专利名称:用于控制自组装膜中的核化的方法和装置的制作方法
技术领域:
本发明的领域通常涉及自组装纳米结构膜。更具体地,本发明 的领域涉及用于控制纳米结构膜的自组装中的核化的方法和工艺。
背景技术:
半导体工业日益^皮推动以减小布置在集成电^各上的半导体器 件的尺寸。例如,需要进行小型化以适应当今半导体产品所需要的 曰益增加的电路密度。增加的封装密度和器件尺寸的减小已迫使半 导体器件结构(诸如晶体管)被布置得相互更紧密。遗憾地是,减小元器件尺寸的传统4支术将4艮快达到它们的 限。例如,传统的光刻技术受到衍射极限,因此不能限定出一般小于100 nm的图案。平版印刷法(比如电子束平版印刷)方面的进 步已能够形成小至10nm的特征。然而,电子束平版印刷法是连续 的工艺并且生产能力较低。因此,电子束平版印刷法并不适于商业 应用,商业应用必然要求高的生产能力。随着小型化趋势的继续,基于半导体的器件中的特征的尺寸将 会是纳米级的。特征可以由分子甚至是单个原子形成。问题是分子 或原子在基板上的精确位置难以控制。然而,特征在基板上的精确 位置的控制在基于CMOS的工艺中是至关重要的。传统的基于 CMOS的工艺要求特征在整个基板上方的一竒确对准(registration )。 这种基板可能特别大,例如,具有大至12英寸的直径。任何用于 形成基于半导体的特征的新工艺都需要将该精度保持在晶片级(wafer scale ),以4吏此工艺在商业上可4亍。对于纳米级平版印刷的限制造成尝试使用自组装的分子作为 在基板上形成纳米级结构的潜在方法。这些技术通常涉及嵌段共聚 物(block copolymer )或蛋白质晶体,它们具有纳米级的晶胞尺寸。 使用后续的步骤(其可能采取蚀刻步骤的形式)来将形成的图案转 印到基板上或覆层上,这与传统光刻工艺中一样。对所有自组装工 艺的一个固有挑战就是所生成薄膜的多晶本质。因为基板整个表面 上方的许多有序晶域(domain)(也称作」微晶)的同时或是几乎同 时的核化,所以多晶形态无法避免。最大的晶粒尺寸近似为1 (am。 因此,在所生成的结晶膜中没有长程有序性(long-range order),这 对于基于CMOS的技术是通常要求的。已采用各种尝试来增加自组装纳米结构表面的长程有序性。例 如,在一种方法中,其上形成有膜的基板包括规则的图案结构。4吏 用干涉平版印刷法通过形貌地(topographically )或化学地调整基板 来执行图案化。周期性调整后的基板随后为自组织系统提供长程有 序性。在另一种方法中,4吏用图形外延法(graphoepitaxy)来通过 人工的表面图案结构(比如衍射光栅的槽)引起嵌段共聚物的定向 禾口^f立置4非序。伊H口见C.A.Ross等人的Nanostructured Surfaces with Long-Range Order for Controlled Self-Assembly , NSF Nanoscale Science and Eng. Grantees Conf., Dec. 16-18, 2003。在后面的工艺中, 据说良好排序的结构可形成在光栅的槽内。其他人也尝试使用快速固化来定向嵌段共聚物微晶域。美国专 利公开No. 2003/0118800公开了这样一种工艺使用来自溶剂的快 速固化以在嵌段共聚物的薄膜中形成微晶域的图案。 仍然需要用于控制自组装薄膜的核化的方法。优选地,可以使 用此方法在基才反的整个表面上而并非只在基板上的一个或多个孩丈 晶域中形成长程有序性。此方法将有利地具有高生产能力,从而使 得该方法能用在商业中以形成纳米级结构。发明内容在本发明的一个方面中,在基板上形成自组装结晶膜的方法包 括在基板上提供膜前体的步骤,其中该膜前体保持在无定形状态。 邻近于基4反4是供加热件并且基才反与加热件二者之间经历相对移动。 通过使加热件和/或基板相对于彼此移动,基板上的膜前体的 一部分 被加热到玻璃化转变温度以上。继续此工艺直到在基板的全部或基本上全部的表面上形成2D自组装结晶膜。本发明的目的是在整个 自组装工艺中在整个晶片表面上保持单一有序的晶域。在本发明的一个方面中,加热件是固定的,而基板相对于固定 的加热件是移动的。在本发明的可替换方面中,基板是固定的,而加热件相对于固定的基寿反是移动的。在又一个^,:换例中,基玲反和加 热件都是移动的。上述的方法可能会伴随有选择性地去除形成在基板上的自组装结晶膜中的一种(species)的一个或多个步骤。在本发明的又一个方面中,在基板上形成自组装结晶膜的方法 包括在基板上提供膜前体的步骤。该膜前体可以保持在无定形状 态。分配件,皮i殳置在基一反上方,并且该分配件含有pH调节介质。 pH调节介质一皮分配到基板上。pH调节介质促进膜前体结晶成为自 组装膜。
可以用聚合物或蛋白质形式的膜前体来实施上述方法。此外, pH调节介质可以包含粘度改变剂,目的是控制膜前体的铺展速度。在本发明的另一个方面中,用于在包含膜前体的基板上形成自 组装膜的装置包括第一和第二加热件。第二加热件邻近于第一加热 件而设置。第二加热件与第一加热件隔开一间隙,在本发明的一个优选方面中该间隙是V形间隙。提供可移动的推进件以将基板从第一加热件^t,向第二加热件。在该装置的一个方面中,第一加热件具有的温度高于膜前体的有序-无序转变温度(ToD),而第二加热件具有的温度高于膜前体的玻璃化转变温度(Tglass) ^旦低于TOD。在该装置的另一个方面中,第一加热件具有的温度低于膜前体 的玻璃化转变温度(Tglass ),而第二加热件具有的温度高于膜前体的 玻璃化转变温度(Tglass) ^f旦低于TOD。本发明的目的是提供一种在基板上形成纳米级结构的方法。本 发明的另 一个目的是提供一种在基板上形成自组装结晶膜的方法,有利地,该方法因为具有高生产能力而可以用在商业应用中。本发 明的其它目的将在下面进行描述。
图1A示出了基板,例如在其上表面上设置有膜(例如,二氧 化硅)的硅基板。图1B示出了图1A的其上设置有膜前体(例如两嵌段共聚物 膜)的基板。
图1C示出了图IB的基板,其中移动的加热件位于包含膜前体 的基板的上表面上方。图1C还示出了自组装结晶膜的前沿。图ID示出了具有自组装两嵌段共聚物膜的基板,其中两嵌段 共聚物膜由孔的单晶图案组成。孔的直径和图案(晶体)的周期由 共聚物的两个聚合物嵌段的长度决定。此长度典型地约为10nm级。图2示出了基板(具有膜前体)的俯视图,示出了自组装2D 结晶区域的推进。图3示出了设置在热衬底材料(比如,热容器或散热器)上的 基板。图4示出了本发明的替换方面,其中包含pH调节介质的分配 件用来促进生物(例如,蛋白质)膜前体结晶成为自组装膜。图5示出了用在替换自组装工艺中的两个导热块或件。
具体实施方式
图1A示出了基板2,比如其上表面上设置有中间膜4 (例如, 二氧化硅)的硅基板2。基板2可以是晶片等形式的,其通常用来 生产半导体器件。基板2可以例如由硅、砷化镓(GaAs)、氮化镓 (GaN)等制成。例如,可以才艮据其导热级别选才奪中间膜4的成分。 中间膜4的图示实例包括二氧化硅(Si02)、 SiNx、无定形硅、及金 属(诸如铝和钨)。j见在参照图1B,在基才反2的上表面上i殳置有月莫前体6。在该方 法的一个方面中,膜前体6包含嵌段共聚物。例如,膜前体6可以 包含聚异戊二烯(PI)-聚苯乙烯(PS)两嵌段共聚物(PI-PS)。嵌 段共聚物体系的另 一个实例包括聚(苯乙歸-嵌段-二甲基硅氧烷)(P(S-b-DMS))。在这个体系中,PDMS 乂于多种活性离子蚀刻工艺 具有很强的抵抗力,而聚苯乙烯(PS)基本上没有。才艮据这里构思的方法可使用其它的嵌革殳共聚物体系。例如,可 以采用其一种成分响应于辐射而优先降解的体系(例如,已知聚曱 基丙烯酸甲酯(PMMA)在暴露于电子束或紫外光下时会降解,而 聚苯乙烯(PS)更稳定)。还可以使用其一种成分易受化学处理的 影响而改变蚀刻速度的嵌段共聚物体系。例如,在结合有聚异戊二 烯(PI)或聚丁二烯(PB)的PS体系中,当该体系暴露于四氧化锇(0S04)中并且随后经受CF4/02活性离子蚀刻时,PS可以在比PI或PB更高的速度下,皮蚀刻。应该理解这里描述的方法可以与本 领域技术人员所知的任何数量的嵌段体系一起使用。例如,嵌段共(cluster)尺寸。返回来参考图1B,通过将膜前体6旋涂在包含中间膜4的基 板2上,可以将膜前体6设置在基板2上。可替换地,膜前体6可 通过蒸发作用而沉积到基外反2上。例如,在本方法的一个方面中, PI-PS两嵌段共聚物系统可以被旋压(spin)在覆有二氧化硅的基板 2上。膜前体6以无定形状态(就是i兌,没有形成任何重大尺寸的 孩丈晶)保持在基板2上。通常,非常小的樣i晶能够容易地重新定向 自身以结合于附近的大微晶中,而大微晶由于受高能量临界值的限 制不能这样。典型地,热处理不能超越大微晶所要求的高能量临界 值水平。现在参照图1C, ^是供加热件8以将月莫前体6的一部分加热到 它们的玻璃化转变温度(Tglass)以上。已知在T一s以上的温度下, 嵌段共聚物相会分凝(segregate )并且自组装膜10由规则分布在整 个聚合物矩阵(例如,PS矩阵)中的一种聚合物的簇(例如,PI 3求体或3求)纟且成。例如参见C. Harrison等人的Lithography With A Mask of Block Copolymer Microstructures, J. Vac. Sci. Technol" B16, p. 544 (1998)。上述出版物全部结合于此以供参考。如PI-PS两嵌,殳共聚物体系所示的,由PI王求体或J求之间的相互 作用驱动而自组装成为2D膜10。如果在任何时刻,基板2的表面 上仅有单晶体,则晶体周界(或是成核位置)附近的膜将自组装成 为正在生长的2D结晶膜10的一部分。然而,如果整个基板2的表 面被立刻加热,就会有许多微晶在基板2上的不同位置处同时形成 并且生长。不幸的是,来自不同成核位置的生长前沿相遇,并且导 致不能调谐的定向错配,因为它要求整个微晶(其具有pm尺寸) 的重新定向。因此,所得到的膜没有长程有序性。本方法通过使自 组装膜10的单晶域的移动前沿传播而克服了这个问题一因此避免 了在基板2整个表面上同时核化。加热件8可以包括内部加热元件(未示出)或者可以由某些外 部热源力口热(例如,通过辐射等力。热)。在一个方面中,力口热件8 是热尖端(heated tip)形式的,例如图1C中所示。热尖端通常包 括终止于顶尖处的有角的或三角形的部分。随后在加热件8与基板2之间开始相对运动。在本方法的优选 实施例中,相对运动在基板2的一个侧边或边缘处开始,并且前行 到相对的侧边或边缘。就此而言,单个二维(2D)自组装结晶膜 10的核化由加热件8与基板2之间的相对运动控制。在本发明的一 个伊乙选方面中,移动的前沿或区i或前4亍穿过基才反2的表面。实质上, 单个2D结晶膜10的核化在基板2表面上的一个点处开始,并且扩 展到基板2的整个表面。优选地,2D结晶膜10可以在加热件8和 /或基冲反2的单个通道(pass)中形成。 加热件8被加热,使得邻近加热件8布置的膜前体6能够被加 热到超过Tg^的温度。就此而言,仅膜前体6的邻近加热件8布置 的 一部分一皮加热到Tglass以上。仍然参照图1C,加热件8与基板2之间的相对运动使得自组 装膜10的前沿沿箭头A的方向移动。前沿在基纟反2的全部或基本 上全部的表面上蔓延。在本发明的一个方面中,加热件8是固定的, 而基板2是移动的。在该方法的替换方面中,基板2是固定的,而 加热件8是移动的。J见在参照图2,在该方法的优选方面中,自《且装力莫10的前沿内 的热流被限制为一个值,使得刚好位于前沿前面(在图2中以箭头 B指示出)的区域的宽度小于或窄于邻近的PU求或J求体之间的相互 作用范围。通常,此方法在沿着基才反2的表面具有大的或陡的温度 梯度时工作得最好。如果升温领域的宽度太大,则膜10的核化可 能导致超出前沿太远一 因此导致多重的多晶微晶域。在本发明的一个方面中,在基板2表面上产生的温度梯度的宽 度和陡度可以由基板2的传热特性控制。例如,可以将中间膜4的 成分选择成用于增加膜前体6的层上形成的梯度。可替换地,如图 3中所示,可以将基板2的背部放置成与热元件20热接触,该热元 件可以包括例如恒温的热容器或散热器。对于退火配置的重要要求是维持陡峭的温度梯度的能力。图5 中示出了可替换的退火配置,其中涂覆有前体的基板2与导热材料 (例如铝)的两个块42、 44接触并且移动越过形成在这两个块之 间的间隙40。两个块42、44的温度能够保持在例如膜前体6的Tglass 之上或之下。可替换地,两个块42、 44的温度能够保持在ToD(有 序画无序转变温度)之上或之下。ToD是这样的温度在此温度之上
熵界限(entropy term )决定吉布斯自由能,并且无序状态(与有序 状态相反)在热力学上是有利的。如图5中所见,在此工艺的一个方面中,涂覆有前体的基板2 ^皮;改置在第一加热块42上。随后沿箭头A的方向通过推进件46将 基板2推过V形间隙40。第 一和第二加热块42、 44之间的间隙40 约为lfmi级。在此工艺的一个方面中,第一加热块42{呆持在高于 TOD的温度,而第二加热块44保持在高于Tglass但低于TOD的温度。 两个加热块42 、 44可以保持在不同的温度下以 <更在加热块42 、 44 的相应上接触表面之间保持约50。C的温度差。自组装发生在第二加 热块44之上,并且当基板2 一皮完全推到第二加热块44上时自组装 完成。基才反2与加热件8之间的相对移动速度优选地;波控制为降到一 临界值以下,该临界值与2D膜10的自组装速度相关。因此相对速 度应该足够低以使自组装发生。在过高的速度下,膜前体6的自组 装将不会发生。在2D自组装膜10形成在基板2的全部或基本全部的表面上之 后,随后可以将图案转印到中间膜4和/或基板2上。例如,利用活 性离子蚀刻技术(之后是残留聚合物膜10的去除),可以将中间膜 4图案化。作为一个解释性的实例,在PI-PS两嵌段共聚物体系中,包含 2D自组装4莫10的基4反2可经历真空退火处理,该处理在自组装膜 IO中形成球形晶域(PI球)。随后能够通过臭氧处理选择性地去除 PI球。随后通过使基板2经历CF4活性离子蚀刻或CF4/02活性离子 蚀刻可以露出气孔。美国专利No. 5,948,470 (其整体结合于此以供 参考)描述了这样一种选择性地降解并去除嵌段共聚物成分的工 艺。此外,湿化学图案转印工艺(或本领域冲支术人员所知的其它工 艺)可用来将图案转印到基板2中。 图1D示出了具有二氧化硅掩模12的基板2,该掩模带有单晶 图案的孔14。随后孔14的图案可以用来生长多个器件或部件,所 述器件或部件以纳米精度与基板2对准。孔14提供一种构架或基 础,后续工序可基于该构架或基础而形成纳米级结构。图4示出了用于形成2D自组装膜10的替换工艺。在图4中, 基才反2净皮膜前体30覆盖,该力莫前体可以采用生物学基前体(诸如 蛋白质)的形式。在本发明的一个方面中,当暴露于适当的化学环 境中时,蛋白质(或其它前体)自组装成为膜IO。例如,蛋白质可 以在特定的pH值以上或以下结晶。如上所述,膜前体30优选地以 无定形状态保持在基板2上。在基板2的表面上方设置有分配件32。 分配件32可以采用例如滴管、吸管、或樣i吸管的形式。分配件32 中包括pH调节介质34的源或以其它方式连接到pH调节介质34 的源上。pH调节介质34可以包括酸、碱、或者甚至是緩冲溶液。 将pH调节介质34选择成用于促进膜前体30自组装或结晶为自组 装膜10。如图4中所见,pH调节介质34 /人分配件32中一皮分配到基板2 的表面上。优选地,pH调节介质34以受控速度被释放,使得pH 调节介质34的前沿引起膜前体30的自组装。优选地,所沉积的pH 调节介质34的周界的前进速度(在图4中以箭头C表示)足够低, 以允许膜前体30的有序结晶。在此工艺的一个方面中,pH调节介 质34中添加有粘度改变剂。粘度改变剂可以包含增稠剂(以增加 粘度)或降粘剂(以减小粘度)。粘度改变剂优选地放慢或加快pH 调节介质34的前沿横穿基板2的表面前进的速度。可替换地,可 以改变力莫前体30的润湿特性以调节pH调节介质34流动的速度。在本发明的优选方面中,pH调节介质34被分配到基板2的中 央区域中,如图4中所示。优选地,pH调节介质34朝向基板2的 边缘自然地向外流动。在本发明的替换实施例中,基板2可以转动以有助于pH调节介质34穿过基板2表面的移动。尽管已经示出并描述了本发明的实施例,但是在不背离本发明 范围的情况下可以进行各种修改。因此,除受限于所附权利要求及 其等同物外,本发明应该不受限制。
权利要求
1.一种在基板上形成自组装膜的方法,所述方法包括在基板上提供无定形状态的膜前体;邻近于所述基板提供加热件;使所述基板和所述加热件相对于彼此移动以形成自组装结晶膜。
2. 才艮据权利要求1所述的方法,其中,所述加热件是固定的,并 且所述基才反相对于固定的加热件移动。
3. 才艮据权利要求1所述的方法,其中,所述基板是固定的,并且 所述加热件相对于所述固定的基板移动。
4. 4艮据权利要求1所述的方法, 物。
5. 根据权利要求1所述的方法, 热尖端部。
6. 根据权利要求1所述的方法, 之间设置有中间膜。其中,所述膜前体包括嵌段共聚 其中,所述加热件包4舌至少一个 其中,在所述基板与所述膜前体
7. 根据权利要求1所述的方法,其中,所述相对移动使所述膜前 体的至少 一部分的温度升高到它们的玻璃化转变温度以上,但 低于有序-无序转变温度。
8. 根据权利要求1所述的方法,进一步包括选择性地去除形成在 所述基板上的所述自组装膜中的 一种的步骤。
9. 才艮据权利要求8所述的方法,进一步包括去除形成在所述基才反 上的所述自组装膜中的残留物的步骤。
10. 才艮据权利要求1所述的方法,其中,所述基板与热容器热接触。
11. 根据权利要求1所述的方法,其中,所述基板与散热器热接触。
12. 根据权利要求1所述的方法,其中,所述加热件与所述基板之 间的相对移动速度保持低于临界值。
13. —种在基板上形成自组装膜的方法,所述方法包括在基板上提供无定形状态的膜前体;提供含有pH调节介质的分配件;以及将所述pH调节介质分配到所述基寺反上,其中,所述pH 调节介质促进所述膜前体结晶成为自组装膜。
14. 根据权利要求13所述的方法,其中,所述膜前体包括蛋白质。
15. 根据权利要求13所述的方法,其中,所述膜前体包括聚合物。
16. 根据权利要求13所述的方法,其中,所述pH调节介质被分 配到所述基^反的中央区域上。
17. 才艮据权利要求13所述的方法,进一步包括控制从所述分配件 分配所述pH调节介质的速度的步骤。
18. 根据权利要求13所述的方法,其中,所述pH调节介质含有 粘度改变剂。
19. 根据权利要求13所述的方法,进一步包括选择性地去除形成 在所述基板上的所述自组装膜的多个区域的步骤。
20. —种用于在包含膜前体的基板上形成自组装膜的装置,所述装 置包括第一加热件;第二加热件,所述第二加热件邻近于所述第一加热件i殳 置,所述第二加热件与所述第一加热件;故间隙隔开;以及可移动的推进件,用于将所述基板从所述第一加热件推 向所述第二加热4牛。
21. 根据权利要求20所述的装置,其中,所述第一加热件具有的 温度高于所述膜前体的有序-无序转变温度(TOD),而所述第 二加热件具有的温度高于所述膜前体的玻璃化转变温度(Tglass)但低于TOD。
22. 根据权利要求20所述的装置,其中,所述第一加热件具有的 温度低于所述膜前体的玻璃化转变温度(Tglass),而所述第二 加热件具有的温度高于所述膜前体的玻璃化转变温度(Tglass) 但低于所述有序-无序转变温度(TOD)。
全文摘要
一种在基板上形成具有周期性纳米尺寸特征(例如,孔)的自组装膜的方法,该方法包括在基板上提供膜前体的步骤,其中膜前体保持在无定形状态。在膜前体为嵌段共聚物的情况下,提供加热件。随后基板和加热件相对于彼此移动,以将基板上的膜前体的一部分的温度升高到它的玻璃化转变温度以上。基板与加热件之间的相对移动继续,直到自组装结晶膜形成在基板表面上为止。在替换实施例中,提供pH分配件以将pH调节剂分配到基板上,从而促进结晶膜的自组装。
文档编号B05D3/02GK101213029SQ200580050148
公开日2008年7月2日 申请日期2005年6月28日 优先权日2005年6月27日
发明者谢亚宏 申请人:加利福尼亚大学董事会