切能而连续降低,而且因为导电率需要导电添加剂物质之间的接触。另外,某些导电炭黑可通过表面处理改进分散性。根据这些教导,可以理解,在共混体系中具有几乎相当的总剪切能的加工条件下比较这些样品。类似地,冷却动力学可影响该复合体的导电率。
b)本质导电聚合物(ICP)作为本发明组合物中的导电添加剂,还可包括掺杂和未掺杂共轭本质导电取向或未取向的、无定形和半结晶聚合物,如取代和未取代聚苯胺、聚乙炔、聚吡咯、聚(亚苯基硫)、聚吲哚、聚噻吩和聚(烷基)噻吩、聚亚苯基、聚亚乙烯基/亚苯基、及其共聚物,例如乙炔与噻吩或苯胺与噻吩的无规或嵌段共聚物。还可包括它们的衍生物,如聚(N-甲基)吡咯、聚(邻乙氧基)苯胺、聚亚乙基二氧基噻吩(PEDT)、和聚(3-辛基)噻吩。
这些物质称作“本质导电聚合物”或“ICP”,在本文中是指具有延伸π-共轭基团的聚合物,可通过掺杂剂如Lewis或Lowry-Bronsted酸或氧化还原剂而赋予导电性,形成导电率至少10-12S/cm的电荷转移配合物。电荷转移可以是完全或部分的,取决于特定的电子给体/电子受体对。例如,已经发现,某些锂盐与聚苯胺之间的部分电荷转移可提高聚苯胺的导电率。据信完全电荷转移发生在聚苯胺与质子、以及聚噻吩与质子或过渡金属配合时。赋予聚合物以导电性的方法在本文中称作“掺杂”。已赋予导电性和未赋予导电性的ICP在本文中分别称作“掺杂”ICP和“未掺杂”ICP。可用于这种掺杂工艺以赋予ICP导电性的化合物和聚合物在本文中称作“掺杂剂”。
如果低成本和高温稳定性是重要的,那么ICP优选聚苯胺、聚吡咯、或聚噻吩,但最优选聚苯胺。但如果使用ICP与热塑性或热固性聚合物制备复合体,那么还可根据ICP与该聚合物的相容性进行选择。例如,聚吡咯可与某些聚合物在其主链上形成氢键,这时两者就特别相容;聚烷基噻吩与聚烯烃和聚苯乙烯特别相容;聚乙炔与聚烯烃特别相容。
聚苯胺可以是几种不同的氧化态如无色翠绿亚胺、原翠绿亚胺、翠绿亚胺、苯胺黑、和过苯胺黑(pernigraniline),取决于胺基团与聚合物主链中亚胺基团的比率。此外,每种氧化态可以质子化或不质子化。例如,其中50%氮原子包含在亚胺基团中且被质子化的聚苯胺翠绿亚胺盐形式就是质子化聚苯胺的一种非常导电的稳定形式。该氧化态的非导电基质是蓝色的,而质子化形式(翠滤亚胺盐)则是绿色的。
ICP可通过任何合适的方法进行掺杂。各种掺杂方法的效率和如此所得掺杂ICP的导电率可根据掺杂方法、特定ICP、特定掺杂剂、以及复合体加工工艺中掺杂ICP(如果ICP用于制备复合体)时的时间点而变化。ICP可例如这样掺杂将掺杂剂的溶液、熔体、或分散体与溶液中的ICP或固态ICP进行混合,固态ICP与固态掺杂剂(固态掺杂)进行接触,固态ICP与蒸汽形式的掺杂剂进行接触,或其任意组合形式。
一般来说,聚苯胺在供应量足以掺杂50%摩尔有效位时达到最大导电率。其它类型的ICP通常在稍低掺杂量,例如30%摩尔有效位(对于聚吡咯和聚噻吩)下达到最大导电率。ICP达到最大导电率所需的掺杂剂的摩尔量取决于(1)所用的特定ICP,(2)其化学纯度,和(3)掺杂剂在ICP基质中的物理分布。掺杂剂的用量优选不要大大超过掺杂聚合物所需的量,这是由于成本原因,而且因为过量掺杂剂特别容易从包含掺杂聚合物和过量掺杂剂的复合体中渗出。
适用于聚苯胺和其它ICP的掺杂剂的例子包括能够在聚合物上引入带电位的任何盐、化合物、或聚合物,包括部分或完全电荷转移物质如Lewis酸、Lowry-Bronsted酸、和某些碱金属盐如四氟硼酸锂、和过渡金属盐如金、铁和钯氯化物;以及具有足够氧化性氧化偶以掺杂聚合物的其它氧化还原试剂;烷基和芳基卤;以及酸酐。不是以上所列的所有掺杂剂都可掺杂每种ICP,但适用于以上所列ICP的掺杂剂是本领域已知的,或可容易实验确定。
烃基化试剂掺杂剂的例子包括对应于结构式R-X的那些,其中R为包含一个或多个烷基、芳基、或苄基取代基的C1-20烃基,且X为Cl、Br或I。这些烃基化试剂的例子包括甲基碘和苄基溴。合适的烃基化试剂的其它例子包括对应于结构式R1-X的那些,其中R1为聚苯乙烯、聚(乙烯-苯乙烯),且X为Cl、Br或I。其例子包括卤甲基化聚苯乙烯或聚(乙烯-苯乙烯)、以及对甲基苯乙烯与异丁烯的溴化共聚物(以Exxpro购自Exxon)。
酸酐掺杂剂的合适例子包括马来酸酐、邻苯二甲酸酐、和乙酸酐。其它例子包括这样一些酸酐,如马来酸酐与1-十八烷烯的交替共聚物(购自Aldrich Chemical)、马来酸酐与苯乙烯的共聚物、以及马来酸酐接枝的聚合物如马来酸酐接枝的聚乙烯。
Lewis酸和Lowry-Bronsted酸掺杂剂的合适例子包括美国专利5160457所述的那些、美国专利5232631所述的“官能化质子酸”、以及美国专利5378402所述的“聚合物掺杂剂”,在此将其作为参考并入本发明。这些酸的具体例子包括所有的有机磺酸和羧酸,如十二烷基苯磺酸、甲苯磺酸、羟基苯磺酸(HBSA)、苦味酸、间硝基苯甲酸、二氯乙酸。此外,还可使用盐酸、硫酸、硝酸、HClO4、HBF4、HPF6、HF、磷酸、硒酸、硼酸之类的酸,也可使用聚氧金属化物的无机簇。
聚合物掺杂剂的例子包括具有含碳-、磷-、或硫的端或侧酸基的聚合物、以及其盐和酯、或其混合物。具体例子包括乙烯/丙烯酸共聚物、聚丙烯酸、乙烯/甲基丙烯酸共聚物、羧酸-或磺酸-官能化聚苯乙烯、聚氧化烯、和聚酯;以及聚乙烯或聚丙烯与丙烯酸或马来酸酐的接枝共聚物及其混合物;磺化聚碳酸酯、磺化乙烯-丙烯-二烯三元聚合物(EPDM)、磺化乙烯-苯乙烯共聚物、聚乙烯基磺酸、磺化聚(苯醚)、和磺化的聚酯如聚对苯二甲酸乙二醇酯;以及这些酸的某些碱金属或过渡金属盐,优选这些酸的锂、镁、和锌盐。磺化聚碳酸酯可例如通过美国专利5644017和美国专利申请08/519853(1995年8月25日递交,题为“一种新型芳族磺化二酯单体、合成方法、由其衍生的聚合物以及所述聚合物的制备方法”)所述的方法来制备,在此将其作为参考并入本发明。
c)导电金属和合金作为本发明共混组合物中的导电添加剂,还可包括金属和合金,其中包括(但不限于)铁、镍、钢、铝、铜、锌、铅、青铜、黄铜、锆、锡、银和金。这些物质可以是粉末、纤维、片、或基材上金属化涂层的形式,如碳纤维、玻璃珠、聚合物珠、滑石、或陶瓷珠。
d)半导体和导电无机化合物作为本发明共混组合物中的导电添加剂,还可包括半导体,其中包括(但不限于)掺杂或未掺杂的金属氧化物或氮化物。工业上常用的化合物包括(但不限于)氧化锡、铟掺杂氧化锡、锑掺杂氧化锡(例如,由Nagase America Corporation,New York供应的和SN-100P)和二氧化钛(TiO2)-涂有具有芯和金红石型针形的锑掺杂氧化锡(例如FT-1000、FT-2000、FT-3000)或球形(例如,同样由Nagase America Corporation供应的ET-300W、ET-500W)、氧化铟和锡掺杂氧化铟、氟掺杂氧化锡、氧化锌、和锡酸镉、氧化钽、和氮化铝和掺杂二氧化钛。作为导电添加剂,这些物质可用作颗粒、纤维、片、或基材上的涂层,如碳纤维、玻璃珠、聚合物珠、滑石、陶瓷珠、和铁磁性颗粒。
e)导电聚合物电解质聚合物电解质是一种离子性导电固体物质,它在某些情况下具有足够的机械性能和电性能,因此具有商业用途。许多极性聚合物发现可通过与金属盐形成配合物而达到有用的导电率值,其中金属盐主要是LiClO4、LiCF3SO3、LiAsF6、NaClO4、NiBr2、和Ag盐。除了聚合物/金属盐配合物,还可有一定量的增塑剂以提高导电率,其中增塑剂包括(但不限于)聚乙二醇二甲基醚(PEGDME)(尤其是在PEO中)、和聚乙二醇和聚乙二醇二甲醚、以及残余溶剂如水、THF和醇。这些聚合物/金属盐配合物的代表例为聚(氧化乙烯)(PEO)、交联聚(氧化乙烯)、聚(乙二醇/硅氧烷)(可交联或未交联)、聚(氧化丙烯)(PPO)、聚(琥珀酸亚乙基酯)(PES)、聚(氮丙啶)、聚(N-甲基氮丙啶)、聚(亚甲基硫)、聚(二-甲氧基-乙氧基-乙氧基)膦嗪(phosphazene)、聚(己二酸亚乙基酯)、聚甲基丙烯酸(低聚氧亚乙基)酯、聚(丙内酯)、聚(二氧戊环-共聚-三氧基亚甲基)、聚(氟)磺酸(如购自Du Pont的商品名NafionTM)。
f)其它导电添加剂作为本发明共混组合物中的导电添加剂,还可包括切割或未切割的碳纤维和石墨纤维、石墨、石墨浸渍玻璃层上的棉纤维穗、给定结构(例如,钙钛矿和尖晶石结构)的粒状填料、金属化颗粒、片状导电颗粒。而且还可包括某些光导性添加剂如氧化锌。还可包括抗静电剂,可单独或结合加入。抗静电剂的例子包括(但不限于)烷基胺,如ARMOSTATTM410、ARMOSTATTM450、ARMOSTATTM475,都购自Akzo NobelCorporation;季铵化合物,如MARKSTATTM,购自Argus Corporation;以及盐如LiPF6、KPF6、月桂基氯化吡啶鎓盐、和鲸蜡基硫酸钠(可购自任何普通的化学商品供应商)、甘油酯、脱水山梨醇酯、乙氧基化胺。
2)高磁导率添加剂除了导电率,导电添加剂可以具有或不具有高磁导率,例如铁同时具有导电性和高磁导率,而铜具有高导电性但磁导率低。就本发明而言,术语“高磁导率”是指比铜大20倍,优选大100倍的磁导率。根据早已建立的电磁波理论,磁性颗粒已知具有优异的电磁波吸收性能。
某些这类物质还具有一定的商业用途。例如,近期专利(美国专利5206459、5262591和5171937,都属于Champlain Cable Corporation的M.Aldissi,在此将其作为参考并入本发明)已经描述了铁氧体颗粒在聚合物基质内特别容易分散。铁磁颗粒可以是无规形状或球状。但根据建议,与基于无规形状颗粒的复合体相比,球状颗粒可产生具有更好电磁吸收性能的复合体基质。此外,铁磁颗粒可以涂有或不涂有导电金属层,包括(但不限于)Cu和Ag的涂层。一般来说,磁性颗粒可包括(但不限于)磁铁矿、氧化铁(Fe3O4)、MnZn铁氧体、和涂银的锰-锌铁氧体颗粒。磁性颗粒由许多公司制造,如Fair-Rite ProductsCorporation of N.Y.以及Steward Manufacturing Company ofTennessee。这些颗粒上的金属涂层(如,银)由Potters IndustriesInc.of Parsippany,N.Y.提供。
其它聚合物组分(组分C)在将导电添加剂加入基本上无规α-烯烃/乙烯基或亚乙烯基共聚体时观察到的导电率和磁导率的增加也可在一种或多种组成范围较宽的其它聚合物组分的存在下观察到。
α-烯烃均聚物和共聚体α-烯烃均聚物和共聚体包括聚丙烯、丙烯/C4-20α-烯烃共聚物、聚乙烯、和乙烯/C3-20α-烯烃共聚物,所述共聚体可以是多相乙烯/α-烯烃共聚体或均相乙烯/α-烯烃共聚体,包括基本上线型乙烯/α-烯烃共聚体。还可包括具有2-20个碳原子且包含极性基团的脂族α-烯烃。
还可包括能够将极性基团引入聚合物中的烯属单体,例如包括烯属不饱和腈如丙烯腈、甲基丙烯腈、乙基丙烯腈等,烯属不饱和酸酐如马来酸酐,烯属不饱和酰胺如丙烯酰胺、甲基丙烯酰胺等,烯属不饱和羧酸如(单-和二官能的)如丙烯酸和甲基丙烯酸等,烯属不饱和羧酸的酯(特别是低级酯,如C1-C6烷基酯)如甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸羟乙酯、丙烯酸正丁酯或甲基丙烯酸正丁酯、丙烯酸2-乙基己酯、或乙烯-醋酸乙烯酯共聚物(EVA)等,烯属不饱和二酸的酰亚胺,如N-烷基或N-芳基马来酰亚胺如N-苯基马来酰亚胺等。含有极性基团的此种单体优选为EVA、丙烯酸、醋酸乙烯酯、马来酸酐和丙烯腈。
多相共聚体不同于均相共聚体,因为对于后者,该共聚体内的基本上所有的共聚体分子都具有相同的乙烯/共聚单体比率,而多相共聚体的共聚体分子并不具有相同的乙烯/共聚单体比率。本文所用的术语“宽组成分布”描述了多相共聚体的共聚单体分布,是指多相共聚体具有“线性”级分而且该多相共聚体具有多个DSC熔融峰(即,具有至少两个不同的熔融峰)。多相共聚体中小于或等于2个甲基/1000个碳原子的支化度占10%(重量)或更高,优选不超过15%(重量),尤其是不超过20%(重量)。此外,该多相共聚体中大于或等于25个甲基/1000个碳原子的支化链度占25%或更低(重量),优选低于15%(重量),尤其是低于10%(重量)。
适用于制备本发明多相组分的Ziegler催化剂是常用的Ziegler型载体催化剂。这些组合物的例子衍生自有机镁化合物、烷基卤或卤化铝或氯化氢、以及一种过渡金属化合物。这些催化剂的例子描述于美国专利4314912(Lowery等人)、4547475(Glass等人)、和4612300(Coleman等人),在此将其作为参考并入本发明。
合适的催化剂材料还可衍生自惰性氧化物载体和过渡金属化合物。这些组合物的例子描述于美国专利5420090(Spencer等人),在此将其作为参考并入本发明。
多相聚合物组分可以是乙烯或α-烯烃的均聚物,优选聚乙烯或聚丙烯,或优选为乙烯与至少一种C3-C20α-烯烃和/或C4-C8二烯的共聚体。尤其优选为乙烯与丙烯、1-丁烯、1-己烯、4-甲基-1-戊烯和1-辛烯的多相共聚物。
较近提出,使用金属茂基催化剂进行乙烯/α-烯烃聚合反应,可以生产出称作均相共聚体的新型乙烯共聚体。
可用于形成本文所述组合物的均相共聚体具有均匀的支化分布。即,在这些聚合物中,共聚单体无规分布在给定共聚体分子中,且该共聚体内基本上所有的共聚体分子都具有相同的乙烯/共聚单体比率。聚合物的均一性可用SCBDI(短链支化分布指数)或CDBI(组成分布宽度指数)来描述,其定义为共聚单体含量在中值总摩尔共聚单体含量50%以内的聚合物分子的重量百分数。聚合物的SCBDI容易从本领域已知方法得到的数据计算出来,例如温升洗脱分级法(在本文中简称“TREF”),例如描述于Wild等人的Journal of PolymerScience,Poly.Phys.Ed.(聚合物科学杂质物理版),20卷,441页(1982)、美国专利4798081(Hazlitt等人)、或描述于美国专利5008204(Stehling),在此将其作为参考并入本发明。计算CDBI的方法描述于美国专利5322728(Davey等人)和美国专利5246783(Spenadel等人)或美国专利5089321(Chum等人),在此将其作为参考并入本发明。可用于本发明的均相共聚物的SCBDI或CDBI优选大于30%,尤其是大于50%。
可用于本发明的均相共聚物基本上没有可通过TREF法测定的“高密度”级分(即,该均相乙烯/α-烯烃共聚体不含支化度小于或等于2个甲基/1000个碳原子的聚合物级分)。该均相共聚体还不含任何高度短链支化的级分(即,它们不含支化度大于或等于30个甲基/1000个碳原子的聚合物级分)。
本发明的基本上线型乙烯/α-烯烃聚合物和共聚体共混组分也是均相共聚体,但在本文中进一步按照美国专利5272236(Lai等人)和美国专利5272872进行了定义,在此将其作为参考并入本发明。但这些聚合物由于其优异的加工性和独特的流变性能以及高熔体弹性和耐熔体破裂性而独特。这些聚合物可在使用受限几何金属茂催化剂体系的连续聚合反应工艺中成功制备。
术语“基本上线型”乙烯/α-烯烃共聚体是指,该聚合物主链被0.01-3个长支化链/1000个碳原子,更优选0.01个长支化链/1000个碳原子至1个长支化链/1000个碳原子,尤其是0.05个长支化链/1000个碳原子至1个长支化链/1000个碳原子取代。
长链支化在本文中定义为,比(共聚单体中总碳原子数-2)至少多一个碳原子的支化链,例如乙烯/辛烯基本上线型乙烯共聚体的长支化链至少具有7个碳原子链长(即,8个碳原子减去2等于6个碳原子,加上1等于7个碳原子的长支化链链长)。长支化链可以与聚合物主链链长一样长。长支化链通过使用13C核磁共振(NMR)光谱确定,并使用Randall大分化化学物理综述(Rev.Macromol.Chem.Phys.),C29(2&3卷),285-297页)所述的方法来定量,在此将其作为参考并入本发明。当然,长支化链不同于仅通过引入共聚单体而得到的短支化链,因此例如,乙烯/辛烯基本上线型聚合物的短支化链的链长为6个碳原子,而同一聚合物的长支化链至少为7个碳原子链长。
用于制备在本发明中用作共混组分的均相共聚体的催化剂是金属茂催化剂。这些金属茂催化剂包括二(环戊二烯基)-催化剂体系和单(环戊二烯基)受限几何催化剂体系(用于制备基本上线型乙烯/α-烯烃聚合物)。这些受限几何金属配合物及其制备方法公开于1990年7月3日递交的美国专利申请系列号545402(EP-A-416815)、1990年7月3日递交的美国专利申请系列号547718(EP-A-468651)、1990年4月20日递交的美国专利申请系列号702475(EP-A-514828)、以及美国专利5055438、美国专利5057475、美国专利5096867、美国专利5064802、美国专利5132380、美国专利5721185、美国专利5374696和美国专利5470993。对于其中所包含的教导内容,前述待审美国专利申请、授权美国专利和公开欧洲专利申请都在此作为参考并入本发明。
在EP-A-4180144(1991年3月20日出版,对应于美国专利申请系列号07/758654)和美国专利申请系列号07/758660中,公开和要求保护非常适用作烯烃聚合反应催化剂的前述受限几何催化剂的某些阳离子衍生物。在1991年6月24日递交的美国专利申请系列号720041中,公开了前述受限几何催化剂与各种硼烷的某些反应产物,而且还提出和要求保护其制备方法。在美国专利5453410中,公开了将阳离子受限几何催化剂与铝氧烷结合起来用作合适的烯烃聚合反应催化剂。关于其中所包含的教导内容,前述待审美国专利申请、授权美国专利和公开欧洲专利申请都在此作为参考并入本发明。
均相聚合物组分可以是乙烯或α-烯烃均聚物,优选聚乙烯或聚丙烯,或优选为乙烯与至少一种C3-C20α-烯烃和/或C4-C18二烯的共聚体。尤其优选乙烯与丙烯、1-丁烯、1-己烯、4-甲基-1-戊烯和1-辛烯的共聚物。
2)热塑性烯烃热塑性烯烃(TPO)一般由弹性体材料如乙烯/丙烯橡胶(EPM)或乙烯/丙烯/二烯单体三元聚合物(EPDM)与更刚性材料如等规聚丙烯的共混物制成。可根据用途将其它物质或组分加入配方中,其中包括油、填料、和交联剂。一般来说,TPO的特征在于刚度(模量)与低温冲击性、良好耐化学性与宽使用温度的平衡。由于这些特性,TPO可用于许多场合,包括汽车仪表板和仪表面板、而且可用于电线和电缆。
聚丙烯一般是等规均聚物聚丙烯的形式,但也可使用其它形式的聚丙烯(例如,间规或无规形式)。但也可在本文所公开的TPO配方中使用聚丙烯冲击性共聚物(例如,其中采用了将乙烯与丙烯进行反应的二级共聚反应步骤的那些)和无规共聚物(也可以是反应器改性的,并通常含有1.5-7%的乙烯与丙烯共聚)。反应器内的TPO还可用作本发明的共混组分。现代塑料百科全书/89(1988年10月中旬,第65卷,№11,86-92页)给出了有关各种聚丙烯聚合物的详细讨论,在此将其作为参考并入本发明。用于本发明的聚丙烯的分子量往往按照ASTM D-1238,条件230℃/2.16千克(以前称作“条件(L)”,也称作I2),使用熔体流动测量值来表示。熔体流动速率与聚合物的分子量成反比。因此,分子量越高,熔体流动速率越低,但这种关系不是线性的。可用于本发明的聚丙烯的熔体流动速率一般为0.1-35克/10分钟,优选0.5-25克/10分钟,尤其是1-20克/10分钟。
3)苯乙烯-二烯共聚物还包括具有不饱和橡胶单体单元的嵌段共聚物,其中包括(但不限于)苯乙烯-丁二烯(SB)、苯乙烯-异戊二烯(SI)、苯乙烯-丁二烯-苯乙烯(SBS)、苯乙烯-异戊二烯-苯乙烯(SIS)、α-甲基苯乙烯-丁二烯-α-甲基苯乙烯和α-甲基苯乙烯-异戊二烯-α-甲基苯乙烯。
该嵌段共聚物的苯乙烯部分优选为苯乙烯及其类似物和同系物的聚合物或共聚体,其中包括α-甲基苯乙烯和环取代的苯乙烯,尤其是环甲基化的苯乙烯。优选的苯乙烯系物质为苯乙烯和α-甲基苯乙烯,其中特别优选苯乙烯。
具有不饱和橡胶单体单元的嵌段共聚物可包含丁二烯或异戊二烯的均聚物,或可包含一种或多种这些二烯与少量苯乙烯系单体的共聚物。
具有不饱和橡胶单体单元的优选嵌段共聚物包含苯乙烯系单元的至少一个链段和乙烯-丁烯或乙烯-丙烯共聚物的至少一个链段。这种具有不饱和橡胶单体单元的嵌段共聚物的优选例子包括苯乙烯/乙烯-丁烯共聚物、苯乙烯/乙烯-丙烯共聚物、苯乙烯/乙烯-丁烯/苯乙烯(SEBS)共聚物、苯乙烯/乙烯-丙烯/苯乙烯(SEPS)共聚物。
还包括具有不饱和橡胶单体单元的无规共聚物,其中包括(但不限于)苯乙烯-丁二烯(SB)、苯乙烯-异戊二烯(SI)、α-甲基苯乙烯-苯乙烯-丁二烯、α-甲基苯乙烯-苯乙烯-异戊二烯、和苯乙烯-乙烯基吡啶-丁二烯。
4)苯乙烯系共聚物除了嵌段共聚物和无规共聚物外,还有丙烯腈-丁二烯-苯乙烯(ABS)聚合物、苯乙烯-丙烯腈(SAN)、橡胶改性苯乙烯系物质如高冲击性聚苯乙烯。
5)弹性体弹性体包括(但不限于)各种橡胶如聚异戊二烯、聚丁二烯、天然橡胶、乙烯/丙烯橡胶、乙烯/丙烯/二烯(EPDM)橡胶、热塑性聚氨酯、硅氧烷橡胶和。
6)热固性聚合物热固性聚合物包括(但不限于)环氧树脂、乙烯基酯树脂、聚氨酯、酚醛树脂。
7)卤乙烯聚合物卤乙烯均聚物和共聚物是一种采用乙烯基结构CH2=CXY作为构成嵌段的树脂,其中X选自F、Cl、Br和I,且Y选自F、Cl、Br、I和H。
本发明共混物中的卤乙烯聚合物组分包括(但不限于)卤乙烯均聚物及其与可共聚单体如α-烯烃的共聚物,这些可共聚单体包括(但不限于)乙烯、丙烯、包含1-18个碳原子的有机酸的乙烯基酯如醋酸乙烯酯、硬脂酸乙烯酯等;氯乙烯、偏二氯乙烯、对称二氯乙烯;丙烯腈、甲基丙烯腈;丙烯酸烷基酯,其中所述烷基包含1-8个碳原子,例如丙烯酸甲酯和丙烯酸丁酯;相应的甲基丙烯酸烷基酯;二元有机酸的二烷基酯,其中所述烷基包含1-8个碳原子,例如富马酸二丁酯、马来酸二乙酯等。
卤乙烯聚合物优选为氯乙烯或偏二氯乙烯的均聚物或共聚物。聚(氯乙烯)聚合物(PVC)可根据其刚性程度进一步划分为两大类。它们是“刚性”PVC和“韧性”PVC。韧性PVC由于树脂中的增塑剂及其用量而不同于刚性PVC。韧性PVC相对刚性PVC通常具有较高的加工性、较低的拉伸强度和较高的伸长性。
在偏二氯乙烯均聚物和共聚物(PVDC)中,工业上通常使用与氯乙烯、丙烯酸酯或腈的共聚物,因此最为优选。选择共聚单体可显著影响所得聚合物的性能。也许,各种PVDC的最重要性能是对气体和液体的低渗透性、隔绝性能、和耐化学性。
还包括各种包含少量其它可改性PVC或PVDC的物质的PVC和PVCD配方,其中包括(但不限于)聚苯乙烯、苯乙烯系共聚物、聚烯烃(包括包含聚乙烯的均聚物和共聚物、或聚丙烯、以及其它的乙烯/α-烯烃共聚物)、聚丙烯酸系树脂、含丁二烯的聚合物如丙烯腈丁二烯苯乙烯三元聚合物(ABS)、和甲基丙烯酸酯丁二烯苯乙烯三元聚合物(MBS)、和氯化聚乙烯(CPE)树脂。
在可用作本发明共混组分的卤乙烯聚合物中,还包括PVC的氯化衍生物,通常通过基础树脂的后氯化而制成,称作氯化PVC(CPVC)。尽管CPVC基于PVC且具有其某些特性,但CPVC是一种独特的聚合物,相对PVC具有明显较高的熔化温度范围(410-450℃)和较高的玻璃化转变温度(239-275°F)。
8)工程热塑性塑料工程热塑性塑料包括(但不限于)聚(甲基丙烯酸甲酯)(PMMA)、尼龙、聚(缩醛)、聚苯乙烯(等规和间规)、聚碳酸酯、热塑性聚氨酯、聚硅氧烷、聚苯醚(PPO)、和芳族聚酯。
其它添加剂在用于本发明的共混物和/或用于本发明的共聚体中,还可包括其它添加剂如抗氧化剂(例如,位阻酚,如Irganox1010)、亚磷酸酯(例如,Irgafos168)、紫外线稳定剂、防粘添加剂(如,聚异丁烯)、抗结块剂、着色剂、颜料、填料,只要它们不影响申请人所发现的改进性能。
优选的无机填料是离子性无机物质。无机填料的优选例子为滑石、碳酸钙、三水合矾土、玻璃纤维、大理石粉、水泥粉、粘土、长石、硅石或玻璃、煅制硅石、矾土、氧化镁、氢氧化镁、铟掺杂氧化锡、氧化锑、氧化锌、硫酸钡、硅酸铝、硅酸钙、二氧化钛、钛酸盐、玻璃微球或白垩。在这些填料中,硫酸钡、滑石、碳酸钙、硅石/玻璃、玻璃纤维、矾土和二氧化钛、及其混合物是优选的。最优选的无机填料是滑石、碳酸钙、硫酸钡、玻璃纤维或其混合物。填料之类的添加剂还在最终制品的美学上发挥作用,产生光泽或无光外表面。
这些添加剂以本领域已知的功能有效量使用。例如,抗氧化剂的用量要使得可防止聚合物或聚合物共混物在储存和最终使用该聚合物的温度和环境下发生氧化。抗氧化剂的这种用量通常为基于聚合物或聚合物共混物重量的0.01-10%重量,优选0.05-5%重量,更优选0.1-2%重量。类似地,任何其它所列添加剂的用量都是功能有效量,例如可赋予聚合物或聚合物共混物以抗结块性,产生所需的填料加入量以得到所需结果,通过着色剂或颜料产生所需颜色。这些添加剂的合适用量范围为基于聚合物或聚合物共混物重量的0.05-50%重量,优选0.1-35%重量,更优选0.2-20%重量。但在填料的情况下,其用量最高为基于聚合物或聚合物共混物重量的90%重量。无机填料的优选量取决于本发明填充聚合物组合物的所需最终用途。
例如,如果制造地板、墙或屋顶瓦,无机填料(B)的量优选为基于(A)和(B)总重的50-95%,更优选70-90%。另一方面,如果制造地板、墙或屋顶片材,无机填料(B)的量优选为基于(A)和(B)总重的10-70%,更优选15-50%。对于几种场合,填料含量优选为基于(A)和(B)总重的40-90%,更优选55-85%。
此外,可以使用导电添加剂的流动助剂和分散助剂,包括钛酸盐和锆酸盐、各种加工油和低分子量聚合物和蜡如聚(氧化乙烯)、和有机盐如硬脂酸锌和硬脂酸钙。
最终共混组合物的制备和用途具有导电添加剂或高磁导率添加剂的α-烯烃与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体可单独使用,或用作母料或浓缩物加入其它聚合物中,或用作许多场合中的涂料。这些共混物可热处理或溶液处理,而且可改性成具有低或高导电率,其所需程度取决于特定用途。
本发明组合物可通过任何合适的方法来制备,包括将各组分进行干混然后熔体混合或熔体配混,或直接在用于制成最终制品(例如,汽车部件)的挤出机或磨机中,或通过在单独挤出机或磨机(例如,Banbury混合器)中预熔体混合,或通过溶液共混,或通过压塑、或通过压延。处理熔体加工,也可采用溶液加工。它包括(但不限于)将溶解的聚合物或分散体如胶乳或胶体进行混合。
可以使用多种模塑操作,由本发明组合物制成有用的制品,包括溶液铸塑、热成型和各种注塑操作(例如,描述于现代塑料百科全书/89,1988年10月中旬发行,第65卷,№11,264-268页的“注塑法介绍”和270-271页的“注塑热塑性塑料”,在此将其作为参考并入本发明)和吹塑法(例如,描述于现代塑料百科全书/89,1988年10月中旬发行,第65卷,№11,217-218页的“挤塑-吹塑”,在此将其作为参考并入本发明)和异型挤塑、片材挤塑、铸膜、共挤出和多层挤塑、共注塑、层压、吹膜。
本发明的组合物可用于制成可膨胀或可发泡的颗粒、可模塑的泡沫颗粒或珠粒、以及通过膨胀和/或凝聚和焊接这些颗粒而得到的制品。
本发明的组合物可用于形成泡沫结构,它可以是本领域已知的任何物理构型,如片材、厚板、异型材、棒或泡沫大块。其它有用的形式是可膨胀或可发泡的颗粒、可模塑的泡沫颗粒或珠粒、以及通过膨胀和/或凝聚和焊接这些颗粒而得到的制品。
C.P.Park对于制备烯属聚合物泡沫结构的方法及其加工方法有极好的描述,参见《聚合物泡沫和技术手册》第9章“聚烯烃泡沫”(C.P.Park,“Polyolefin Foam”,Chapter 9,Handbook of PolymerFoams and Technology,D.Klempner和K.C.Frisch编辑,Hanser出版社,慕尼黑,维也纳,纽约,巴塞罗那(1991)),该章节内容在本申请中作为参考文献并入本文。
泡沫结构可以常规的挤塑发泡工艺来制备。该结构的制备过程一般是将本发明组合物加热制成塑化的或熔融的聚合物材料,然后向其中加入发泡剂以制成可发泡的凝胶,并通过模头将该凝胶挤出制成泡沫产品。在混入发泡剂之前,聚合物材料被加热到它的玻璃化转变温度或熔点、或这两个温度之上的温度。发泡剂可以通过本领域已知的任何方式加入或混入熔融的聚合物材料中,如采用挤出机、混合器、共混机或其它类似设备。发泡剂与熔融聚合物材料在较高压力下进行混合,该压力足以防止熔融聚合物材料发生显著膨胀并足以使发泡剂在其中均匀分散。视需要,可在塑化或熔化之前将成核剂混入聚合物熔体中或与聚合物材料进行干混。可发泡凝胶一般被冷却至较低温度以优化该泡沫结构的物理特性。然后凝胶通过一具有所需形状的模头被挤出或传输到一个具有较低压力的区域以形成泡沫结构。较低压力区域的压力低于可发泡凝胶在通过模头被挤出之前所在区域的压力。所述较低压力可高于1大气压或低于1大气压(真空),但优选保持在1大气压的水平。
本发明泡沫结构可通过将本发明组合物挤过多孔模头而制成凝聚的束料形式。多孔位置的排列可以使得相邻的熔融挤出物料流在发泡过程中产生接触,且接触面以足够的粘合力相互粘接从而形成整体的泡沫结构。离开模头的熔融挤出物料流取束料或型材的形式,它们经过发泡、凝聚和相互粘接而形成整体结构。凝聚在一起的各束料或型材最好保持粘接在整体结构中,这样可以防止束料在泡沫的制备、成型和应用中遇到应力时产生分离。制造呈凝聚束料形式的泡沫结构的设备和方法可参见美国专利No.3,573,152和No.4,824,720,这些专利在本申请中作为参考文献并入本文。
本发明的泡沫结构也可通过美国专利No.4,323,528所述的储料式挤出方法来成型,该专利在本申请中作为参考文献并入本文。在该方法中,具有较大横截面积的低密度泡沫结构按如下步骤制备1)在某个温度下加压制备本发明组合物与发泡剂的凝胶,在该温度下凝胶粘度足以使发泡剂在凝胶进行发泡时得以保持在其中;2)将凝胶挤出到一个温度和压力维持在不使凝胶进行发泡的夹持区中,该夹持区具有一个出口模头,其上带有一个开孔通向凝胶在其中进行发泡的低压区,以及一个关闭所述模头开孔的可开启门;3)定期打开门;4)基本上同时用一可活动撞捶对凝胶施加机械力将凝胶从夹具通过模头开孔喷射进入低压区,此时(凝胶进入低压区的)速度大于在模头开孔处产生发泡的速度并小于形成不规则截面和外形的速度;和5)使喷射凝胶在至少一维方向上不受限制地膨胀,从而形成泡沫结构。
本发明的泡沫结构也可以成型为适于模塑成制品的非交联泡沫珠粒。为了制备泡沫珠粒,将离散树脂颗粒例如粒化树脂粒料悬浮在它们基本上不溶于其中的液体介质例如水中,在高压釜或其它耐压容器中将发泡剂在较高温度和压力下加入液体介质中,这样可用发泡剂进行浸渍,然后快速排放到大气或低压区中以进行膨胀而制成泡沫珠粒。该工艺在美国专利No.4,379,859和4,464,484中有介绍,这些专利均作为本申请的参考文献并入本文。
对上面的工艺做一个变动,在用发泡剂浸渍之前,可以将苯乙烯单体浸入悬浮粒料中以形成与本发明组合物的接枝共聚体。聚乙烯/聚苯乙烯共聚体粒料被冷却并从容器中排放出来,此时基本上不膨胀。随后使粒料发泡并采用常规的发泡聚苯乙烯珠粒模塑工艺将其模塑成型。制备聚乙烯/聚苯乙烯共聚体珠粒的方法在美国专利No.4,168,353中有介绍,这些专利均作为本申请的参考文献并入本文。
泡沫珠粒随后可以采用本领域已知的任何方法进行模塑,例如将泡沫珠粒放入模具中,压制模具以压塑这些珠粒,然后采用例如水蒸汽的方式将珠粒加热以使珠粒相互之间发生粘合和粘接,从而形成制品。视需要,珠粒可在放入模具之前在较高压力和温度下用空气或其它发泡剂进行浸渍。另外,珠粒也可在进入模具之前被加热。随后用本领域已知的适当方法将泡沫珠粒模塑成块状结构或其它成型制品。(美国专利No.3,504,068和3,953,556公开了一些方法)。C.P.Park对上述工艺和模塑方法有很好叙述,参见C.P.Park,引述同上,191页,197-199页,和227-229页,这些内容均作为本申请的参考文献并入本文。
用于制备本发明泡沫结构的发泡剂包括无机发泡剂、有机发泡剂和化学发泡剂。合适的无机发泡剂包括二氧化碳、氮气、氩气、水、空气、氮气和氦气。有机发泡剂包括含有1至6个碳原子的脂肪烃,含有1至3个碳原子的脂肪醇,和含有1至4个碳原子的完全和部分卤化脂肪烃。脂肪烃包括甲烷、乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷、新戊烷等。脂肪醇包括甲醇、乙醇、正丙醇和异丙醇。完全和部分卤化脂肪烃包括氟代烃、氯代烃和氯氟烃。氟代烃的例子包括氟甲烷、全氟甲烷、氟乙烷、1,1-二氟乙烷(HFC-152a)、1,1,1-三氟乙烷(HFC-143a)、1,1,1,2-四氟乙烷(HFC-134a)、五氟乙烷、二氟甲烷、全氟乙烷、2,2-二氟丙烷、1,1,1-三氟丙烷、全氟丙烷、二氯丙烷、二氟丙烷、全氟丁烷、全氟环丁烷。本发明采用的部分卤化的氯代烃和氯氟烃包括氯甲烷、二氯甲烷、氯乙烷、1,1,1-三氯乙烷、1,1-二氯-1-氟乙烷(HCFC-141b)、1-氯-1,1-二氟乙烷(HCFC-142b)、1,1-二氯-2,2,2-三氟乙烷(HCFC-123)和1-氯-1,2,2,2-四氟乙烷(HCFC-124)。完全卤化的氯氟烃包括三氯一氟甲烷(CFC-11)、二氯二氟甲烷(CFC-12)、三氯三氟乙烷(CFC-113)、1,1,1-三氟乙烷、五氟乙烷、二氯四氟乙烷(CFC-114)、一氯七氟丙烷和二氯六氟丙烷。化学发泡剂包括偶氮二碳酰胺、偶氮二异丁腈、苯磺酰肼、4,4-羟苯磺酰半卡巴肼、对甲苯磺酰半卡巴肼、偶氮二甲酸钡、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺和三肼三嗪。优选的发泡剂包括异丁烷、HFC-152a及其混合物。
为制备形成泡沫的聚合物凝胶,在每千克聚合物熔融材料中加入的发泡剂的量为0.2至5.0克分子、优选0.5至3.0克分子、最优选1.0至2.50克分子。
为了提高或加快发泡剂从泡沫和空气中向泡沫内部的渗入,可能需要在泡沫材料中进行穿孔处理。给泡沫材料进行穿孔是为了在泡沫材料中形成从一个表面通向另一个表面的完全贯通泡沫的通道或部分贯通泡沫的通道。通道相互之间的距离可以至多约2.5厘米,优选至多约1.3厘米。这些通道基本上遍布泡沫的整个表面,优选均匀分布在表面上。泡沫材料在被进行穿孔处理的同时可采用一种稳定控制剂,这样在加快发泡剂的渗入和释放的同时也能够保持泡沫尺寸的稳定。美国专利No.5,424,016和5,585,058对泡沫进行穿孔处理做了极好的描述,这些专利作为本申请的参考文献并入本文。
在本发明的泡沫结构中可以加入各种添加剂,例如稳定控制剂、成核剂、无机填料、颜料、抗氧化剂、酸清除剂、紫外线吸收剂、阻燃剂、加工助剂、挤出助剂。
本发明的泡材料中加入稳定控制剂是为了提高尺寸稳定性。优选的稳定控制剂为C10-24脂肪酸的酰胺和酯。此类助剂可参见美国专利No.3,644,230和4,214,054,这些专利作为本申请的参考文献并入本文。特别优选的助剂包括十八烷基硬脂酰胺、单硬脂酸甘油酯、单二十二酸甘油酯和单十八烷酸山梨醇酯。此类稳定控制剂的用量范围一般为每100份聚合物用0.1至10份。
本发明的泡沫结构具有优异的尺寸稳定性。优选的泡沫材料在一个月内能够恢复泡沫在膨胀30秒内所测得的初始体积的80%或更多。体积的测定采用的是适当的方法,如测定所排开水的体积的方法。
另外,为控制泡沫泡孔的大小可以加入成核剂。优选的成核剂包括无机物质如碳酸钙、滑石、粘土、二氧化钛、硅石、硫酸钡、硅藻土、柠檬酸与碳酸氢钠的混合物。成核剂的用量为每100份(重量)聚合物树脂用0.01至5份(重量)。
泡沫结构基本上为非交联或未交联的。具有泡沫结构的链烯基芳族聚合物材料基本上没有交联。泡沫结构含有不超过5%的凝胶(按照ASTM D-2765-84 Method A标准方法测定)。在没有交联剂或辐射的作用下所自然产生的轻度交联是允许的。
泡沫结构也可以是基本上交联的。交联可通过加入交联剂或通过辐射而引发。为了进行发泡或膨胀,可同时或顺序进行引发交联和高温暴露。如果使用交联剂,按照与化学发泡剂相同的方式将其加入聚合物材料中。此外,如果使用交联剂,将可发泡熔体聚合物材料加热或暴露于优选低于150℃的某个温度,这样可防止交联剂或发泡剂进行分解并防止过早交联。如果采用辐射交联,将可发泡熔体聚合物材料加热或暴露于优选低于160℃的某个温度,这样可防止发泡剂发生分解。将可发泡熔体聚合物材料挤出或传输通过具有所需形状的模头以形成可发泡结构。然后将可发泡结构在高温(通常150-250℃),例如在炉中进行交联和膨胀,形成泡沫结构。如果采用辐射交联,将可发泡结构辐射以交联该聚合物材料,然后如上所述在高温下膨胀。该结构可有利地通过上述方法,使用交联剂或辐射,制成片材或薄板形式。
本发明泡沫结构还可通过挤塑法,采用如GB2145961A所述的长成型段模头制成连续厚板结构。在该方法中,聚合物、可分解的发泡剂和交联剂在挤出机中进行混合,然后将该混合物加热以在长成型段模头中使聚合物交联且发泡剂分解;然后通过模头成型并传导出泡沫结构,其中泡沫结构与模头的接触面通过合适的润滑材料进行润滑。
所得泡沫结构还可成型为适用于模塑成制品的交联泡沫珠粒。为了制造这种泡沫珠粒,将离散树脂颗粒,例如粒状树脂粒料悬浮在它们基本上不溶于其中的液体介质(如水)中;在高压釜或其它压力容器中,在升高的温度和压力下用交联剂和发泡剂浸渍;然后迅速排放到大气或减压区中,以膨胀形成泡沫珠粒。一种变型是,将聚合物珠用发泡剂浸渍,冷却,从容器中排出,然后通过加热或使用蒸汽来膨胀。发泡剂可浸入仍处于悬浮态或处于无水悬浮态的树脂粒料中。然后通过蒸汽加热来膨胀该可膨胀珠粒,并通过用于可膨胀的聚苯乙烯泡沫珠粒的常规模塑法进行模塑。
泡沫珠粒然后可通过本领域熟知的任何方法进行模塑,例如将泡沫珠粒加料到模具中,压缩该模具以压制该珠,然后将这些珠粒加热(例如通过蒸汽)以聚结和焊接该珠,形成制品。视需要,这些珠粒可在加料到模具中之前用空气或其它发泡剂预热。C.P.Park,引述同上,227-233页、美国专利3886100、3959189、4168353和4429059很好地提出了上述工艺和模塑方法。泡沫珠粒还可这样制备在合适的混合设备中,制备出聚合物、交联剂和可分解混合物的混合物,并将该混合物制成粒料,然后将该粒料加热以交联和膨胀。
在制备适用于模塑成制品的交联泡沫珠粒的另一方法中,将基本上无规共聚体材料与物理发泡剂在常规发泡挤塑设备中进行熔化和混合,形成一种基本上连续的泡沫束料。将该束料造粒或粒化成泡沫珠粒。然后通过辐射将泡沫珠粒交联。然后将交联泡沫珠粒凝聚和模塑,形成在以上其它泡沫珠粒工艺中所述的各种制品。关于该方法的其它教导,参见美国专利3616365和C.P.Park,引述同上,224-228页。
本发明泡沫结构可通过两种不同的方法制成泡沫大块。一种方法包括使用交联剂,另一方法则采用辐射。
本发明泡沫结构可通过将基本上无规共聚体材料、交联剂、和化学发泡剂混合形成块料,在模具中加热该混合物,这样交联剂可交联该聚合物材料且发泡剂可分解,然后在模具中释放压力进行膨胀。视需要,通过释放压力形成的泡沫块料可通过再加热而进一步膨胀。
交联聚合物片材可通过用高能束辐射聚合物片材或通过加热包含化学交联剂的聚合物片材而制成。将交联的聚合物片材切成所需形状,然后在较高压力下,在高于聚合物软化点的某个温度下,用氮气浸渍;然后释放压力以使气泡成核并使片材进行一定膨胀。将片材在高于软化点的压力下再加热,然后释放压力以膨胀该泡沫材料。
该泡沫结构的密度低于250千克/米3,更优选低于100千克/米3,最优选10-70千克/米3。按照ASTM D3576,该泡沫材料的平均泡孔尺寸为0.05-5.0毫米,更优选0.2-2.0毫米,最优选0.3-1.8毫米。
泡沫结构可以是本领域已知的任何物理构型,如挤制片材、棒、厚板、和异型材。该泡沫结构还可通过将可膨胀珠粒模塑成任何前述构型或任何其它构型而制成。
泡沫结构视可以是闭孔或开孔的。本发明泡沫材料优选包含80%或更高的按照ASTM D2856-A的密闭泡孔。
本发明泡沫材料可保护电子元件不受静电电荷(ESD)的破坏。由本发明制成的泡沫材料的具体抗静电或导电用途如下电子成品的包装缓冲垫(角块、曲柄、鞍、小袋、袋、包封、外套、衬纸、包胶);在火花放电容易引起爆炸的环境中,爆炸性材料或装置的包装或保护;材料处理(托盘、搬运箱、箱衬、搬运箱衬垫和分隔物、分流器、纸板、部件分隔物和部件分离板);工作台附件(围裙、台面盖、地垫、坐垫)导电鞋垫。本发明的泡沫材料还可用于以下用途衬垫、扣眼、封条;法拉弟罩屏蔽;直接铅插件;用于边缘连接的分流器棒;用于印刷机和打字机的声音衰减;导电坐缓冲;静电控制台和地垫;地毯衬底(尤其是用于汽车);显示箱衬垫;烟火容器垫充;军械壳支架;各种物品在运输时的阻塞和拉紧;保藏和包装;汽车防震垫、封条;医学设备、皮肤接触垫;垫夹板;隔振垫。但应该清楚,本发明的泡沫材料并不局限于上述用途。
除了泡沫材料,本发明的组合物还可用于需要静电消散或导电或电磁能吸收的所有场合,其中包括(但不限于)1)成型制品如玩具、衬垫、膜和片材、影印机元件、作为聚合物基材、纸、皮革、布、和无机建筑材料上的涂层、以及用于热、声音、和震动衰减的泡沫材料;波纹盒、以及膜和膜卷、连接器和夹子;2)运输用途,包括(但不限于)燃料罐、缓冲器带、仪表板、防护罩板、内和外边缘和包层、柱子、床衬里、座位、轮胎、传动皮带、接线盒、外壳、导线、能量支配体系如能量支配泡沫体系、汽油罐、和用于汽车的点火电缆;3)建筑材料、地板体系如垫、地毯、和地毯衬里、地瓦、沥青、混凝土长台或柜台;4)例如在电线和电缆、蜂窝电话、计算机外壳、显示器、发射设备、印刷机、影印机的EMI屏蔽;汽车用途以及用于高度集成的电子电讯环境;5)用于高、中和低压场合的电线和电缆,尤其是用于直流电和交流电场合;用于地下电讯电缆在导体闪电屏蔽时的匀化;6)耐久物品和电子物品,例如固体把手装置和传输机带、舵翼尖和发动机标塔、降落齿轮;7)医药/服装用途,鞋类如鞋、拖鞋、靴、以及毛毯、手套、遥控套;8)多层结构,包括(但不限于)多层片材和膜、共挤模塑制品、层压品、纤维、和涂层;9)粘合剂;10)电动涂覆塑料如静电涂漆塑料和电镀塑料;11)用于导电油墨的粘合剂、打印纸;和12)加热设备。
单个共混组分和最终共混组合物的性能a)乙烯/乙烯基或亚乙烯基共聚体用于本发明的一种或多种α-烯烃与一种或多种乙烯基或亚乙烯基芳族单体和/或一种或多种位阻脂族或环脂族乙烯基或亚乙烯基单体的共聚体是基本上无规聚合物。这些共聚体一般包含0.5-65%摩尔,优选1-55%摩尔,最优选2-50%摩尔的至少一种乙烯基或亚乙烯基芳族单体和/或位阻脂族或环脂族乙烯基或亚乙烯基单体;以及35-99.5%摩尔,优选45-99%摩尔,最优选50-98%摩尔的至少一种具有2-20个碳原子的脂族α-烯烃。
这些共聚体的数均分子量(Mn)通常大于1000,优选5000-1000000,更优选10000-500000。
适用于本发明的共聚体的熔体指数(I2)为0.01-1000克/10分钟,优选0.1-100克/10分钟,更优选0.5-50克/10分钟。
适用于本发明的共聚体的多分散性指数Mw/Mn为1.5-20,优选1.8-10,更优选2-5。
在制备该基本上无规共聚体时,可例如由于乙烯基或亚乙烯基芳族单体在高温下的均聚作用而形成一定量的均聚物。乙烯基或亚乙烯基芳族均聚物的存在一般对本发明无害,因此可以允许。如果需要,乙烯基或亚乙烯基芳族单体均聚物可通过萃取法(例如,用共聚体或乙烯基或亚乙烯基芳族单体均聚物的非溶剂从溶液中进行选择沉淀)从共聚体中分离出来。就本发明而言,优选存在不超过基于共聚体总重的20%重量,优选低于15%重量的无规立构乙烯基或亚乙烯基芳族单体均聚物。
b)导电添加剂导电添加剂的最佳量取决于特定用途。
对于导电复合体,有两种导电率系统,它们不精确地定义为静电耗散(ESD)导电率,其范围为10-9-10-3S/cm,优选10-9-10-2S/cm;和在本文中定义为导电率大于10-3S/cm的“传导”导电率。
对于ESD,导电添加剂的量为基于各共混组分总重的0.01-50%重量,优选0.1-20%重量,更优选0.5-12%重量。
对于CON,导电添加剂的量为基于各共混组分总重的5-70%重量,优选15-70%重量,更优选20-55%重量,甚至更优选25-45%重量。
c)最终共混组合物共混物包含基于组分A、B、和C总重的1-99.99%重量的至少一种基本上无规共聚体(组分A),优选5-97%重量,更优选10-94.0%重量。
该共混物还包含基于组分A、B、和C总重的0.01-99%重量的至少一种导电添加剂(组分B),优选0.5-50%重量,更优选1-25%重量。
该共混物还包含基于组分A、B、和C总重的0-98.99%重量的至少一种不同于组分A和组分B聚合物(组分C),优选2.5-94.5%重量,更优选5-89%重量。
以下实施例用于说明本发明,但不应看作是对其范围的任何限定。
实施例测试方法a)密度和熔体流动测量用于本发明的聚合物组合物的分子量往往使用熔体指数测量值来表示,通过ASTM D-1238,条件190℃/2.16千克(以前称作“条件(E)”,也称作I2)测定。熔体指数与聚合物的分子量成反比。因此,分子量越高,熔体指数越低,但这种关系不是线性的。
Gotterfert熔体指数(G,厘米3/10分钟)也可用于表示本发明基本上无规共聚体的分子量,可按照与熔体指数(I2)类似的方式,使用ASTMD1238方法(用于自动塑度计)而得到,其中熔体密度设定为0.7632(聚乙烯在190℃的熔体密度)。
对于乙烯-苯乙烯共聚体,测定熔体密度与苯乙烯含量之间的关系,作为总苯乙烯含量的函数,在190℃下的苯乙烯含量范围为29.8-81.8%重量。这些样品中的无规立构聚苯乙烯含量通常为10%或更低。无规立构聚苯乙烯的影响由于含量低而视为最小。此外,无规立构聚苯乙烯的熔体密度与具有高苯乙烯总含量的样品的熔体密度非常类似。用于测定熔体密度的方法采用了一种Gotterfert熔体指数机器,其中熔体密度参数设定为0.7632,在测定I2时使用的重物的力作用下,收集作为时间函数的熔体束料。记录每个熔体束料的重量和时间,然后归一化得到每10分钟的质量数(克)。还记录仪器计算出的I2熔体指数值。用于计算实际熔体密度的等式为δ=δ0.7632×I2/I2Gotterfert其中δ0.7632=0.7632且I2Gotterfert=显示熔体指数。
计算熔体密度对总苯乙烯含量的最小二乘方拟合可导致一个等式,其中对以下等式的关联系数为0.91δ=0.00299×S+0.723
其中S=苯乙烯在聚合物中的重量百分数。总苯乙烯含量与熔体密度的关系可用于确定实际熔体指数值,其中使用这些等式,只要知道了苯乙烯含量。
对于73%总苯乙烯含量的具有测定熔体流动值(“Gotterfert值”)的聚合物,计算如下x=0.00299*73+0.723=0.9412其中0.9412/0.7623=I2/G#(测定)=1.23。
用于本发明的基本上无规共聚体的密度按照ASTM D-792测定。
b)13C-NMR化学位移为了测定所述共聚体的C13-NMR化学位移,采用以下步骤和条件。在由50%(体积)1,1,2,2-四氯乙烷-d2和50%(体积)的0.10M三(乙酰丙酮)铬(在1,2,4-三氯苯中)组成的混合物中,制备出5-10%重量的聚合物溶液。NMR光谱要求在130℃下使用反向门控去偶程序,90°脉冲宽度和5秒或更高的脉冲延迟。该光谱是将30.000ppm下的聚合物的隔离亚甲基信号作为参比得出的。
c)苯乙烯分析无规立构聚苯乙烯浓度是使用核磁共振(NMR)方法测定的,然后通过傅里叶变换红外光谱(FTIR)来测定总苯乙烯含量。
d)低温冲击性通过仪器化的落锤冲击方法(ASTM 3763-93),测定样品的低温冲击强度。使用Dynatup,8000型落锤塔(General Research Corporation),其中落锤高度为12英寸,落锤重量为138.5磅。试样没有夹紧,锤球直径为0.625英寸,其中未支撑样品面积为1.25英寸。将样品在冷冻机中调控,然后移到测试装置上,温暖44秒达到-29℃之后进行测试,该温度是由配有内热电偶的空白样品测定的。数据采集和计算是使用DYN730软件系统完成的。针对每种配方测试5个样品,将结果平均。
e)导电率在此得到的注塑和压塑样品往往在表面上具有不同于芯的导电率,因此要对两者进行评估。对于在ESD导电率范围内的共混物,尤其如此。“表面导电率”是对整体性能的一种度量,通过横贯注塑或压塑部件的表面而得到,因此由样品(约3.175毫米厚)上方与下方之间的电阻测量值而得到。在导电涂底之后,使用能够增加接触表面积并降低接触电阻的石墨纸来测量电阻。表面上的导电率通过在3.2毫米厚拉伸棒两侧涂上1厘米2面积的表面而测定。测定由棒的一个表面至另一表面的电阻,然后计算导电率。如图1所示。将三个不同棒的三个表面测量值平均(总共9个测量值),记录平均值。
“芯导电率”是对没有贯穿模塑部件表面的整体性能的一种度量,由经过棒截面的长度方向上的电阻而计算,该棒已在77K下进行冷破裂。如图2所示。
在任一情况下,将测量表面涂上导电炭黑底漆(MPP4110型,PPGIndustries,Oak Creek,WI)。炭黑漆由于配方的良好粘附性而建议用于聚烯烃,而银漆则与表面接触不好。
在任何情况下,导电率都由电阻值、所测试的表面积、以及两个测量表面间的距离计算如下σ=导电率(S/cm)=电阻率-1(欧姆-1·厘米-1)
各共混组分a)“PP 1”是一种聚丙烯均聚物,得自陶氏化学公司(Dow ChemicalCo.),I2为35克/10分钟(在2302下测定)。“PP 6331”是一种聚丙烯均聚物,得自Montell,I2为12克/10分钟(在230℃下测定)。“PP-44”是C705-44NA聚丙烯,熔体流动值为44,购自陶氏化学公司。
b)“IP60”是一种HDPE Dowlex IP60,购自陶氏化学公司,I2为60克/10分钟。
c)ENGAGETM8180是一种乙烯/辛烯共聚物,密度为0.8630克/厘米3且熔体指数(I2)为0.50克/10分钟,购自杜邦-陶氏弹性体公司(DuPont Dow Elastomers)。
d)ENGAGETM8200是一种乙烯/辛烯共聚物,密度为0.8700克/厘米3且熔体指数(I2)为5.00克/10分钟,购自杜邦-陶氏弹性体公司。
e)STYRONTM665是一种聚苯乙烯,I2为1.5克/10分钟(在200℃下测量),购自陶氏化学公司。
f)STYRONTM680是一种聚苯乙烯,I2为10克/10分钟(在200℃下测量),购自陶氏化学公司。
g)“XE-2”是一种导电炭黑,以Degussa XE-2购自Degussa公司,其堆积密度为140克/升,pH值为8.5,且DBP吸收值为380毫升/1000克。
h)ESI#’s 1-???是乙烯/苯乙烯共聚体,且ESP#’s 1-3是乙烯/丙烯/苯乙烯共聚体,使用以下催化剂、助催化剂和聚合反应工艺制成。这些样品所用的工艺条件汇总于表1,聚合物性能则汇总于表2。
催化剂(二甲基[N-(1,1-二甲基乙基)-1,1-二甲基-1-[(1,2,3,4,5-η)-1,5,6,7-四氢-3-苯基-s-环戊二烯并茚-1-基]硅烷氨基(2-)-N]-钛)的制备3,5,6,7-四氢-s-环戊二烯并茚-1(2H)-酮的制备在氮气流下,将1,2-二氢化茚(94.00克,0.7954摩尔)和3-氯丙酰氯(100.99克,0.7954摩尔)在0℃下搅拌加入CH2Cl2(300毫升)中,同时慢慢加入AlCl3(130.00克,0.9750摩尔)。然后将该混合物在室温下搅拌2小时。去除挥发物。将该混合物冷却至0℃,然后慢慢加入浓H2SO4(500毫升)。在该步骤的早期不能搅拌时,形成的固体物质必须用刮勺频繁打碎。在室温下,将该混合物在氮气下放置过夜。然后将该混合物加热,直到温度读数达到90℃。将这些条件保持2小时,在此过程中,定期使用刮勺搅拌该混合物。反应期之后,将碎冰放入该混合物中,然后旋转摇动。将该混合物转移到烧杯中,用H2O和二乙醚依次洗涤,然后过滤各级分并合并。用水(2×200毫升)洗涤该混合物。分离有机层,并去除挥发物。通过在0℃下从己烷中作为浅黄色晶体重结晶而分离出所需产物(22.36克,16.3%产率)。1H NMR(CDCl3)d2.04-2.19(m,2H),2.65(t, 2H),2.84-3.0(m,4H),3.03(t, 2H),7.26(s,1H),7.53(s,1H)。13C NMR(CDCl3)d25.71,26.01,32.19,33.24,36.93,118.90,122.16,135.88,144.06,152.89,154.36,206.50.GC-MSC12H12O的计算值172.09,实测值172.05。
1,2,3,5-四氢-7-苯基-s-环戊二烯并茚的制备将3,5,6,7-四氢-s-环戊二烯并茚-1(2H)-酮(12.00克,0.06968摩尔)在0℃下搅拌加入二乙醚(200毫升)中,同时慢慢加入PhMgBr(O.105摩尔,35.00毫升的3.0M二乙醚溶液)。将该混合物在室温下搅拌过夜。反应期之后,将该混合物倒在冰上而骤冷。用HCl酸化该混合物,然后剧烈搅拌2小时。分离有机层,用H2O(2×100毫升)洗涤,然后用MgSO4干燥。过滤去除挥发物,结果分离出深色油状的所需产物(14.68克,90.3%产率)。1H NMR(CDCl3)d2.0-2.2(m,2H),2.8-3.1(m,4H),6.54(s,1H),7.2-7.6(m,7H)。GC-MSC18H16的计算值232.13,实测值232.05。
1,2,3,5-9氢-7-苯基-s-环戊二烯并茚,二锂盐的制备将1,2,3,5-四氢-7-苯基-s-环戊二烯并茚(41.68克,0.06291摩尔)搅拌加入己烷(150毫升)中,同时慢慢加入正丁基锂(0.080摩尔,40.00毫升的2.0M环己烷溶液)。将该混合物搅拌过夜。反应期之后,通过抽滤收集到一种黄色固体,用己烷洗涤,真空干燥,然后无需进一步纯化或分析(12.2075克,81.1%产率)就可使用。
氢三甲基(1,5,6,7-9氢-3-苯基-S-环戊二烯并茚一1-基)硅烷的制备在0℃下,将THF(50毫升)中的1,2,3,5一四氢-7-苯基-s-环戊二烯并茚的二锂盐(12.2075克,0.05102摩尔)滴加到THF(100毫升)中的Me2SiCl2(19.5010克,0.1511摩尔)中。将该混合物在室温搅拌过夜。反应期之后,去除挥发物,然后使用己烷萃取残余物并过滤。去除己炕,分离出一种黄色油状的所需产物(15.1492克,91.1%产率)。1H NMR(CDCl3)d0.33(s,3H),0.38(s,3H),2.20(p, 2H),2.9-3.1(m,4H),3.84(s,1H),6.69(d, 1H),7.3-7.6(m,7H),7.68(d, 2H)。13CNMR(CDCl3)d0.24,0.38,26.28,33.05,33.18,46.13,116.42,119.71,127.51,128.33,128.64,129.56,136.51,141.31,141.86,142.17,142.41,144.62。GC-MSC20H21ClSi的计算值324.11,实测值324.05。N-(1,1二三甲基乙基)-1,1-二甲基-1-(1,5,6,7-四氢-3-苯基-s-环戊二烯并茚-1-基)硅烷胺制备在0℃下,将氯二甲基(1,5,6,7一四氢-3-苯基-s-环戊二烯并茚-1-基)硅烷(10.8277克,0.03322摩尔)搅拌加入己烷(150毫升)中,同时加入NEt3(3.5123克,0.03471摩尔)和叔丁基胺(2.6074克,0.03565摩尔)。将该混合物搅拌24小时。反应期之后,过滤该混合物并去除挥发物,分离出一种红黄色稠油状的所需产物(10.6551克,88.7%产率)。1HNMR(CDCl3)d0.02(s,3H),0.04(s,3H),1.27(s,9H),2.16(p,
2H),2.9-3.0(m,4H),3.68(s,1H),6.69(s,1H),7.3-7.5(m,4H),7.63(d,
2H)。13C NMR(CDCl3)d-0.32,-0.09,26.28,33.39,34.11,46.46,47.54,49.81,115.80,119.30,126.92,127.89,128.46,132.99,137.30,140.20,140.81,141.64,142.08,144.83。
N-(1.1_二甲基乙基)-1,1-二甲基-1-(1,5,6,7一四氢-3-苯基-s-环戊二烯并茚-1-基)硅烷胺的二锂盐的制备将N-(1,1-二甲基乙基)-1,1-二甲基-1-(1,5,6,7一四氢-3-苯基-s-环戊二烯并茚-1-基)硅烷胺(10.6551克,0.02947摩尔)搅拌加入己烷(100毫升)中,同时慢慢加入正丁基锂(0.070摩尔,35.00毫升的2.0M环己烷溶液)。将该混合物搅拌过夜,在此过程中没有从深红色溶液中出现任何盐。反应期之后,去除挥发物,然后用己烷(2×250毫升)迅速洗涤残余物。然后将深红色残余物抽干,无需进一步纯化或分析(9.6517克,87.7%产率)就可使用。硅烷氨基(2-)-N]二氯化钛的制备将THF(50毫升)中的N-(1,1-二甲基乙基)-1,1-二甲基-1-(1,5,6,7-四氢-3-苯基-s-环戊二烯并茚-1-基)硅烷胺的二锂盐(4.5355克,0.01214摩尔)滴加到TiCl3(THF)3(4.5005克,0.01214摩尔)在THF(100毫升)中的淤浆中。将该混合物搅拌2小时。然后加入PbCl2(1.7136克,0.006162摩尔),并再搅拌该混合物1小时。反应期之后,去除挥发物,然后用甲苯萃取该残余物并过滤。去除甲苯,分离出深色残余物。将该残余物在己烷中制浆,然后冷却至0℃。过滤分离出一种红棕色结晶固体状的所需产物(2.5280克,43.5%产率)。1H NMR(CDCl3)d0.71(s,3H),0.97(s,3H),1.37(s,9H),2.0-2.2(m,2H),2.9-3.2(m,4H),6.62(s,1H),7.35-7.45(m,1H),7.50(t,
2H),7.57(s,1H),7.70(d,
2H),7.78(s,1H)。1H NMR(C6D6)d0.44(s,3H),0.68(s,3H),1.35(s,9H),1.6-1.9(m,2H),2.5-3.9(m,4H),6.65(s,1H),7.1-7.2(m,1H),7.24(t
2H),7.61(s,1H),7.69(s,1H),7.77-7.8(m,2H)。13C NMR(CDCl3)d1.29,3.89,26.47,32.62,32.84,32.92,63.16,98.25,118.70,121.75,125.62,128.46,128.55,128.79,129.01,134.11,134.53,136.04,146.15,148.93。13C NMR(C6D6)d0.90,3.57,26.46,32.56,32.78,62.88,98.14,119.19,121.97,125.84,127.15,128.83,129.03,129.55,134.57,135.04,136.41,136.51,147.24,148.96。
二甲基[N-(1,1-二甲基乙基)-1,1-二尹基-1-[(1,2,3,4,5-η)-1,5,6,7-四氢-3-苯基-s-环戊二烯并茚-1-基]硅烷氨基(2-)-N]钛的制备将[N-(1,1-二甲基乙基)-1,1-二甲基-1-[(1,2,3,4,5-η)-1,5,6,7-四氢-3-苯基-s-环戊二烯并茚-1-基]硅烷氨基(2-)-N]二氯化钛(0.4970克,0.001039摩尔)搅拌加入二乙醚(50毫升)中,同时慢慢加入MeMgBr(0.0021摩尔,0.70毫升的3.0M二乙醚溶液)。将该混合物搅拌1小时。反应期之后,去除挥发物,然后使用己烷萃取残余物并过滤。去除己烷,分离出一种金黄色固体状的所需产物(0.4546克,66.7%产率)。1H NMR(C6D6)d0.071(s,3
H),0.49(s,3H),0.70(s,3H),0.73(s,3H),1.49(s,9H),1.7-1.8(m,2H),2.5-2.8(m,4H),6.41(s,1H),7.29(t,
2H),7.48(s,1H),7.72(d,
H),7.92(s,1H).13C NMR(C6D6)d2.19,4.61,27.12,32.86,33.00,34.73,58.68,58.82,118.62,121.98,124.26,127.32,128.63,128.98,131.23,134.39,136.38,143.19,144.85。
催化剂B的制备(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)-硅烷钛1,4一二苯基丁二烯1)1H-环戊烷[1]菲-2-基锂的制备向装有1.42克(0.00657摩尔)1H-环戊烷[1]菲和120毫升苯的250毫升圆底烧瓶中,滴加4.2毫升的正丁基锂在混合己烷中的1.60M溶液。将该溶液搅拌过夜。过滤分离出锂盐,用25毫升苯洗涤两次,然后真空干燥。分离后的产量为1.426克(97.7%)。1H NMR分析表明,主要异构体在2位被取代。
2)(1H-环戊烷[1]菲-2-基)二甲基一氯硅烷的制备向装有4.16克(0.00322摩尔)二甲基二氯硅烷(MeSiCl3)和250毫升四氢呋喃(THF)的500毫升圆底烧瓶中,滴加1.45克(0.0064摩尔)1H-环戊烷[1]菲-2-基锂在THF中的溶液。将该溶液搅拌约16小时,然后在减压下去除溶剂,留下油状固体,用甲苯萃取,过滤通过硅藻土过滤助剂(CeliteTM),用甲苯洗涤两次,然后减压干燥。分离后的产量为1.98克(99.5%)。
3)(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)硅烷的制备向装有1.98克(0.0064摩尔)(1H-环戊[1]菲-2-基)二甲基一氯硅烷和250毫升己烷的500毫升圆底烧瓶中,滴加2.00毫升(0.0160摩尔)叔丁基胺。将该反应混合物搅拌7天,然后使用硅藻土过滤助剂(celiteTM)过滤,用己烷洗涤两次。在减压下去除残余溶剂,分离出产物。分离后的产量为1.98克(88.9%)。
4)二锂(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)硅烷的制备向装有1.03克(0.0030摩尔)(1H-环戊[1]菲-2-基)二甲基(叔丁基氨基)硅烷和120毫升苯的250毫升圆底烧瓶中,滴加3.90毫升的正丁基锂在混合己烷中的1.6M溶液。将该反应混合物搅拌约16小时。过滤分离出产物,用苯洗涤两次,然后减压干燥。分离后的产量为1.08克(100%)。
5)(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)硅烷二氯化钛的制备向装有1.17克(0.0030摩尔)TiCl3·3THF和120毫升THF的250毫升圆底烧瓶中,以较快速率滴加50毫升的1.08克二锂(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)硅烷的THF溶液。将该混合物在20℃下搅拌1.5小时,这时加入0.55克(0.002摩尔)固体PbCl2。再搅拌1.5小时,然后在真空下去除THF,用甲苯萃取残余物,过滤并减压干燥,得到一种橙色固体。产量为1.31克(93.5%)。
6)(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)硅烷钛1,4-二苯基丁二烯的制备在70℃下,向(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)硅烷二氯化钛(3.48克,0.0075摩尔)和1.551克(0.0075摩尔)1,4-二苯基丁二烯在80毫升甲苯中的淤浆中,加入9.9毫升的正丁基锂(0.0150摩尔)的1.6M溶液。该溶液立即颜色加深。升温以使混合物回流,然后将该混合物在该温度下保持2小时。将该混合物冷却至-20℃,然后减压去除挥发物。在20℃下,将残余物在60毫升混合己烷中制浆约16小时。将该混合物冷却至-25℃1小时。将干燥固体放在玻璃纤维套管中,然后通过索氏提取器使用己烷连续提取固体。6小时之后,在沸腾坩埚中观察到结晶固体。将该混合物冷却至-20℃,从冷却混合物中过滤分离,然后减压干燥,得到1.62克深色结晶固体。丢弃滤液。搅拌提取器中的固体物质,另外使用一定量的混合己烷继续提取,另外得到0.46克的所需产物,为一种深色结晶固体。
助催化剂(二(氢化-牛油烷基)甲基胺)(B-FABA)的制备将甲基环己烷(1200毫升)放在2升圆柱状烧瓶中。搅拌下,将二(氢化-牛油烷基)甲基胺(ARMEENM2HT,104克,粉碎至粒状)加入烧瓶中并搅拌,直到完全溶解。将盐酸(1M,200毫升)加入烧瓶中,然后搅拌该混合物30分钟。立即形成一种白色沉淀物。该阶段结束时,将LiB(C6F5)4·Et2O·3LiCl(Mw=887.3;177.4克)加入烧瓶中。溶液开始变成乳白色。将烧瓶装配上6”Vigreux塔(上有蒸馏装置),然后将该混合物加热(140℃外壁温度)。将乙醚与甲基环己烷的混合物从烧瓶中蒸馏出。两相溶液现在只是稍浑浊。将该混合物冷却至室温,然后将内容物放在4升分离漏斗中。去除水层并丢弃,然后用H2O洗涤有机层两次并再次丢弃水层。测得H2O饱和的甲基环己烷溶液包含0.48%重量二乙醚(Et2O)。
将该溶液(600毫升)转移到1升烧瓶中,用氮气充分喷射,然后转移到干燥箱中。将该溶液通过一含有13X分子筛的塔(1”直径,6”高度)。这样可将Et2O含量由0.48%重量降至0.28%重量。然后将该物质在新鲜13X筛(20克)上搅动4小时。然后测得Et2O含量为0.19%重量。将该混合物搅拌过夜,将Et2O含量进一步降至约40ppm。使用配有玻璃釉料(孔径为10-15μm)的漏斗过滤将该混合物,得到一种透明的溶液(分子筛另外使用无水甲基环己烷漂洗)。通过重量分析法测定浓度,得到数值16.7%重量。
聚合反应在6加仑(22.7升)、油夹套的、高压釜(连续搅拌的反应器)(CSTR)中制备共聚体。带Lightning A-320叶轮的磁力配合搅拌器用于搅拌。反应器在475psig(3275kPa)压力在装满液体的条件下操作。工艺物流是底进顶出。传热油循环通过反应器的夹套,去除一些反应热。在反应器的出口,有一个用于测定流量和溶液密度的微动流量计。反应器出口上的所有管路都用50psig(344.7KPa)的蒸汽冲刷并隔热。
在30psig(207KPa)下,将乙苯溶剂加入反应器中。向反应器中的加料量可通过微动(Micro-Motion)质量流量计进行测量。使用变速隔膜泵来控制加料速度。在溶剂泵的出料口处,取一侧流用于提供用于催化剂注入管路的冲刷物流(1lb/hr(0.45千克/小时))和反应器搅拌器的冲刷物流(0.75lb/hr(0.34千克/小时))的足够流量。这些流量可通过差压流速计进行测量,并通过手工调节微流针阀进行控制。在30psig(207KPa)下,将未被阻聚的苯乙烯单体加入反应器中。向反应器中的加料量可通过微动质量流量计进行测量。使用变速隔膜泵来控制加料速度。苯乙烯液流与剩余溶剂液流进行混合。在600psig(4137KPa)下,将乙烯加入反应器中。通过位于控制流量的Research阀之前的微动质量流量计测量乙烯流量。在乙烯控制阀的出口处,使用Brooks流速计/控制器,将氢气输送到乙烯气流中。乙烯/氢气混合物在室温下与溶剂/苯乙烯液流混合。通过夹套中具有-5℃二醇的热交换器,溶剂/单体在进入反应器时的温度降至~5℃。该液流进入反应器的底部。三元催化剂体系及其冲刷溶剂也从底部,但通过不同于单体液流的孔中进入反应器中。催化剂组分是在惰性气氛手套箱中进行制备的。将稀释组分放入氮气衬垫的圆筒中,然后加入位于工艺区的催化剂操作罐中。通过这些操作罐,使用活塞泵将催化剂增压,然后用微动质量流量计测量流速。这些液流与催化剂冲刷溶剂在通过单个注入管路进入到反应器之前相互混合。
在微动流量计测量溶液密度之后的位置向反应器产物管路中加入催化剂失活剂(混以溶剂的水)以终止反应。可与催化剂失活剂一起加入其它聚合物添加剂。该管路上的静态混合器可将催化剂失活剂与添加剂分散在反应器溢出物流中。然后该液流进入后反应器加热器中,该加热器可提供附加能量以闪蒸去除溶剂。在该溢流离开后反应器加热器时发生闪蒸,这时反应器压力控制阀上的压力由475psig(3275KPa)降低到~250mm绝对压力。该闪蒸后的聚合物进入热油夹套脱挥发分器中。在脱挥发分器中,去除了聚合物中约85%的挥发分。挥发分从脱挥发分器的上部排出。用二醇夹套热交换器来凝结该挥发分物流,用真空泵进行抽吸,然后排放到乙二醇夹套溶剂和苯乙烯/乙烯分离容器中。溶剂和苯乙烯从容器下部去除,而乙烯则从上部去除。使用微动质量流速计测量乙烯流量,然后分析其组成。通过测量排出的乙烯并计算溶剂/苯乙烯液流中的溶解气体量,可以计算出乙烯的转化率。使用齿轮泵将在脱挥发分器中分离出来的聚合物泵抽到ZSK-30脱挥发分真空挤出机中。干聚合物以单个束料形式离开该挤出机。将该束料牵引通过水浴以进行冷却。用空气吹走该束料上的过量水分,然后用束料切割器将其切成颗粒。
用于制备本发明共混组合物所用各乙烯苯乙烯共聚体的各种催化剂、助催化剂和工艺条件汇总于表1。
表1用于制备各共混组分的工艺条件
a催化剂为二甲基[N-(1,1-二甲基乙基)-1,1-二甲基-1-[(1,2,3,4,5-η)-1,5,6,7-四氢-s-环戊二烯并茚-1-基]硅烷氨基(2-)-N]-钛。
b催化剂为(叔丁基氨基)二甲基(四甲基环戊二烯基)硅烷-钛(II)1,3-戊二烯,按照美国专利№5556928中实施例17的描述制备。
cBFABA为双氢化牛油烷基甲基四(五氟苯基)硼酸铵。
dFAB是三(五氟苯基)硼烷(CAS#001109-15-5)。
e改性甲基铝氧烷,可从Akzo Nobel以MMAO-3A买到(CAS#146905-79-5)。
f催化剂为(1H-环戊烷[1]菲-2-基)二甲基(叔丁基氨基)-硅烷钛1,4-二苯基丁二烯。
表2各共混组分的性能
加工在配有Rheomix 3000(Haake)混合筒(具有标准辊叶片)的HaakeRC-90扭矩流变计上进行共混物的混合。样品混合容量为约200克。为了得到足够用于注塑的材料,对每种配方进行重复混合操作。每次操作的混合数据作为数据文件储存。压塑要求较少材料,因此只需要一批Haake共混料。
将混合的碳填充或其它导电添加剂填充的聚合物样品在液氮中冷却,然后在Wiley磨机(4型,Thomas Scientific)粉碎。将粉碎样品刚好在模塑之前真空干燥过夜。注塑是在Boy 30M模塑机中进行的,其中机筒温度为200℃,喷嘴温度为210℃,且模具温度为45℃。模塑注射压力通常为500psi,夹持压力为550psi。总周期时间为40秒。对于冲击测试的每次冲击,模塑样品由一个拉伸棒和一个圆盘组成。丢弃前6次冲击,根据样品量收集以下10次或更多次冲击的数据。压塑在Carver液压机上进行,其中压板被加热至195℃+/-5℃。压台压力通常为5000psig并保持约4分钟。一旦从压机中取出,将模塑装置放在干冰中,迅速冷却样品,这样容易从模具中取出。模塑样品为6.25厘米×1.25厘米棒。
以下许多实施例都是已熔体处理、注塑、然后测试导电率、低温冲击性(LTI)和熔体粘度(MFR)的橡胶改性聚丙烯的配方。一般来说,最好所有这些性能都具有较高数值。在TPO带或仪表板中,LTI的商业临界值为30ft-lb。
表3表明,同时存在EPS和ESI可提高共混样品的芯导电率,而且给复合体的表面带来导电性,否则表面是绝缘的。表面导电率性能是有益的,因为这样容易磨碎部件。
表3在PP中作为添加剂的ESI和EPS聚合物
a导电率是以指数记数法记录的,例如3E-5就等于3.0×10-5。值OL表示导电率低于1×10-8S/cm。
表4表明,在通过调配而包含EG8180(抗冲击橡胶改性剂)的橡胶改性聚丙烯复合体中,可在增加表面导电率的同时保持LTI。在相等的导电炭黑浓度下,含ESI的橡胶改性聚丙烯在芯上导电性稍高,而且在表面上导电性明高显。这种意想不到的结果可在配方中ESI含量低至10%重量时仍出现。
表4PS、ESI和EPS在TPO中的使用
a导电率是以指数记数法记录的,例如3E-5就等于3.0×10-5。值OL表示导电率低于1×10-8S/cm。
表5表明,对基于包含EG8200作为冲击改性剂的配方的聚丙烯,ESI可提高其导电率。
表5ESI在导电热塑性聚烯烃中的用途
a导电率是以指数记数法记录的,例如3E-5就等于3.0×10-5。值OL表示导电率低于1×10-8S/cm。
表6表明,与没有ESI的对比实验#相比,在恒定导电炭黑加入量下,加入几种不同主体聚合物中的ESI可提高导电率。
表6ESI作为添加剂用于将导电炭黑掺杂的聚合物半导电化
a导电率是以指数记数法记录的,例如3E-5就等于3.0×10-5。值OL表示导电率低于1×10-8S/cm。
物理性能与导电率的平衡是本发明的一个重要特性。聚丙烯(PP)、聚苯乙烯(PS)、乙烯苯乙烯共聚体(ESI)、以及乙烯丙烯苯乙烯共聚体(EPS)都具有类似的渗滤性质(产生作为导电添加剂加入量的函数的导电率)。即,如果加入相同量的导电添加剂,它们具有类似的导电率。但在类似的导电添加剂加入量下,PP和PS比ESI和EPS更脆,例如可通过弯曲模量来度量。如果将ESI和EPS与(例如)乙烯/α-烯烃共聚物(AOC)相比,物理性能的平衡情况是不同的。导电炭黑掺杂的AOC、ESI和EPS在类似导电炭黑加入量下具有类似的柔韧性。但达到相同导电率所需的导电炭黑的量是不同的,AOC需要比ESI和EPS更多的导电炭黑。
表7给出了各种聚合物在导电Degussa XE-2炭黑的几种加入量下的导电率。从中可以看出,在半导电改性时,ES和EPS共聚体的导电率类似于PS,且明显高于聚烯烃,尤其是EO橡胶,例如EG8180。
如果主要为无定形的共聚体是本发明共混物的一个组分,良好的渗滤性质是意想不到的。半导电率可通过给定聚合物中的结晶性来提高。因此PP(一种具有显著结晶性的聚合物)在加入合适量的导电添加剂时就具有半导电率。相反,无定形的EngageTM橡胶在加入相当量的导电添加剂时仍具有不好的导电率。
表7各个共混组分对Degussa XE-2加入量的导电率
a导电率是以指数记数法记录的,例如3E-5就等于3.0×10-5。值OL表示导电率低于1×10-8S/cm。
表8
*压塑样品,添加剂值在圆括号中压塑是在10000psi下,在385°F下,在Carver 2697型压机中进行3分钟。这些结果表明,一般来说,在相当的导电填料加入量下,使用具有不同苯乙烯含量的两种乙烯/苯乙烯共聚体可产生比使用一种乙烯/苯乙烯共聚体时更高的导电率。例外情况是苯乙烯含量大于75%重量的单个乙烯/苯乙烯共聚体。
实施例51-53与表8的实施例一样,这些实施例表明,一般来说,在相同的导电填料含量下,使用具有不同苯乙烯含量的两种乙烯/苯乙烯共聚体可产生比使用一种乙烯/苯乙烯共聚体时更高的导电率。
表9
*添加剂值在圆括号中这些结果表明,如果共混物的次要组分的苯乙烯含量小于或等于约75%重量,那么相对单个共混组分的导电率,可观察到比添加剂增加更大的导电率。
实施例54-65表10的实施例说明,使用一种不同的导电填料(由NagaseCorporation生产的一种近乎白色的无机半导体FT-1000)将乙烯/苯乙烯共聚体导电改性。为此,相对使用炭黑,需要较大量的导电填料才能达到炭黑达到的半导电率。类似于表9,表10的结果表明,在相同的导电填料加入量下,使用具有不同苯乙烯含量的两种乙烯/苯乙烯共聚体可产生比使用一种乙烯/苯乙烯共聚体时更高的导电率。这些结果还说明,几种不同种类的无机半导电性氧化物可用于本发明。与导电炭黑改性聚合物的黑色相比,这些导电复合体因为是白色而不同。这种白色容易将成型制品从其它污染物如尘土和其它颗粒物中检查出来,这在清洁室内环境中尤为理想。
表10
实施例66该实施例说明,使用两种或多种乙烯/苯乙烯共聚体在橡胶改性聚丙烯(“TPO”)中也是有利的,因为相对没有乙烯/苯乙烯共聚体的配方,加入它们可提高表面导电率。
表11(所有共混物包含12%重量的Cabot XE-72炭黑)
该数据表明,如果在含有橡胶改性聚丙烯的共混物中存在两种乙烯/苯乙烯共聚体组分,那么可在注塑样品的表面上以及芯中观察到导电性。这提高了汽车元件如缓冲器、门板、镜子外壳和类似物的油漆涂覆效率。
权利要求
1.一种聚合物材料的共混物,包含(A)基于组分A、B、和C总重的1-99.99%重量的至少一种基本上无规共聚体;且其中所述共聚体(1)包含0.5-65%摩尔的衍生自以下单体的聚合物单元(a)至少一种乙烯基或亚乙烯基芳族单体,或(b)至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体,或(c)至少一种乙烯基或亚乙烯基芳族单体与至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体的混合物;(2)包含35-99.5%摩尔的衍生自至少一种具有2-20个碳原子的脂族α-烯烃的聚合物单元;(3)分子量(Mn)大于1000;(4)熔体指数(I2)为0.01-1000;(5)分子量分布(Mw/Mn)为1.5-20;和(B)基于组分A、B和C总重的99-0.01%重量的一种或多种导电添加剂和/或一种或多种具有高磁导率的添加剂;和(C)基于组分A、B和C总重的0-98.99%重量的一种或多种除A之外的聚合物。
2.根据权利要求1的共混物,其中(i)组分A的量为基于组分A、B、和C总重的5-97%重量;(ii)组分A包含1-55摩尔的衍生自以下单体的聚合物单元(a)至少一种所述乙烯基或亚乙烯基芳族单体组分A(1)(a)由以下通式表示
其中R1选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;每个R2独立地选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;Ar为苯基或被1至5个选自卤素、C1-4烷基和C1-4卤代烷基的取代基所取代的苯基;且n的值为0至4;或(b)至少一种所述位阻脂族或环脂族乙烯基或亚乙烯基单体组分A(1)(b)由以下通式表示
其中A1为含有至多20个碳原子的空间位阻大的脂族或环脂族取代基,R1选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;每个R2独立地选自氢原子和含有1至4个碳原子的烷基,优选为氢原子或甲基;或R1和A1也可以构成环体系;或(c)至少一种所述乙烯基或亚乙烯基芳族单体与至少一种所述位阻脂族或环脂族乙烯基或亚乙烯基单体的混合物;(iii)组分A包含45-99%摩尔的衍生自至少一种所述脂族α-烯烃的聚合物单元,所述脂族α-烯烃选自乙烯或乙烯与至少一种丙烯、4-甲基-戊烯、丁烯-1、己烯-1和辛烯-1的混合物;(iv)组分A的分子量(Mn)为5000-1000000;(v)组分A的熔体指数(I2)为0.1-100;(vi)组分A的分子量分布(Mw/Mn)为1.8-10;(vii)组分B的量为基于组分A、B和C总重的0.5-50%重量,且为选自以下的一种或多种物质a)导电炭黑、碳纤维、石墨、或石墨纤维;b)金属和合金,选自铁、镍、钢、铝、锌、铅、铜、青铜、黄铜、锡、锆、银和金;c)掺杂和/或未掺杂的共轭的本质导电均聚物和共聚物,选自取代和未取代聚苯胺、聚乙炔、聚吡咯、聚(亚苯基硫)、聚吲哚、聚噻吩和聚(烷基)噻吩、聚亚苯基、聚亚乙烯基/亚苯基、乙炔与噻吩或苯胺与噻吩的无规或嵌段共聚物、聚(N-甲基)吡咯、聚(邻乙氧基)苯胺、聚亚乙基二氧基噻吩(PEDT)、和聚(3-辛基)噻吩;d)半导体和导体,选自掺杂和未掺杂的金属氧化物和氮化物,选自氧化锡、铟掺杂氧化锡、锑掺杂氧化锡、涂有锑掺杂氧化锡的二氧化钛和氮化铝;和掺杂二氧化钛;e)高磁导率添加剂,选自磁铁矿、氧化铁(Fe3O4)、MnZn铁氧体、和涂银的锰-锌铁氧体颗粒;(viii)组分C的量为基于组分A、B和C总重的2.5-94.5%重量,且为选自苯乙烯均聚物和共聚物、α-烯烃均聚物和共聚体、热塑性烯烃、苯乙烯系共聚物、弹性体、热固性聚合物、卤乙烯聚合物和工程塑料的一种或多种物质。
3.根据权利要求1的共混物,其中(i)组分A的量为基于组分A、B、和C总重的10-94.5%重量;(ii)组分A包含2-50摩尔的衍生自以下单体的聚合物单元a)选自苯乙烯、α-甲基苯乙烯、邻-、间-和对-甲基苯乙烯、以及环卤化苯乙烯,或b)选自5-乙叉基-2-降冰片烯或1-乙烯基环己烯、3-乙烯基环己烯、和4-乙烯基环己烯;或c)至少一种a)与b)的混合物;(iii)组分A包含50-98%摩尔的衍生自乙烯或乙烯与一种或多种C3-C8α-烯烃的混合物的聚合物单元;(iv)组分A的分子量(Mn)为10000-500000;(v)组分A的熔体指数(I2)为0.5-30;(vi)组分A的分子量分布(Mw/Mn)为2-5;且(vii)组分B的量为基于组分A、B和C总重的1-25%重量,且为选自以下的物质导电炭黑;碳纤维;石墨;石墨纤维;以及掺杂和/或未掺杂的共轭的本质导电聚合物,选自取代和未取代聚苯胺、聚乙炔、聚吡咯、聚(亚苯基硫)、聚吲哚、聚噻吩和聚(烷基)噻吩、聚亚苯基、聚亚乙烯基/亚苯基、乙炔与噻吩或苯胺与噻吩的无规或嵌段共聚物、聚(N-甲基)吡咯、聚(邻乙氧基)苯胺、聚亚乙基二氧基噻吩(PEDT)、和聚(3-辛基)噻吩;铟掺杂氧化锡、锑掺杂氧化锡、和涂有锑掺杂氧化锡的二氧化钛、磁铁矿、氧化铁(Fe3O4)、MnZn铁氧体、和涂银的锰-锌铁氧体颗粒;且(viii)组分C的量为基于组分A、B和C总重的5-89%重量,且为选自聚丙烯、丙烯/C4-C20α-烯烃共聚物、聚乙烯、和乙烯/C3-C20α-烯烃共聚物、聚酯、尼龙、聚苯醚和聚碳酸酯的一种或多种烯烃均聚物和共聚物。
4.根据权利要求3的共混物,其中i)所述乙烯基或亚乙烯基芳族单体组分A1(a)为苯乙烯;ii)所述脂族α-烯烃组分A2为乙烯、或乙烯与一种或多种C3-C8α-烯烃的混合物;iii)所述导电添加剂组分B选自导电炭黑、碳纤维、石墨、和石墨纤维;且iv)所述热塑性聚烯烃组分C选自一种或多种烯烃均聚物和共聚物,选自聚丙烯、丙烯/C2-C20α-烯烃共聚物、聚乙烯、和乙烯/C3-C20α-烯烃共聚物、乙烯醋酸乙烯酯(EVA)和橡胶改性聚丙烯。
5.根据权利要求3的共混物,其中(i)组分B为掺杂和未掺杂的共轭的本质导电聚合物,选自取代和未取代聚苯胺、聚乙炔、聚吡咯、聚(亚苯基硫)、聚吲哚、聚噻吩和聚(烷基)噻吩、聚亚苯基、聚亚乙烯基/亚苯基、乙炔与噻吩或苯胺与噻吩的无规或嵌段共聚物、聚(N-甲基)吡咯、聚(邻乙氧基)苯胺、聚亚乙基二氧基噻吩(PEDT)、和聚(3-辛基)噻吩。
6.根据权利要求3的共混物,其中组分B是磁性颗粒,选自磁铁矿、氧化铁(Fe3O4)、Mn-Zn铁氧体、和涂银的锰-锌铁氧体颗粒。
7.根据权利要求1的共混物,其中(i)组分C是具有窄支化分布和组成分布的均相共聚体,使用金属茂催化剂体系制成。
8.根据权利要求7的共混物,其中(i)组分C包括基本上线型共聚体。
9.根据权利要求3的共混物,其中i)所述乙烯基或亚乙烯基芳族单体组分A1(a)为苯乙烯;ii)所述脂族α-烯烃组分A2为乙烯或乙烯与一种或多种C3-C8α-烯烃的混合物;iii)所述导电添加剂组分B为聚苯胺。
10.根据权利要求3的共混物,其中i)所述乙烯基或亚乙烯基芳族单体组分A1(a)为苯乙烯;ii)所述脂族α-烯烃组分A2为乙烯或乙烯与一种或多种C3-C8α-烯烃的混合物;iii)所述导电添加剂组分B为铟掺杂氧化锡、锑掺杂氧化锡、或涂有锑掺杂氧化锡的二氧化钛。
11.根据权利要求3的共混物,其中组分C选自一种或多种聚异戊二烯、聚丁二烯、天然橡胶、乙烯/丙烯橡胶、乙烯/丙烯/二烯(EPDM)橡胶、苯乙烯/丁二烯橡胶和热塑性聚氨酯。
12.根据权利要求1的共混物,它还包含(D)一种添加剂,选自滑石、碳酸钙、三水合矾土、玻璃纤维、大理石粉、水泥粉、粘土、长石、硅石或玻璃、煅制硅石、矾土、氧化镁、氢氧化镁、铟掺杂氧化锡、氧化锑、氧化锌、硫酸钡、硅酸铝、硅酸钙、二氧化钛、钛酸盐、玻璃微球、白垩或其任意混合物。
13.根据权利要求1的共混物,其中组分A为交联共聚体。
14.根据权利要求4的共混物,其中组分A为交联共聚体。
15.根据权利要求5的共混物,其中组分A为交联共聚体。
16.根据权利要求6的共混物,其中组分A为交联共聚体。
17.根据权利要求8的共混物,其中组分A为交联共聚体。
18.根据权利要求9的共混物,其中组分A为交联共聚体。
19.根据权利要求10的共混物,其中组分A为交联共聚体。
20.根据权利要求11的共混物,其中组分A为交联共聚体。
21.根据权利要求1的共混物,其中组分B的磁导率比铜大20倍。
22.根据权利要求21的共混物,其中组分B的磁导率比铜大100倍。
23.一种制品,通过将权利要求1的共混物进行注塑、压塑、挤出、共挤出、或吹塑、溶液流延、热成型、或旋转模塑而得到。
24.一种制品,通过将权利要求1的共混物涂布基材而得到。
25.一种片材、膜、多层结构,由权利要求1的共混物制成。
26.一种电线或电缆组件,由权利要求1的共混物制成。
27.一种轮胎,由权利要求1的共混物制成。
28.一种铺地体系、长台或柜台,由权利要求1的共混物制成。
29.一种导电泡沫材料或纤维,由权利要求1的共混物制成。
30.一种导电泡沫材料,包括聚合物材料的共混物,其中包含(A)基于组分A、B、和C总重的10-90%重量的至少一种基本上无规共聚体;且其中所述共聚体(1)包含0.5-65%摩尔的衍生自以下单体的聚合物单元(A)至少一种乙烯基或亚乙烯基芳族单体,或(B)至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体,或(C)至少一种乙烯基或亚乙烯基芳族单体与至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体的混合物;(2)包含35-99.5%摩尔的衍生自至少一种具有2-20个碳原子的脂族α-烯烃的聚合物单元;(3)分子量分布(Mw/Mn)为1.5-20;和(B)基于组分A、B和C总重的0.5-50%重量的一种或多种导电添加剂和/或一种或多种具有高磁导率的添加剂;和(C)基于组分A、B和C总重的10-90%重量的一种或多种除A之外的聚合物;和(D)发泡剂。
31.根据权利要求30的泡沫材料,其中a)组分B的量为基于组分A、B总重的1-40%重量,选自炭黑、烷基胺、季铵化合物、LiPF6、KPF6、月桂基氯化吡啶鎓盐、鲸蜡基硫酸钠、甘油酯、脱水山梨醇酯、和乙氧基化胺;且b)组分C选自一种或多种由单体组分制成的均聚物或共聚物,所述单体组分包括具有2-20个碳原子的脂族α-烯烃。
32.根据权利要求30的泡沫材料,其中组分B的量为基于组分A、B和C总重的0.5-2%重量,组分B是一种抗静电添加剂,且其中组分C为LDPE、均相乙烯/α-烯烃共聚体或乙烯醋酸乙烯酯。
33.根据权利要求30的泡沫材料,其中组分B的量为基于组分A、B和C总重的10-30%重量,且组分B是一种导电添加剂,且其中组分C为LDPE、均相乙烯/α-烯烃共聚体或乙烯醋酸乙烯酯。
34.根据权利要求30的泡沫材料,它具有按照ASTM D2856-A测定至少80%的闭孔。
35.根据权利要求30的泡沫材料,其密度低于250千克/立方米。
36.根据权利要求35的泡沫材料,其密度低于100千克/立方米。
37.根据权利要求36的泡沫材料,其密度为10-70千克/立方米。
38.根据权利要求30的泡沫材料,其平均泡孔尺寸为0.05-5.0毫米。
39.根据权利要求38的泡沫材料,其平均泡孔尺寸为0.2-2.0毫米。
40.根据权利要求39的泡沫材料,其平均泡孔尺寸为0.3-1.8毫米。
41.一种聚合物材料的共混物,包含(A)基于组分A、B、和C总重的1-99.99%重量的至少两种基本上无规共聚体;且(1)其中50%重量以上的所述共聚体(a)包含0.5-65%摩尔的衍生自以下单体的聚合物单元(i)至少一种乙烯基或亚乙烯基芳族单体,或(ii)至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体,或(iii)至少一种乙烯基或亚乙烯基芳族单体与至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体的混合物;(b)包含35-99.5%摩尔的衍生自至少一种具有2-20个碳原子的脂族α-烯烃的聚合物单元;和(2)其中50%重量以下的所述共聚体包含(a)0.5-45%摩尔的衍生自以下单体的聚合物单元(i)至少一种乙烯基或亚乙烯基芳族单体,或(ii)至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体,或(iii)至少一种乙烯基或亚乙烯基芳族单体与至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体的混合物;(b)包含55-99.5%摩尔的衍生自至少一种具有2-20个碳原子的脂族α-烯烃的聚合物单元;和(B)基于组分A、B和C总重的99-0.01%重量的一种或多种导电添加剂和/或一种或多种具有高磁导率的添加剂;和(C)基于组分A、B和C总重的0-98.99%重量的一种或多种除A之外的聚合物。
42.根据权利要求41的共混物,其中i)所述亚乙烯基芳族单体组分A1(a)为苯乙烯;ii)所述脂族α-烯烃组分A2为乙烯、或乙烯与一种或多种C3-C8α-烯烃的混合物;iii)所述导电添加剂组分B为导电炭黑、聚苯胺、铟掺杂氧化锡、锑掺杂氧化锡、涂有锑掺杂氧化锡的二氧化钛。
43.根据权利要求41的共混物,其中组分C为橡胶改性聚丙烯。
44.一种胶乳,包含权利要求1的共混物。
45.一种胶乳,包含权利要求41的共混物。
全文摘要
本发明公开了聚合物材料的共混物,包含:(A)基于组分A、B、和C总重的1-99.99%重量的至少一种基本上无规共聚体;且其中所述共聚体(1)包含0.5-65%摩尔的衍生自以下单体的聚合物单元:(a)至少一种乙烯基或亚乙烯基芳族单体,或(b)至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体,或(c)至少一种乙烯基或亚乙烯基芳族单体与至少一种位阻脂族或环脂族乙烯基或亚乙烯基单体的混合物;(2)包含35-99.5%摩尔的衍生自至少一种具有2-20个碳原子的脂族α-烯烃的聚合物单元;(3)分子量(Mn)大于1000;(4)熔体指数(I
文档编号C08L23/08GK1276812SQ98810285
公开日2000年12月13日 申请日期1998年10月15日 优先权日1997年10月17日
发明者S·J·巴比奈克, M·A·布兰查德, M·J·盖斯特, B·W·沃尔瑟, B·I·乔德哈里, R·P·巴利 申请人:陶氏化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1