专利名称:用于微电子器件的模片固定粘合剂的制作方法
本申请是09/336,245号申请(1999年6月18日申请)的部分继续申请。
本发明涉及在微电子器件或半导体套件(semiconductor package)中适于用作粘合剂的组合物。
粘合剂组合物,尤其是导电粘合剂,在半导体套件和微电子器件的制造和组装中用作各种用途。更突出的用途是将集成电路芯片粘合在引线框或其他基材上,及将电路套件或组件粘合在印刷电路板上。
在电子套件中对导电粘合剂的要求是具有良好的机械强度、不影响元件或其载体的固化性能,及与目前用于工业中的现有应用设备相容的触变性能。
粘合剂的粘合或连接技术的另一个重要方面是对粘合的再处理能力。对于涉及大容积商品的单片套件,可以废弃损坏的芯片而不造成巨大的损失。然而,废弃仅有一个芯片损坏的多片套件就会很昂贵;因此,对损坏芯片的再处理能力就成为一个制造优点。今天,半导体工业中一个主要推动力就是发展满足粘合强度和柔韧性的所有要求,但也可以进行再处理的粘合剂,即能被除去而不破坏基材的粘合剂。
本发明是用于电子器件的粘合剂组合物,该粘合剂包含一种或多种单官能或多官能马来酰亚胺化合物,或除马来酰亚胺化合物外的一种或多种单官能或多官能乙烯基化合物,或马来酰亚胺和乙烯基化合物、固化引发剂和非必需的一种或多种填料的结合。该组合物能设计成可再处理的。
在另一个实施方案中,本发明是由刚描述的可固化粘合剂组合物得到的固化的粘合剂。
在另一个实施方案中,本发明是一种微电子组件,包含用固化的粘合剂组合物粘合到基材上的电子元件,该固化的粘合剂组合物是由下述组合物制备的,所述组合物包含一种或多种单官能或多官能马来酰亚胺化合物,或一种或多种单官能或多官能乙烯基化合物,或马来酰亚胺和乙烯基化合物、固化引发剂和非必需的一种或多种填料的结合。
用于本发明粘合剂组合物的马来酰亚胺和乙烯基化合物是可固化的化合物,即它们能交联地或非交联地聚合。如本说明书中所用的,固化就意味着交联的或非交联的聚合。交联,如现有技术中所示的,是两个聚合物链通过元素、分子团或化合物的桥连接,通常在加热下发生。当交联密度增加时,材料的性能能从热塑性变成热固性。
通过适当地选择单官能或多官能化合物的数量能制备交联密度范围宽的聚合物。反应的多官能化合物的比例越大,交联密度越大。如果要求热塑性特性,粘合剂组合物可从单官能化合物制备,以限制交联密度。可加入少量多官能化合物,以提供给组合物一些交联和强度,只要多官能化合物的量限制在不降低所要求的热塑性特性的量以内。在这些参数中,个别粘合剂的强度和弹性能设计成满足具体最终应用的要求。
在那些需要再处理组件和使用热塑性材料的情况下,电子元件可从基材上橇脱,可对任何残留粘合剂加热直到软化,且很容易除去。
交联密度也可以控制,以得到宽范围的已固化粘合剂的玻璃转化温度,以经受随后的处理和操作温度。
在本发明粘合剂组合物中,马来酰亚胺化合物和乙烯基化合物可独立使用或结合使用。马来酰亚胺或乙烯基化合物,或二者,可按基于有机成分含量(不包括任何填料)以2~98%wt的量存在于可固化封装粘合剂组合物中。
粘合剂组合物还将含有至少一种自由基引发剂,该引发剂定义为这样的化学物质,该物质分解为具有一个或多个不成对的电子的分子片断,具有高活性且通常为短寿命,能借助于成链历程引发化学反应。自由基引发剂将以有机化合物(不包括任何填料)重量的0.1~10%,优选的0.1~3.0%的量存在。自由基固化机理导致快速固化,并提供在固化前具有长储存寿命的组合物。优选的自由基引发剂包括过氧化物,如丁基过辛酸盐和过氧化二枯基,及偶氮化合物,如2,2’-偶氮二(2-甲基-丙腈)和2,2’-偶氮二(2-甲基-丁腈)。
另一方面,粘合剂组合物可含有代替自由基引发剂的光引发剂,固化过程可通过紫外线照射引发。光引发剂将以有机化合物(不包括任何填料)重量的0.1~10%,优选的1~5%的量存在。在某些情况下,光引发和热引发都是理想的。例如,固化过程可通过紫外线照射引发,在后续处理步骤中,固化可通过加热完成,以实现自由基固化。
通常,这些组合物将在80~200℃温度范围内固化,且固化将在少于1~60分钟时间段内进行。正如将要了解到的,每种粘合剂组合物的时间和温度固化曲线将不同,可设计不同组合物以提供适于具体工业制造过程的固化曲线。
用于粘合剂的合适的导电填料是银、铜、金、钯、铂。在某些环境中,也许需要不导电填料,例如用于调节流变性,如氧化铝、二氧化硅和特氟隆。
如本申请书中所用的,符号C(O)指羰基。
马来酰亚胺化合物适用于本发明粘合剂组合物中的马来酰亚胺化合物具有用通式[M-Xm]n-Q,或用通式[M-Zm]n-K表示的结构。对于这些特定通式,当下标”n”为整数1时,该化合物将为单官能化合物;当下标”n”为整数2~6时,该化合物将为多官能化合物。n-Q,或用通式[M-Zm]n-K。
通式[M-Xm]n-Q表示那些化合物,其中M是具有以下结构的马来酰亚胺部分 其中R1是H或C1-C5烷基;每个X独立地是选自结构(Ⅰ)到(Ⅳ)的芳基 Q是线性链或支链烷基、烷氧基、亚烷基、亚烷氧基、芳基,或芳氧基烷基胺、烷基硫醚、亚烷基胺、亚烷基硫醚、芳基硫醚类,它们可含有悬挂在链链上或作为链中主链的一部分的饱和或不饱和的环或杂环取代基,其中存在的任何杂原子可以直接或不直接地连接到X上;或Q是具有以下结构的尿烷 其中每个R2独立地是带有1~18个碳原子的烷基、芳基或烷氧基;R3是在链中带有多至100个碳原子的烷基链或烷氧基链,这些链可含有芳基取代基;X是O、S、N或P;v是0~50。
或Q是具有以下结构的酯 其中R3是在链中带有多至100个碳原子的烷基链或烷氧基链,这些链可含有芳基取代基;或Q是具有以下结构的硅氧烷-(CR12)e-[SiR4-O]f-SiR42-(CR12)g-,其中每个位置上的R1取代基独立地是H或带有1~5个碳原子的烷基;每个位置上的R4取代基独立地是H、带有1~5个碳原子的烷基或芳基,e和g独立地是1~10,f是1~50;和m是0或1,n是1~6。
优选的组合物是脂族双马来酰亚胺,其中马来酰亚胺官能团通过尿烷或脲键连接到主链上,例如以下优选的化合物 和 通式[M-Zm]n-K表示下述化合物,其中M是具有以下结构的马来酰亚胺部分 其中R1是H或C1-C5烷基;Z是线性链或支链烷基、烷氧基、烷氨基、烷基硫醚、亚烷基、亚烷氧基、亚烷氨基、亚烷基硫醚、芳基、芳氧基或芳基硫醚类,它们可含有悬挂在链上或作为链中主链的一部分的饱和或不饱和的环或杂环取代基,其中存在的任何杂原子可以直接或不直接地连接到K上;或Z是具有以下结构的尿烷 其中每个R2独立地是烷基、芳基或带有1~18个碳原子的烷芳基,R3是在链中带有多至100个碳原子的烷基链或烷氧基链,这些链可含有芳基取代基,v是0~50;或Z是具有以下结构的硅氧烷-(CR12)e-[SiR42-O]f-SiR42(CR12)g-,其中每个位置上的R1取代基独立地是H或带有1~5个碳原子的烷基;每个位置上的R4取代基独立地是H、带有1~5个碳原子的烷基或芳基,e和g独立地是1~10,f是1~50;K是选自结构(Ⅵ)到(Ⅻ)的芳基(尽管只显示了一个键连接到芳基K上,但可认为代表如用n描述和定义的任何数目的附加键) 其中p为1~100; 其中p是1~100; 其中R5、R6和R7是线性或支链烷基、烷氧基、烷氨基、烷基硫醚、亚烷基、亚烷氧基、亚烷氨基、亚烷基硫醚、芳基、芳氧基或芳基硫醚类,它们可含有悬挂在链上或作为链中主链一部分的饱和或不饱和的环或杂环取代基,其中存在的任何杂原子可以直接或不直接地连接到芳环上;或R5、R6和R7是具有结构-(CR12)e-[SiR42-O]f-SiR42(CH3)g-的硅氧烷,其中R1取代基是H或带有1~5个碳原子的烷基;每个位置上的R4取代基独立地是带有1~5个碳原子的烷基或芳基,e是1~10,f是1~50; 和(Ⅻ) 其中m是0或1,n是1~6。
优选的马来酰亚胺化合物,尤其是用于可再处理的组合物中的,是N-丁基苯基马来酰亚胺和N-乙基苯基马来酰亚胺。
乙烯基化合物适用于本发明粘合剂组合物中的乙烯基化合物(其中的马来酰亚胺除外)将具有以下结构 或 对于这些特定结构,当下标“n”为整数1时,该化合物将是单官能化合物;而当下标“n”为整数2~6时,该化合物将是多官能化合物。
在这些结构中,R1和R2是H或带有1~5个碳原子的烷基,或与形成乙烯基的碳原子一起形成5~9元环;B是C、S、N、O、C(O)、O-C(O)、C(O)-O、C(O)NH或C(O)N(R8),其中R8是C1~C5烷基;m是0或1;n是1~6;X、Q、Z和K如上所述。
优选的,B是O、C(O)、C(O)-O、C(O)NH或C(O)N(R8);更优选的B是O、C(O)、O-C(O)、C(O)-O或C(O)N(R8)。
用作粘合剂的优选的乙烯基化合物是乙烯基醚或链烯基硫醚。合适的乙烯基化合物的实例如下 和 其他的组合物成分根据将与粘合剂粘结的基材的性质,粘合剂也可含有偶合剂。此处使用的偶合剂是含有与马来酰亚胺和其他乙烯基化合物反应的可聚合官能团,并含有能与基材表面存在的金属氢氧化物缩合的官能团的化学物质。这些偶合剂及在具体基材的组合物中使用的优选用量是本技术领域中公知的。合适的偶合剂是硅烷、硅酸酯、金属丙烯酸酯或丙烯酸甲酯、钛酸酯,及含有螯合配位体的化合物,如磷化氢、硫醇和乙酰乙酸酯。当存在偶合剂时,其典型含量为马来酰亚胺和其他单官能乙烯基化合物的至多10wt%,优选0.1~3.0wt%。
另外,粘合剂组合物可含有给所得固化粘合剂带来额外的柔性和韧性的化合物。这种化合物可以是任何Tg为50℃或更低温度的热固性或热塑性材料,典型的是其特征为围绕化学键自由旋转、存在醚基且不存在环状结构的聚合材料。合适的这种改性剂包括聚丙烯酸酯、聚(丁二烯)、聚THF(聚合的四氢呋喃)、CTBN(羧基终止的丁二烯一丙烯腈)橡胶,和聚丙二醇。当存在增韧化合物时,其含量至多可为马来酰亚胺和其他单官能乙烯基化合物的约15wt%。
如果硅氧烷部分不是马来酰亚胺或乙烯基化合物结构的一部分,硅氧烷可加入封装配方中,以赋于弹性。合适的硅氧烷是异丁烯酰氧丙基终止的聚二甲基硅氧烷,和氨丙基终止的聚二甲基硅氧烷,其可从United ChemicalTechnologies公司和其他公司获得。
也可以添加其他添加剂,如粘合促进剂,其类型和用量是本技术领域中公知的。
性能特性这些组合物将在模片固定粘合剂的商品可接受范围内使用。在80×80mil2硅模片上,粘合剂的模片剪切的商品可接受值在室温下为大于或等于1kg,在240℃下为大于或等于0.5kg,而对于500×500mil2模片的翘曲,在室温下为小于或等于70μm。
热膨胀系数(CTE)是给定材料在单位温度变化下的尺寸变化值。不同材料具有不同膨胀率。如果连接在一起的部分的CTE差别很大,热的周期性变化能导致已连接的部分弯曲、裂纹或剥离。在典型的半导体组件中,芯片的CTE在2或3ppm/℃范围;对于有机电路板基材,CTE大于30ppm/℃;因此,粘合剂的CTE最好在基材和模片的CTE之间。
当对聚合物进行加热时,该聚合物将经过从硬、玻璃化态到软、橡胶态的转变区。该区被称为玻璃化转变区或Tg。如果绘制聚合物膨胀与温度的曲线,玻璃转变区就是在低温/玻璃化区热膨胀系数与高温/橡胶区热膨胀系数之间的相交区。在该区以上,膨胀率显著增加。因此,优选的是聚合物的玻璃转变区高于使用期间所经受的正常操作温度,如果需要可再处理能力,玻璃转变区就应低于任何再处理温度。
本发明另一个实施方案包括具有以下通式[M-Xm]n-Q和[M-Zm]n-K的马来酰亚胺,其中Q和Z可以是具有以下结构的酯 或 其中p是1~100,每个R3可以独立地是在链中带有多达100个碳原子的烷基或烷氧基链,该链可含有芳基取代基,或具有结构-(CR12)e-[SiR42-O]f-SiR42-(CR12)g-的硅氧烷,其中在每个位置上的R1取代基独立地是H或带有1~5个碳原子的烷基;每个位置上的R4取代基独立地是带有1~5个碳原子的烷基或芳基,e和g独立地是1~10,f是1~50。
本发明另一个实施方案包括具有下述结构的乙烯基化合物 和 其中B是C、S、N、O、C(O)、C(O)NH或C(O)N(R8),其中R8是C1~C5烷基。
本发明另一个实施方案包括具有下述结构的乙烯基化合物 和 其中Q和Z可以是具有以下结构的酯 或 其中p是1~100,每个R3可以独立地是在链中带有多达100个碳原子的烷基或烷氧基链,该链可含有芳基取代基,或具有结构-(CR12)e-[SiR42-O]f-SiR42-(CR12)g-的硅氧烷,其中每个位置上的R1取代基独立地是H或带有1~5个碳原子的烷基;每个位置上的R4取代基独立地是带有1~5个碳原子的烷基或芳基,e和g独立地是1~10,f是1~50。
本发明另一个实施方案包括本文所述的含有阴离子或阳离子固化引发剂的可固化粘合剂组合物。这种引发剂的类型和用量是本技术领域中公知的。
实施例制备了各种马来酰亚胺和乙烯基化合物,并配入粘合剂组合物中。考察了组合物的粘度和对非固化组合物的触变指数,固化曲线、玻璃转化温度、热膨胀系数、热机械分析,及已固化组合物在某些情况下的可再处理能力。
实施例1丁二烯-丙烯腈双马来酰亚胺的制备 在一个装有添加漏斗、机械搅拌器、内部温度探头和氮气入口/出口的3升四颈烧瓶中,将氨基终止的丁二烯-丙烯腈(由BF Goodrich以Hycar树脂1300 X42 ATBN销售,其中结构式中描述的m和n是整数,以提供3600的数均分子量)(450g,500mmol,以胺当量AEW=450g计)溶解在CHCl3(1000ml)中。将搅拌溶液置于氮气下,并在冰浴中冷却。将CHCl3(50ml)中的马来酐(98.1g,1mol)放入添加漏斗,将该溶液在30分钟期间加入反应体系中,保持内部反应温度低于10℃。将该混合物在冰浴中搅拌30分钟,然后加温到室温并另外搅拌4小时。向所得浆料中加入乙酐(Ac2O)(6534g,6mol)、三乙胺(Et3N)(64.8g,0.64mol)和乙酸钠(NaOAc)(62.3g,0.76mol)。将反应体系加热到轻微分馏达5小时,冷却到室温,然后用H2O(1L)、饱和NaHCO3(1L)和H2O(2×1L)抽提。在真空中除去溶剂得到马来酰亚胺终止的丁二烯-丙烯腈。
实施例2衍生自三(环氧丙基)异氰脲酸酯的三(马来酰亚胺)的制备 在一个装有机械搅拌器、内部温度探头和氮气入口/出口的2升三颈烧瓶中,将三(环氧丙基)异氰脲酸酯(99.0g,0.33mol)溶解在THF(500ml)中。向该溶液中加入羟苯基马来酰亚胺(189.2g,1mol)和苄基二甲基胺(1.4g,0.05wt%)。将溶液加热到80℃达7小时。然后将反应体系冷却到室温,过滤,用5%HClaq(500ml)和蒸馏水(1L)清洗滤渣。将所得固体三嗪三(马来酰亚胺)在室温下真空干燥。
实施例3马来酰亚胺乙基棕榈酸酯的制备 在一个装有机械搅拌器、内部温度探头、添加漏斗和氮气入口/出口的2升三颈烧瓶中,将棕榈酰氯(274.9g,1mol溶解在Et2O(500ml)中。加入溶解在蒸馏水(500ml)中的NaHCO3(84.0g,1mol)并剧烈搅拌,并在氮气中将溶液在冰浴上冷却。将Et2O(100ml)中的羟乙基马来酰亚胺(141g,1mol)装入添加漏斗中,将该溶液在30分钟内加入反应体系中,在添加过程中保持内部温度低于10℃。将反应体系在冰上再搅拌30分钟,然后加热到室温并搅拌4小时。将反应物转移到分液漏斗,用蒸馏水(500ml)、5%HClaq(500ml)和蒸馏水(2×500ml)清洗分离开的有机层。将有机物分离出来,并用无水MgSO4干燥,过滤并在真空下除去溶剂,生成脂族马来酰亚胺。
实施例4衍生自5-异氰酸根合-1-(异氰酸根合甲基)-1,3,3-三甲基环己烷的双马来酰亚胺的制备 在一个装有机械搅拌器、添加漏斗和氮气入口/出口的1升三颈烧瓶中,将5-异氰酸根合-1-(异氰酸根合甲基)-1,3,3-三甲基环乙烷(111.15g,0.5mol)溶解在THF(500ml)中。将反应体系置于氮气中,搅拌加入二月桂酸二丁锡(cat.Sn”)(6.31g,10mmol)和羟乙基马来酰亚胺(141g,1mol),将所得混合物在70℃下加热4小时。将溶解在THF(100ml)中的羟乙基马来酰亚胺(141g,1mol)装入添加漏斗中。将该溶液在30分钟期间内加入异氰酸酯溶液中,将所得混合物在70℃下再加热4小时。将反应体系冷却到室温并在真空下除去溶剂。将剩下的油溶解在CH2Cl2(1L)中,并用10%HClaq(1L)和蒸馏水(2×1L)清洗。将分离出来的有机物用MgSO4干燥,过滤并在真空下除去溶剂,生成马来酰亚胺。
实施例5衍生自Pripol 2033的二聚二乙烯基醚的制备 “二聚二乙烯基醚”(和环状异构体)将双(1,10-菲咯啉)Pd(OAc)2(0.21g,0.54mmol)在氮气环境下溶解在丁基乙烯基醚(8.18g,81.7mmol)、庚烷(100mL)和“二聚二醇”(由Unichema以Pripol2033销售,15.4g,27.2mmol)的混合物中,所述混合物盛在一个装有机械搅拌器的2L三颈烧瓶中。将该溶液加热到轻微分馏达6小时。将溶液冷却到室温,随后泼洒在活性碳(20g)上并搅拌1小时。过滤所得浆料,在真空下除去多余的丁基乙烯基醚和庚烷,生成如黄色油脂的二乙烯基醚。产物表现出可接受的1HNMR、FT-IR和13C NMR光谱特征。典型粘度约为100cPs。
实施例6衍生自二聚二醇(Pripol 2033)的二聚二丙烯酸酯的制备 将二聚二醇(由Unichema以Pripol 2033销售,284.4g,500mmol)在氮气环境下溶解在干燥丙酮(500mL)中,所述丙酮盛在一个装有机械搅拌器、添加漏斗和内部温度探头的1L三颈烧瓶中。在该溶液中加入三乙基胺(101.2g,1mol),将该溶液在冰浴上冷却到4℃。将在干燥丙酮(100mL)中溶解的丙烯酰氯(90.5g,1mol)加入添加漏斗中,并在60分钟期间加入搅拌的反应溶液中,保持内部温度低于10℃。将溶液在冰上再搅拌2小时,然后加热到室温并搅拌4小时。通过旋转蒸发器除去大部分溶剂,剩余物溶在CH2Cl2(1L)中。用5%HClaq(800ml)和H2O(2×800ml)清洗该溶液。将分离出来的有机物用无水MgSO4干燥,过滤并在真空下除去溶剂,生成作为油脂的二丙烯酸酯。
实施例7N-乙基苯基马来酰亚胺的制备将4-乙基苯胺(12.12g)溶解在50ml无水乙醚中,并缓慢加入在冰浴中冷却的9.81g马来酐在100ml无水乙醚中的搅拌状态下的溶液中。添加完成后,将反应混合物搅拌30分钟。将淡黄色结晶过滤并干燥。用乙酐(200ml)溶解马来酰胺酸和20g乙酸钠。反应混合物在160℃油浴中加热。分馏3小时后,将溶液冷却到室温,放入冰水中的1L烧杯中并剧烈搅拌1小时。将产物吸滤并在己烷中再结晶。将收集的结晶材料在50℃真空炉中干燥一夜。FTIR和NMR分析显示乙基马来酰亚胺的特征。
实施例8双(链烯基硫醚)的制备 将二聚酸(由Unichema以商标Empol 1024销售)(574.6g,1mol)和炔丙醇(112.1g,2mol)溶解在甲苯(1L)中,所述甲苯盛在装有机械搅拌器和Dean-Stark蒸馏装置的3L三颈烧瓶中。加入浓缩H2SO4(6mL),并分馏溶液6小时,直到36mL H2O被共沸蒸馏。将溶液冷却到室温,用H2O(2×1L)清洗,用无水MgSO4干燥并在真空下除去溶剂,生成油状炔丙酯中间产物。
将这种酯中间产物(650.7g,1mol)溶解在THF(200mL)中,所述THF盛在处在氮气中的装有分馏冷凝器、机械搅拌器和内部温度探针的1L三颈烧瓶中。加入月桂基硫醇(404.8g,2mol)和2,2’-偶氮双(2,4-二甲基戊腈)(由DuPont以商标Vazo 52销售)(11g),将所得混合物在70℃油浴中搅拌加热7小时。将反应体系冷却到室温,并在真空下除去溶剂,生成油状链烯基硫醚。
实施例A6-马来酰亚氨基己酸的制备6-马来酰亚氨基己酸 酸官能的马来酰亚胺,6-马来酰亚氨基己酸,用公知的方法合成。1将氨基己酸(100g,7.6×10-1mol)溶解在冰乙酸(50mL)中,所述乙酸盛在装有机械搅拌器、内部温度探头和添加漏斗的500mL四颈烧瓶中。将溶解在乙腈(75mL)中的马来酐(74.8g,7.6×10-1mol)的溶液装入添加漏斗中。在室温下、在1小时期间向氨基己酸中滴加该溶液,保持内部反应温度低于35℃。滴加完成后搅拌反应体系3小时。过滤反应浆料,将分离的滤渣在70℃真空炉(P-25T)中干燥一夜,得到166g灰白色固体(95%)。产物酰胺酸表现出与文献中数据一致的FT-IR和1H NMR光谱特征。
上述酰胺酸(166g,7.2×10-1mol)溶解在甲苯(200mL)、苯(200mL)和三乙胺(211mL,1.51mol)溶液中,所述溶液盛在装有机械搅拌器和Dean-Stark阱的氮气下的1L三颈烧瓶中。将该溶液加热到分馏达4小时,生成的水用Dean-Stark阱收集。将蒸馏水(400mL)加入反应烧瓶中,以溶解在反应期间从整体溶液中大量分离出的产物的三乙基铵盐。将该水性层分离出来,用50%的HCl酸化到约pH=1,并用乙酸乙酯(600mL)提取。用蒸馏水(400mL)清洗该有机物层。用MgSO4干燥分离出来的有机物层,然后在真空下除去溶剂,得到灰白色固体(76.2g,50%)。产物6-马来酰亚氨基己酸与文献材料的FT-IR和1H NMR光谱是一致的。
实施例B
“二聚二酯双马来酰亚胺”的制备 “二聚二酯双马来酰亚胺”(和环状异构体)将Pripol 2033(“二聚二醇”,Uniqema,92.4g,1.69×10-1mol)、6-马来酰亚氨基己酸(75.0g,3.55×10-1mol)和H2SO4(0.50mL,约8.5×10-3mol)混合在甲苯(300mL)中,所述甲苯盛在装有机械搅拌器、Dean-Stark阱和内部温度探头的氮气下的1L四颈烧瓶中。将反应体系加热到轻微分馏达2小时,生成的水用Dean-Stark阱收集。排掉阱中的水,蒸馏掉反应体系中约50mL甲苯溶剂,除去微量水分,并完成酯化平衡。将反应体系冷却到室温,加入额外的甲苯(100mL)(在实验室规模,优选的是在这时加入二乙基醚代替甲苯),用饱和NaHCO3水溶液(300mL)和蒸馏水(300mL)清洗该溶液。将有机物层分离出来,并用无水MgSO4干燥,在真空下除去溶剂得到橙黄色油(107.2g,68%)。可以通过将树脂的甲苯溶液穿过二氧化硅或氧化铝短塞来洗涤以进一步纯化该材料。该液态双马来酰亚胺树脂表现出可接受的FT-IR、1H NMR和13C NMR数据。典型的η约为2500cPs。
实施例C“癸烷二醇二酯双马来酰亚胺”的制备 “癸烷二醇二酯双马来酰亚胺”用癸烷二醇(29.5g,1.69×10-1mol)代替Pripol 2033进行实施例B描述的一般过程。该方法生成固态、中等溶解度的双马来酰亚胺(54.9g,58%)。产物表现出满意的FT-IR和1H NMR数据。
实施例D“甘油三酯三(马来酰亚胺)”的制备 用甘油(10.4g,1.13×10-1mol)代替Pripol 2033进行实施例B中拟定的方案。产物是表现出可接受FT-IR和1H NMR数据的粘稠液体。
实施例E“IPDI的双(间-硝基苄基氨基甲酸酯)”的制备 “IPDI的双(间-硝基苄基氨基甲酸酯)”将异佛尔酮二异氰酸酯(“IPDI”,100.0g,4.5×10-1mol)、间-硝基苄基醇(137.8g,9.0×10-1mol)和二月桂酸二丁基锡(2.8g,4.5×10-3mol)溶解在于甲苯(1500mL)中,所述甲苯盛在装有机械搅拌器、分馏冷凝器和内部温度探头的氮气下的2L三颈烧瓶中。将所得溶液加热到90℃达4小时。在试样固体部分的IR中没有观察到异氰酸酯谱带。将溶液冷却到室温并用蒸馏水(100mL)清洗。将有机物层分离出来,并在真空下除去溶剂,得到表现出可接受的FT-IR和1HNMR特征的黄色液体。
实施例F“IPDI的双(间-氨苄基氨基甲酸酯)”的制备 “IPDI的双(间-氨苄基氨基甲酸酯)”将来自实施例E的二硝基化合物(8.28g,1.57×10-2mol)溶解在乙醇(100mL)中,所述乙醇盛在氮气下的装有磁性搅拌器的500ml三颈圆底烧瓶中。加入环己烯(28.6mL,2.82×10-1mol),然后加入5%的Pd/C(4.14g)。将所得浆料轻微分馏6.5小时。该溶液过滤的等分试样的FT-IR在1529cm-1和1352cm-1处未表现出硝基延伸谱带。将整体溶液冷却到室温并过滤。在真空下除去溶剂,得到表现出可接受的FT-IR和1H NMR光谱特征的黄色半固体(6.6g,90%)。
实施例G“IPDI的双(间-马来酰亚氨基苄基氨基甲酸酯)”的制备 “IPDI的双(间-马来酰亚氨基苄基氨基甲酸酯)”将来自实施例F的二胺(6.6g,1.41×10-2mol)溶解在丙酮(60mL)中并冷却到4℃,所述丙酮盛在氮气下的装有磁性搅拌器和添加漏斗的250ml四颈烧瓶中。在30分钟期间加入溶解在丙酮(20mL)中的马来酐(2.76g,2.82×10-2mol)。所得溶液在4℃搅拌1小时,随后加热到室温并通宵搅拌。FT-IR分析表明没有剩余马来酐(通过在约1810cm-1处不存在酐延伸谱带来判断)。
向上述酰胺酸溶液中加入乙酐(8.5mL,9.0×10-2mol)、三乙基胺(1.26mL,9.0×10-3mol)和乙酸钠(0.88g,1.1×10-2mol)。所得溶液在氮气下轻微分馏4小时。将反应体系冷却到室温并在真空下除去大部分溶剂。所得粘性液体再溶解在二氯甲烷(200mL)中并用蒸馏水(3×200mL)提取。然后用无水MgSO4干燥有机物,过滤并在真空下除去溶剂,生成浅棕色固体(6.75g,76%)。该材料表现出可接受的FT-IR和1H NMR光谱特征。
实施例H“DDI1410的双(间-硝基苄基氨基甲酸酯)”的制备 “DDI1410的双(间-硝基苄基氨基甲酸酯)”(和环状异构体)将DDI1410(Henkel,“二聚二异氰酸酯”,99.77g,1.65×10-1mol(基于13.96%NCO))、间-硝基苄醇(50.8g,3.32×10-1mol)和二月桂酸二丁基锡(0.5mL,8.3×10-4mol)溶解在甲苯(150mL)中,所述甲苯盛在装有机械搅拌器、分馏冷凝器和内部温度探头的氮气下的1L四颈烧瓶中。将反应体系加热到85℃达2.5小时。对反应体系等分试样的FT-IR分析表明,异氰酸酯官能度已完全消耗(可从在2272cm-1处缺少谱带来判断)。在真空下除去反应体系中溶剂,生成在室温下放置时即固化的黄色油脂(152.4g,102%(痕量甲苯))。该固体表现出满意的FT-IR和1H NMR光谱特征。
实施例Ⅰ“DDI1410的双(间-氨苄基氨基甲酸酯)”的制备
DDI1410的双(间-氨苄基氨基甲酸酯)”(和环状异构体)将实施例H的二胺产物(39.6g,4.32×10-2mol)和氯化亚锡二水合物(97.55g,4.32×10-1mol)加入乙酸乙酯(300mL)中,所述乙酸乙酯盛在装有机械搅拌器和分馏冷凝器的氮气下的1L三颈烧瓶中。将反应体系加热到轻微分馏并剧烈搅拌3小时。将溶液冷却到室温,用饱和碳酸氢钠溶液调节到pH7-8。混合物通过25μm过滤器,生成分离为浑浊水溶液层和中等清澈的有机物层的混合物。分离出水溶液层并用乙酸乙酯(1000mL)冲洗。用蒸馏水(300mL)结合、清洗有机物层并用无水MgSO4干燥。过滤浆料并在真空下从滤液中除去溶剂,生成黄色、粘性固体(33.8g,92%)。
实施例J“DDI1410的双(间-马来酰亚氨基苄基氨基甲酸酯)”的制备 “DDI1410的双(间-马来酰亚氨基苄基氨基甲酸酯)”(和环状异构体)将马来酐(15.4g,1.57×10-2mol)溶解在丙酮(300mL)中,所述丙酮盛在氮气下的装有机械搅拌器、内部温度探头和添加漏斗的2L四颈烧瓶中。将溶液在冰浴上冷却到约4℃。将实施例Ⅰ制备的丙酮(70mL)中的二胺(63.4g,7.48×10-2mol)溶液充入添加漏斗中,并在30分钟期间加入马来酐溶液中,保持内部温度低于10℃。将所得溶液搅拌1小时,随后加热到室温并搅拌2小时。
向该酰胺基酸溶液中加入乙酐(24.7mL,2.62×10-1mol)、三乙胺(6.25mL,4.48×10-2mol)和乙酸锰四水合物(0.37g,1.50×10-3mol)。将溶液加热到轻微分馏达6.5小时,然后冷却到室温。在真空下除去大部分溶剂,将所得黑色液体溶解在二乙基醚(500mL)中。用蒸馏水(500mL)冲洗该溶液。然后用饱和NaHCO3水溶液(500mL)冲洗分离出来的有机层,再用蒸馏水(500mL)冲洗。将有机物分离出来,用无水MgSO4干燥并在真空下除去溶剂,得到粘稠的橘黄色油。该材料表现出与期望的双马来酰亚胺产物一致的FT-IR、1H NMR和13C NMR光谱特征。
实施例AA低应力模片固定粘合剂配方和在各种引线框上的模片剪切强度通过在室温下用机械混合器将以下组分结合,制备粘度为9011cPs(5rpm,锥形和平板形)、触变指数为5.36的充有银的模片固定粘合剂配方实施例B的液体双马来酰亚胺 2.644g实施例5的二聚二乙烯基醚 2.644gRicon131MA20(Ricon Resins,Inc.):0.661gSilquestA-174(Witco Corp.): 0.040gUSP-90MD(Witco Corp.): 0.099XD0026(NSCC trade secret): 0.119SF-96银薄片23.794将所得膏分散在下述不同金属引线框上,120×120mil硅模片放置在粘合剂液滴上,制备约1mil的粘结线。将试样在200℃下“急速固化”60秒,测量室温下和240℃下的模片剪切强度。然后将这些试样经受高温和高湿(85℃/85%RH)达48小时。然后再测量室温和240℃下的模片剪切强度。结果示于表1中。
表1 马来酰亚胺/乙烯基醚模片固定粘合剂的模片剪切强度(DSS)
这些器件在85℃/85%RH下饱和后典型的吸湿量为0.18wt%。固化期间失重为0.16+/-0.05wt%。
实施例BB马来酰亚胺/乙烯基醚模片固定粘合剂的HAST测试与实施例AA类似,利用实施例AA中提供的粘合剂组合物将120×120mil的模片粘结到不同组合物的引线框上。然后采用“急速固化”(60秒/200℃)和“快速烘箱固化”(15分钟/175℃)将粘结的模片固化。所得固化器件置于模拟HAST测试条件(130℃,85%RH)下130小时。如表2中所示的在室温和高温下测量模片剪切强度(DSS)的结果,器件表现出良好的粘结性。
表2 模拟HAST测试后的模片剪切强度
实施例CC用马来酰亚胺/乙烯基醚模片固定粘合剂粘结的大模片的翘曲用实施例AA描述的模片固定组合物将500×500mil模片粘结到Pd-Cu引线框上。将组装片“急速固化”并在几种温度和时间下测量模片的翘曲。典型结果示于表3中。该粘合剂表现的性能证明它是“低应力”材料。
表3 在500×500mil模片上的马来酰亚胺/乙烯基醚模片固定粘合剂的翘曲
实施例DD马来酰亚胺/乙烯基醚模片固定粘合剂的热分析用实施例AA的组合物采用降落棒制备约1mil的薄膜。在热平板上将薄膜“急速固化”(60秒,200℃)或烘箱固化(4小时/175℃),并通过动态机械分析(DMA)测量其特征。结果示于表4。
表4 马来酰亚胺/乙烯基醚模片固定薄膜的热分析
该材料表现出低于低应力粘合剂的典型Tg的模量。在高于Tg的温度下材料的模量足以承受典型的导线粘结条件而不会失败。
实施例EE硅氧烷双马来酰亚胺的制备
将卡必醇终止的硅氧烷(DMS-C15,Gelest Inc.;27.26g,27.2mmol)和N,N-二甲基氨基吡啶(DMAP;0.07g,0.55mmol)溶解于在氮气下盛于500mL四颈烧瓶中的CH2Cl2(200mL)中,所述烧瓶装有机械搅拌器、添加漏斗和内部温度探头。该溶液在冰浴上冷却到约5℃。将在CH2Cl2(50mL)中的二环己基碳化二亚按(DCC;14.06g,68.1mmol)溶液加入添加漏斗中。将该DCC溶液经45分钟加入硅氧烷/DMAP溶液,并保持内部温度<10℃。在冰浴(ice batch)上搅拌该溶液2小时,对溶液等分试样的FT-IR分析表明存在酯(1740cm-1)和残留DCC(2120cm-1)。将溶液加热到室温,再搅拌3小时。FT-IR分析仍表明存在DCC。向该反应体系中加入乙酸(20mL),再搅拌该溶液1小时,FT-IR表明没有残留DCC。过滤该溶液,除去沉淀的二环己基脲(DCU),在真空下从滤渣中除去溶剂。残余油再溶解在庚烷(200mL)中,并冷却到约5℃达1星期。从所得溶液中过滤出沉积的红色固体,得到浅棕色溶液。该溶液与硅胶(10g)在室温下搅拌1小时,过滤并在真空下除去溶剂,得到表现出可接受的1H NMR、29SiNMR和FT-IR光谱特征的浅棕色液体。
权利要求
1.用于将电子元件粘结到基材上的可固化粘合剂组合物,该组合物包含马来酰亚胺化合物和选自自由基引发剂、光引发剂和它们的组合的固化引发剂,马来酰亚胺化合物具有通式(M-Xm)n-Q,其中n是1~6,和(a)M是具有以下结构的马来酰亚胺部分 其中R1是H或C1-C5烷基;(b)X选自具有结构(Ⅰ)到(Ⅳ)的芳基 和(Ⅳ) ;和(c)Q是具有以下结构的酯 其中R3是具有结构-(CR12)g-(O)1,0-(CR12)e-(Si-R42-O]f-Si-R42-(CR12)g-(O)1,0-(CR12)g-的硅氧烷,其中每个位置上的R1取代基独立地是H或带有1~5个碳原子的烷基,R8是线性或支链烷基或带有1~20个碳原子的亚烷氧基,每个位置上的R4取代基独立地是带有1~5个碳原子的烷基或芳基,e和g独立地是1~10,f是1~50。
2.用于将电子元件粘结到基材上的可固化粘合剂组合物,该组合物包含马来酰亚胺化合物和选自自由基引发剂、光引发剂和它们的组合的固化引发剂,马来酰亚胺化合物具有通式Mn-Q,其中n是1~6,和(a)M是具有以下结构的马来酰亚胺部分 其中R1是H或C1-C5烷基;(b)Q是具有以下结构的酯 其中R3是具有结构-(CR12)g-(O)1,0-(CR12)e-(Si-R42-O]f-Si-R42(CR12)g-(O)1,0-(CR12)g-的硅氧烷,其中每个位置上的R1取代基独立地是H或带有1~5个碳原子的烷基,R8是线性或支链烷基或带有1~20个碳原子的亚烷氧基,每个位置上的R4取代基独立地是带有1~5个碳原子的烷基或芳基,e和g独立地是1~10,f是1~50。
3.权利要求2的可固化粘合剂组合物,其中马来酰亚胺化合物具有通式
4.包含粘结到基材上的电子元件的电子组件,所述电子元件用上述权利要求中任一项的组合物制备的固化粘合剂组合物与基材粘结。
全文摘要
将电子元件粘结在基材上的热塑性或热固性粘合剂,其中粘合剂从可固化组合物就地固化,所述可固化组合物含有一种或多种多官能或单官能马来酰亚胺化合物,或除马来酰亚胺化合物外的一种或多种多官能或单官能乙烯基化合物,或马来酰亚胺与乙烯基化合物、固化引发剂和非必需的一种或多种填料的结合。
文档编号C09J4/06GK1321715SQ0111928
公开日2001年11月14日 申请日期2001年4月10日 优先权日2000年4月14日
发明者D·E·赫尔 申请人:国家淀粉及化学投资控股公司